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Abstract

We explicitly determine the exact 2-adic valuation of differences of harmonic sums,
Hn −Hm, 0 ≤ m ≤ n− 1, which also yields the 2-adic valuation of the products of
these differences. Sharp lower and upper bounds on the average 2-adic orders of the
differences follow. We present an application to obtain lower bounds on the 2-adic
valuations of products of binomial coefficients and differences of harmonic numbers,
and lacunary sums involving binomial coefficients.

1. Introduction

With the harmonic numbers Hn =
∑n
k=1 1/k and H0 = 0, we define their differ-

ences:

Hn −Hm =

n∑
k=m+1

1

k
, with 0 ≤ m ≤ n− 1.

The harmonic numbers and their differences have been extensively studied, and

congruential identities have been established and their p-adic valuations have been

investigated under different settings, e.g., when the valuation is a positive integer

(see [7, 1]), in particular.

The most basic result on the 2-adic valuations of harmonic numbers states that

ν2(Hn) = −k if 2k ≤ n < 2k+1. We note that the author investigated the p-adic

properties of differences of other combinatorial quantities, e.g., central binomial

coefficients and Catalan numbers in [13], Motzkin numbers in [11, 12], and Stirling

numbers of the second kind in [14] by various methods. In general, answering these

questions are significantly more difficult for odd primes; cf. [7, 17, 19, 22].
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Our focus is on the 2-adic valuation of Hn −Hm which is never positive if 0 ≤
m ≤ n − 1; cf. the proof of Theorems 1 and 2. The next two theorems are of

historical significance.

Theorem 1. For all n ≥ 2, we have Hn 6∈ Z.

This theorem on integrality is attributed to Theisinger who proved it in 1915.

A 2-adic proof is based on the fact that Hn 6∈ Z2, the ring of 2-adic integers, so

Hn 6∈ Z. In fact, Kürschák was the first one to use a 2-adic approach to prove

Theorem 1. In 1918 (see [5]) he strengthened Theorem 1 and proved the following

improvement.

Theorem 2. For all 0 ≤ m ≤ n − 2, we have Hn −Hm 6∈ Z2 and, in particular,

Hn −Hm 6∈ Z.

This theorem includes the prior one with the settings m = 1 and n ≥ 3 but

Theorem 2 does not apply if m = n− 1 and n is odd, since Hn −Hm = 1/n ∈ Z2;

cf. [5], although still Hn−Hm 6∈ Z if 1 ≤ m ≤ n−1. The proofs of Theorems 1 and

2 are based on the observation that there is a unique term in the sum
∑n
k=m+1 1/k

with the most negative 2-adic valuation. With r = maxm+1≤k≤n ν2(k) we get that

r ≥ 1 since Hn − Hm, m ≤ n − 2, has at least two terms. The proof follows by

noting that now there is a unique term 1/k with m+1 ≤ k ≤ n and 2-adic valuation

r. Otherwise, there are at least two terms with k1 = 2rc and k2 = 2rd, with c < d

and both being odd. However, then k3 = 2r(c+ 1) is even and it is between k1 and

k2, and ν2(k3) > r, which is a contradiction.

We note that from our perspective it is less relevant, but the integrality problem

has been extended in different directions, e.g., to the rth elementary symmetric

functions of 1, 1/2, . . . , 1/n (see Erdős and Niven [6], and Chen and Tang [3]),

and to variations of multiple harmonic sums, e.g., Pilehrood et al. [17]. Density

related results, in which the density of positive integers n for which Hn = un/vn,

with un, vn ∈ Z, (un, vn) = 1 and vn > 0, and either p | un or p - vn, have been

obtained recently in [19, 21, 22] and were initiated in [7].

We are interested in certain divisibility properties of differences of harmonic

numbers. We note that some interesting properties have been obtained for these

differences, e.g., it is known that no two differences of harmonic numbers can be

equal; cf. [6, Theorem 2].

In Sections 2 and 3 we present theorems on determining the exact 2-adic order of

the difference of harmonic numbers (Theorems 3 and 6) and their products (Corol-

lary 2 and Theorem 4). They yield sharp lower and upper bounds on the average

of the 2-adic orders of these differences. We use the results to obtain lower bounds

on the 2-adic valuations of terms involving products of binomial coefficients and

differences of harmonic numbers. We obtain lower bounds on the 2-adic valuations

of related elementary symmetric functions in Section 4, e.g., in Lemma 2, Corol-

lary 3, and Remark 6. Finally, in Section 5 we discuss an application involving the
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determination of the 2-adic order of some lacunary binomial sums; see Theorem 7

and Remark 7.

2. The Main Results on the Exact 2-Adic Valuation of Differences of
Harmonic Numbers

2.1. Differences

Our first observation is straightforward. With r = blog2(2n)c, the proof of Theo-

rem 2 easily implies the following lemma.

Lemma 1. For n ≥ 1, we have that ν2(H2n −Hn) = −blog2(2n)c.

Here m = 2n/2, and it turns out that many more values of m result in the same

valuation as it is explored in Theorem 3 and noted in Remark 2. One of our main

results of this note considers arbitrary differences.

Theorem 3. We write the base 2 expansion of n as n =
∑t
i=1 2ai with ai ∈ N,

0 ≤ a1 < a2 < · · · < at. For n ≥ 2 there are 2at , 2at−1 , . . . , 2a1 2-adic values

of ν2(Hn − Hm), m = 0, 1, . . . , n − 1, that are equal to −at, −at−1, . . . , −a1,

respectively, in increasing order of m.

More specifically, with Mj =
∑t
i=t−j+1 2ai , 1 ≤ j ≤ t, and M0 = 0, we have

ν2(Hn −Hm) = −at−j+1 if Mj−1 ≤ m < Mj , j = 1, 2, . . . , t.

Note that for t ≥ 1 we have

aj = blog2(n−Mt−j)c , j = 1, 2, . . . , t. (2.1)

Visually, we can use a ruler (see Figure 1) to read out the proper value of −aj .

0

M0

2at

M1

2at + 2at−1

M2

n

Mt

the 2-adic value: −at −at−1 −at−2 . . . −a1

◦ ◦ ◦ ◦ ◦ ◦◦◦

Figure 1: The ruler

Note that for the gap size between consecutive markers we obtain

Mt−j+1 −Mt−j

2
=

2aj

2
= 2aj−1 ≥ 2aj−1 .

The following corollary follows from Theorem 3.

Corollary 1. We have ν2(Hn−Hn−m) = −at, 1 ≤ m ≤ n, if n = 2at , with at ≥ 0,

is a power of 2.
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Remark 1. We can easily generalize the theorem for the differences of the so-called

harmonic numbers of order r: H
(r)
n =

∑n
k=1 1/kr with r ∈ Z.

Remark 2. Lemma 1 immediately follows from Theorem 3 since the first case

with j = t applies in Theorem 3 and (2.1). Therefore, exactly 2blog2(2n)c values

of m (starting with 0 and increasing) result in ν2(H2n − Hm) = −blog2(2n)c =

−1− blog2(n)c = −dlog2(n+ 1)e.

Proof of Theorem 3. Note that for any particular j = 1, 2, . . . , t, we deal with the

sequence( 1

2at + · · ·+ 2aj−1 + 1
+ · · ·+ 1

n
,

1

2at + · · ·+ 2aj−1 + 2
+ · · ·+ 1

n
, . . . ,

1

2at + · · ·+ 2aj+1 + 2aj
+ · · ·+ 1

n

)
,

which gives max1≤i≤2aj ν2(i) = aj , i.e., the last element of the sequence has the

unique most negative 2-adic order, −aj .

Remark 3. Theorem 3 provides the Newton polygon of the polynomial
∏n−1
m=0(x−

(Hn−Hm)). The polygon describes the set of 2-adic valuations of its roots, {Hn−
Hm}0≤m≤n−1. Moreover, the theorem identifies the individual 2-adic valuations of

the actual roots.

The Newton polygon conveys information about the poles of a rational poly-

nomial. If νp(c) = −m, we say that c has a pole of order m. For any rational

polynomial f(x) we define the maximum pole of f(x) as the highest order pole of its

coefficients, which is the highest power of p in the denominator of any coefficient.

For a rational polynomial of degree n, f(x) = c0x
n + c1x

n−1 + · · · + cn, we plot

the lattice points (i, νp(ci)), 0 ≤ i ≤ n. The Newton polygon of f(x) is the lower

boundary of the convex hull of the set of these lattice points.

2.2. Product of Differences and the Average of 2-Adic Orders

Inspired by Remark 3, we note that Theorem 3 implies the following corollary.

Corollary 2. If the base 2 expansion of n is n =
∑t
i=1 2ai , then

ν2

(
n−1∏
m=0

(Hn −Hm)

)
= −

t∑
i=1

ai2
ai .

The sum a(n) =
∑t
i=1 ai2

ai is a weighted digit sum of n in base 2. Gener-

ally, digit sum functions behave rather irregularly, e.g., with b(n) = t we have

b(2k − 1) = k, and b(2k) = 1, k ≥ 0, for the digit sum, while their sum
∑n−1
k=1 b(k)

is more smooth and
∑n−1
k=1 b(k) =

∑t
i=1 2ai(ai2 + i− 1) = 1

2a(n) +
∑t
i=1(i− 1)2ai =
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n
2 log2(n) + nF (log2(n)) where F (x) is a continuous, one-periodic, nowhere differ-

entiable function according to Delange; cf. [9, 4].

The sequence a(n) behaves more regularly. We mention different ways to calcu-

late a(n) and derive sharp bounds on it in Theorem 4. The exponent of y in the

two-variable generating function

[xn]

∞∏
k=0

(
1 + yk 2kx2

k
)

determines this sum for n ≥ 1.

For faster calculations we can use the recurrence

a(2n) = 2a(n) + 2n; a(2n+ 1) = a(2n),

with a(0) = 0 and a(1) = 0. The first few values of the sequence a(n) are: 0, 0, 2, 2,

8, 8, 10, 10, 24, 24, 26, 26, 32, 32, 34, 34. The FindRegularSequenceRecurrence

function of the IntegerSequences Mathematica package (cf. [18]) confirms that

the sequence a(n) is 2-regular with its 2-kernel contained in a 3-dimensional vector

space generated by a(2n)n≥0, a(2n+ 1)n≥0, and a(4n+ 2)n≥0; cf. [20, Corollaries

1 and 2].

For the generating function A(x) =
∑
n≥1 a(n)xn we obtain the functional equa-

tion

A(x2) =

(
A(x)

2(1 + x)
− x2

(1− x2)2

)
.

It is a linear functional equation of substitution type and it can be solved in an

iterative fashion; cf. [8, (61) in III.7].

We have a(2k − 1) =
∑k−1
t=0 t2

t <
∑k−1
t=0 k2t < a(2k) = k2k, k ≥ 1, and the

additive relation a(n1+n2) = a(n1)+a(n2) if 2ν2(n1) > n2 ≥ 0. It can be repeatedly

used to determine a(n1 + n2) if n1 is the highest 2-power in n1 + n2 and to prove

that a(n) is an increasing sequence. It also helps in the inductive step in the proof

of Theorem 4. For the asymptotics we can prove the next theorem by the above

additivity and induction on m ≥ 1, assuming that 2m−1 < n ≤ 2m.

Theorem 4. For n ≥ 1, we have

(n+ 1) log2(n+ 1)− 2n ≤ a(n) ≤ n log2 n. (2.2)

Moreover, a(n) = (n + 1) log2(n + 1) − 2n exactly if n is one less than a power of

2, and a(n) = n log2 n exactly if n is a power of 2. For the average
∑n−1
m=0 ν2(Hn −

Hm)/n of the 2-adic orders of the differences we have the sharp bounds

− log2(n) ≤ 1

n

n−1∑
m=0

ν2(Hn −Hm) ≤ −n+ 1

n
log2(n+ 1) + 2.
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Of course, we can take the respective upper and lower integer parts on the sides

of (2.2). Theorem 4 improves the result of Brown who studied a(n) in the context

of the analysis of binomial queues in [4].

3. More Results for the Differences of Harmonic Sums

We have the following consequences of Theorem 3. In Corollary 1, n was a power

of 2, while in Theorem 5 we assume that m is a power of 2.

Theorem 5. With m = 2r, r ∈ N, and 1 ≤ m ≤ n, we have that

ν2(Hn −Hn−m) = −r − ν2(bn/mc).

The next theorem further generalizes Theorem 5.

Theorem 6. Let M = dlog2(m+ 1)e, j = b(n−m)/2Mc, where 1 ≤ m ≤ n. Then

we have

ν2(Hn−Hn−m)=

{
−M+1, if 2M j+m ≤ n ≤ 2M (j + 1)− 1,

−M−ν2(j+1), if 2M (j+1) ≤ n ≤ 2M (j+1)+m−1,
(3.1)

and the lower bound

ν2

((
n

m

)
(Hn −Hn−m)

)
≥ −M + 1, (3.2)

that does not depend on n. Equality holds in (3.2) if m is a power of 2.

Remark 4. Theorem 6 also implies Lemma 1.

Proof of Theorem 5. The proof can be done by inspection of the 2-adic orders of

the denominators. We present a proof based on Theorem 3. The statement is clear

if n = 2t, r ≤ t ∈ N, by Theorem 3. On the other hand, according to whether

l = bn/mc is odd or even, the binary expansion of n =
∑t
i=1 2ai has or does not

have 2r in it, respectively. Note that it means that n−m does not have or does have

the term 2r at the same time. We add the 2-powers in n from high to low powers,

as we move on the ruler (see Figure 1) from left to right, until we just pass n−m.

If l is odd then n−m < 2at + 2at−1 + · · ·+ 2r, and thus, A = ν2(Hn−Hn−m) = −r
since we stop right after including the 2-power 2r. On the other hand, if l is even

then n does not have, while m and n−m do have, the term 2r; and therefore, the

last added term is 2s+r with s = ν2(l), and then A = −(s+ r).

Proof of Theorem 6. The proof of Equation (3.1) is a straightforward follow up to

that of Theorem 5. In fact, if 2M−1(2j) + 1 ≤ n−m+ 1 and n ≤ 2M−1(2j+ 2)− 1,
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with the given choice of j, then the unique most negative 2-power is 1/(2M−1(2j+1))

in the summation Hn−Hn−m. On the other hand, if 2M (j+1)−m+1 ≤ n−m+1

and n ≤ 2M (j + 1) +m− 1, then 1/(2M (j + 1)) is the corresponding term.

To prove (3.2) we find a non-trivial lower bound on ν2(
(
n
m

)
). If m = 2r and thus,

M = r + 1, then

ν2

((
n

m

))
=

{
0, if 2M j +m ≤ n ≤ 2M (j + 1)− 1,

ν2(j + 1) + 1, if 2M (j + 1) ≤ n ≤ 2M (j + 1) +m− 1,
(3.3)

which guarantees equality in (3.2). If m is not a power of 2 then the right-hand

side provides only a lower bound on ν2(
(
n
m

)
) in (3.3).

4. Lower Bounds on the 2-Adic Valuations of Related Elementary Sym-
metric Functions

The purpose of this section is to obtain a fairly simple estimate in Remark 6 for the

proof of Theorem 7. We define

Ek(n, am) =
∑ 1

i1i2 . . . ik
, (4.1)

where the summation uses indices so that n− am+ 1 ≤ i1 < i2 · · · < ik ≤ n, i.e., it

is the kth elementary symmetric function of 1/(n−am+1), 1/(n−am+2), . . . , 1/n.

For k = 1 it simplifies to E1(n, am) = Hn −Hn−am. We note that

Ek(n, am) =

[
n+ 1

n+ 1− k

]
n−am

is also referred to as the r-Stirling number of the first kind (see [2]), and

Ek(n, n) =
|s(n+ 1, k + 1)|

n!

where s(n, k) is the (signed) Stirling number of the first kind.

We obtain a lower bound (4.4) on ν2(Ek(n, am)) in Remark 6, based on (4.2)

when 1 ≤ k ≤ am ≤ n. Note that, trivially, we have

ν2(Ek(n, n)) ≥ −kblog2 nc. (4.2)

As a sidenote, we add that this inequality can be improved in various ways. For

instance, we have the following lemma.

Lemma 2. For 1 ≤ k ≤ n we have

ν2(Ek(n, n)) ≥
k∑
i=1

(−blog2 nc+ blog2 ic)

= −kblog2 nc+
(

(k + 1)blog2 kc − 2(2blog2 kc − 1)
)
. (4.3)
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Furthermore, similar and often stronger and more general estimates can be found

on νp(Ek(n, n)) with a prime p, e.g., in [10], although they are not needed here.

Corollary 3. For all k ≥ 1 there exists n ≥ 1 such that

ν2(Ek(n, n)) =

k∑
i=1

(−blog2 nc+ blog2 ic)

.

Remark 5. We can easily derive the generating function 1
1−x

∑∞
i=1 x

2i of blog2 nc,
n ≥ 1. Therefore, the generating function of the correcting term

∑k
i=1blog2 ic in

(4.3) is 1
(1−x)2

∑∞
i=1 x

2i ; cf. [16, A061168].

Remark 6. Clearly, ν2(Ek(n, am)) ≥ ν2(Ek(n, n)) ≥ −kblog2 nc if 1 ≤ k ≤ am ≤
n by using the argument on the corresponding terms with the smallest 2-adic val-

uations and (4.2). Therefore,

ν2(NkEk(n, am)) ≥ k(ν2(N)− blog2 nc), (4.4)

which is non-negative if ν2(N) ≥ blog2 nc. Note that equality holds in (4.4) if n = 2t

and k = 1 by Corollary 1.

5. An Application

Our goal is to study the 2-adic properties of the lacunary binomial sum

bn/ac∑
m=1

((
n+N

am

)
−
(
n

am

))
2bm

if a, b ∈ Z+ and ν2(N) ≥ 1. For the terms of the sum we have the lower bound

ν2(N) − ν2((am)!) + bm, which is not helpful if a > b and m is large. To avoid

this problem, under some conditions we find a non-trivial lower bound by applying

Theorem 6.

Theorem 7. With a, b ∈ Z+ and ν2(N) ≥ blog2 nc we get that

ν2

bn/ac∑
m=1

((
n+N

am

)
−
(
n

am

))
2bm

 ≥ ν2(N)− blog2 nc+ b. (5.1)

Proof. Note that((
n+N

am

)
−
(
n

am

))
2bm =

am∑
k=1

Nk

(
n

am

)
Ek(n, am)2bm (5.2)

https://oeis.org/A061168
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with the kth elementary symmetric function Ek(n, am) of

1/(n− am+ 1), 1/(n− am+ 2), . . . , 1/n,

defined in (4.1). For k = 1 the first term on the right-hand side of (5.2) simplifies

to N
(
n
am

)
(Hn−Hn−am)2bm. A lower bound on its 2-adic valuation is given in (3.2)

of Theorem 6. Note that M = dlog2(am+ 1)e ≤ blog2 nc+ 1.

An application of (4.4) completes the proof.

Remark 7. It turns out that the lower bound in (5.1) can be improved, even

without the assumption ν2(N) ≥ blog2 nc, and typically, the exact 2-adic order of

the sum can be determined by evaluating the terms with small values of m. For

instance, with d, n ∈ N we get in [15] that

ν2

b(16n+9)/3c∑
m=1

((
16n+ 9 + 2d+4

3m

)
−
(

16n+ 9

3m

))
2m


= ν2

(
3∑

m=1

((
16n+ 9 + 2d+4

3m

)
−
(

16n+ 9

3m

))
2m

)
= d+ 5.
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