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Abstract

Let j be a fixed integer such that 2 ≤ j ≤ 8. Let f be a normalized primitive
holomorphic cusp form of even integral weight for the full modular group Γ =
SL(2,Z). Denote by λsym2f (n) the n-th normalized coefficient of the Dirichlet
expansion of the symmetric square L-function L(sym2f, s) attached to f . In this
paper, we are interested in the average behavior of the summatory function∑

a21+a
2
2+a

2
3+a

2
4+a

2
5+a

2
6≤x

(a1,a2,a3,a4,a5,a6)∈Z6

λjsym2f (a21 + a22 + a23 + a24 + a25 + a26)

for x sufficiently large. In a similar manner, we also consider the mean square of
coefficients of the Dirichlet expansions of two symmetric power L-functions attached
to two distinct primitive holomorphic cusp forms over the same sequence.

1. Introduction

The Fourier coefficients of modular forms are important and interesting objects in

number theory. Let H∗k be the set of all normalized primitive holomorphic cusp

forms of even integral weight k ≥ 2 for the full modular group Γ = SL(2,Z). Then

the Hecke eigenform f(z) ∈ H∗k has the Fourier expansion at the cusp ∞:

f(z) =

∞∑
n=1

λf (n)n
k−1
2 e(nz), =(z) > 0,
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where e(z) = e2πiz, and λf (n) is the n-th normalized Fourier coefficient (Hecke

eigenvalue) such that λf (1) = 1. Then λf (n) is real and satisfies the multiplicative

property

λf (m)λf (n) =
∑

d|(m,n)

λf

(
mn

d2

)
,

where m ≥ 1 and n ≥ 1 are positive integers. In 1974, P. Deligne [5] proved the

Ramanujan-Petersson conjecture

|λf (n)| ≤ d(n), (1)

where d(n) is the classical divisor function. By Equation (1), Deligne’s bound is

equivalent to the fact that there exist αf (p), βf (p) ∈ C satisfying

αf (p) + βf (p) = λf (p) and αf (p)βf (p) = |αf (p)| = |βf (p)| = 1. (2)

More generally, for all positive integers l ≥ 1, one has

λf (pl) = αf (p)l + αf (p)l−1βf (p) + · · ·+ αf (p)βf (p)l−1 + βf (p)l.

It is an important topic to consider the average behavior of Hecke eigenvalues

of cusp forms in various aspects (see, e.g., [13, 16, 36, 38, 52]). In 2013, Zhai [54]

considered the average behavior of the power sum

Uj(f ;x) :=
∑

a2+b2≤x

λf (a2 + b2)j

for x ≥ 1, 2 ≤ j ≤ 8 and a, b, j ∈ Z. Indeed, he successfully proved that

Uj(f ;x) = xP̃j(log x) +O
(
xαj+ε

)
,

where P̃j with j = 2, . . . , 8 are polynomials with degrees deg P̃2 = 0,deg P̃4 =

1,deg P̃6 = 4,deg P̃8 = 13, and deg P̃j ≡ 0 for j = 3, 5, 7. The exponents αj are

given by

α2 =
8

11
, α3 =

17

20
, α4 =

43

46
, α5 =

83

86
,

α6 =
184

187
, α7 =

355

357
, α8 =

752

755
.

Very recently, the results of Zhai were refined and generalized for all j ≥ 2 by Xu

[53], by using the recent breakthrough of Newton and Thorne [33, 34], along with

some nice analytic properties of the associated L-functions.
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Let λsymjf (n) denote the n-th normalized coefficient of the Dirichlet expansion

of the j-th symmetric power L-function L(symjf, s) (see Section 2 for more details).

Fomenko [6] proved that ∑
n≤x

λsym2f (n)� x
1
2 (log x)2.

Later, this sum were studied by many authors (see, e.g., [25, 29, 44]). The analogous

cases for symmetric power lifting symjπf for large j were considered by Lau and

Lü [30], and Tang and Wu [51].

On the other hand, Fomenko [7] studied the sum of λ2sym2f (n). Later, this result

was improved and generalized by a number of authors (see, e.g., [50, 11, 31, 45]).

Recently, Sankaranarayanan, Singh, and Srinivas [45] proved that∑
n≤x

λ2sym3f (n) = c1x+O
(
x

15
17+ε

)
,

and ∑
n≤x

λ2sym4f (n) = c2x+O
(
x

12
13+ε

)
,

where c1, c2 > 0 are some suitable constants. Very recently, Luo et al. [31] estab-

lished the asymptotic formulas∑
n≤x

λ2symjf (n) = c̃jx+O
(
xθ̃j+ε

)
, 3 ≤ j ≤ 6,

and ∑
n≤x

λ2symjf (n) = c̃jx+O
(
xθ̃j
)
, j = 7, 8,

where c̃j(3 ≤ j ≤ 8) is a suitable constant, and θ̃3 = 551
635 , θ̃4 = 929

1013 , θ̃5 = 1391
1475 , θ̃6 =

979
1021 , θ̃7 = 63

65 , θ̃8 = 40
41 , respectively. In the same paper, the authors also proved that∑
n≤x

λjsym2f (n) = xPj(log x) +O
(
xθj+ε

)
,

where Pj is a polynomial with degP3 = 0,degP4 = 2,degP5 = 5,degP6 =

14,degP7 = 35,degP8 = 90, and θ3 = 971
1055 , θ4 = 262

269 , θ5 = 3237
3265 , θ6 = 4923

4937 , θ7 =
7442
7449 , θ8 = 89771

89799 , respectively.

In [46], Sharma and Sankaranarayanan considered the asymptotic behavior of

the sum

Uf,j(x) :=
∑

n=a2+b2+c2+d2≤x
(a,b,c,d)∈Z4

λjsym2f (n)
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for j = 2 for x ≥ x0, where x0 is sufficiently large. In fact, the authors established

the formula

Uf,2(x) = cfx
2 +Of

(
x

9
5+ε
)

for any ε > 0, where cf > 0 is some suitable constant depending on f . Very recently,

Sharma and Sankaranarayanan [47] established the asymptotic formulae for Uf,j(x)

with j = 3, 4. In fact, they proved that

Uf,3(x) = c1x
2 +Of

(
x

27
14+ε

)
,

and

Uf,4(x) = c2x
2 log x+Of

(
x

160
81 +ε

)
,

where c1, c2 are suitable effective constants depending on f . Afterwards, the author

and his collaborators gave some refinements and generalizations concerning the

above results of Sharma and Sankaranarayanan, the interested readers can refer to

[14, 15, 17].

In [48], Sharma and Sankaranarayanan investigated another type of summatory

function related to the coefficients of the symmetric power L-function

Sf,j(x) =
∑

a21+a
2
2+a

2
3+a

2
4+a

2
5+a

2
6≤x

(a1,a2,a3,a4,a5,a6)∈Z6

λ2symjf (a21 + a22 + a23 + a24 + a25 + a26),

with j = 2. In fact, they proved the asymptotic formula

Sf,2(x) = c′f,2x
3 +O

(
x

14
5 +ε

)
,

where c′f,2 is an effective constant. Very recently, Sharma and Sankaranarayanan

[49] considered the asymptotic formulae for Sf,j(x) for all j ≥ 2, by using the

celebrated work of Newton and Thorne [33, 34], along with some individual and

averaged subconvexity bounds of associated L-functions. More precisely, for j ≥ 2,

they established that

Sf,j(x) = c′f,jx
3 +O

(
x
3− 6

3(j+1)2+1
+ε)

,

where c′f,j is some effective constant depending on f and associated L-functions.

Let f ∈ H∗k be a Hecke eigenform, and let λsymjf (n) be the coefficients of the

Dirichlet expansion of the j-th symmetric power L-function associated to f . Inspired

by the above results, the aim in this paper is to consider the summatory function

S∗f,j(x) :=
∑

a21+a
2
2+a

2
3+a

2
4+a

2
5+a

2
6≤x

(a1,a2,a3,a4,a5,a6)∈Z6

λjsym2f (a21 + a22 + a23 + a24 + a25 + a26), (3)

with 3 ≤ j ≤ 8. More precisely, we are able to establish the following result.
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Theorem 1. Let S∗f,j(x) be defined by Equation (3). For 3 ≤ j ≤ 8 and any ε > 0,

we have

S∗f,j(x) = x3P ∗j (log x) +O
(
xθ
∗
j+ε
)

where P ∗j is a polynomial with degP ∗3 ≡ 0,degP ∗4 = 2,degP ∗5 = 5,degP ∗6 =

14,degP ∗7 = 35,degP ∗8 = 90, and

θ∗3 =
79

27
, θ∗4 =

241

81
, θ∗5 =

727

243
,

θ∗6 =
2185

729
, θ∗7 =

6559

2187
, θ∗8 =

19681

6561
.

Let f ∈ H∗k1 and g ∈ H∗k2 be two distinct Hecke eigenforms. Define

Sf,g,i,j(x) :=
∑

a21+a
2
2+a

2
3+a

2
4+a

2
5+a

2
6≤x

(a1,a2,a3,a4,a5,a6)∈Z6

λ2symif

( 6∑
r=1

a2r

)
λ2symjg

( 6∑
r=1

a2r

)
, (4)

where i, j ≥ 2 are two fixed positive integers. In a similar manner as that of Theorem

1, we are also able to prove the following theorem.

Theorem 2. Let Sf,g,i,j(x) be defined by Equation (4). For i, j ≥ 2 any two fixed

integers and any ε > 0, we have

Sf,g,i,j(x) = cf,g,i,jx
3 +O

(
x
3− 2

(i+1)2(j+1)2
+ε)

,

where cf,g,i,j is an effective constant given by

cf,g,i,j =
16

3
L(3, χ)

i∏
i1=1

j∏
j1=1

L(sym2i1f, 1)L(sym2j1g, 1)L(sym2i1f ⊗ sym2j1g, 1)

×
i∏

i1=1

j∏
j1=1

L(sym2i1f ⊗ χ, 3)L(sym2j1g ⊗ χ, 3)

×L(sym2i1f ⊗ sym2j1g ⊗ χ, 3)Hi,j(3),

and χ is the non-principal Dirichlet character modulo 4, and Hi,j(3) 6= 0.

Throughout the paper, we always assume that f ∈ H∗k1 and g ∈ H∗k2 be two

distinct Hecke eigenforms. Also, we denote by ε > 0 an arbitrarily small positive

constant that may vary in different occurrences. The symbol p always denotes a

prime number.
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2. Preliminaries

In this section,we introduce some background on the analytic properties of auto-

morphic L-functions and give some useful lemmas which play important roles in the

proof of the main results in this paper.

Let f ∈ H∗k1 be a Hecke eigenform of even integral weight k for the full modular

group Γ = SL(2,Z), and let λf (n) denote its n-th normalized Fourier coefficient.

The Hecke L-function L(f, s) associated to f is defined by

L(f, s) =

∞∑
n=1

λf (n)

ns
=
∏
p

(1− λf (p)p−s + p−2s)−1

=
∏
p

(
1− αf (p)

ps

)−1(
1− βf (p)

ps

)−1
, <(s) > 1,

where αf (p) and βf (p) are the local parameters satisfying Equation (2). The j-th

symmetric power L-function associated with f is defined by

L(symjf, s) =
∏
p

j∏
m=0

(1− αf (p)j−mβf (p)mp−s)−1, <(s) > 1.

We may expand it into a Dirichlet series

L(symjf, s) =

∞∑
n=1

λsymjf (n)

ns
,

=
∏
p

(
1 +

λsymjf (p)

ps
+ · · ·+

λsymjf (pk)

pks
+ · · ·

)
, <(s) > 1. (5)

Obviously, λsymjf (n) is a real multiplicative function. In particular, for j = 1, we

have L(sym1f, s) = L(f, s). Let g ∈ H∗k2 be a Hecke eigenform. The Rankin-Selberg

L-function L(symif ⊗ symjg, s) attached to symif and symjg is defined as

L(symif ⊗ symjg, s) =
∏
p

i∏
m=0

j∏
m′=0

(1− αf (p)i−mβf (p)m

×αg(p)j−m
′
βg(p)

m′p−s)−1

=

∞∑
n=1

λsymif⊗symjg(n)

ns
, <(s) > 1, (6)

where αg(p) and βg(p) are the local parameters of g defined in a manner similar to

that of f in Equation (2), and where f and g are not necessarily different. Similarly,

λsymif⊗symjg(n) is also a real multiplicative function. From Equation (2), it is not

hard to find that

|λsymjf (n)| ≤ dj+1(n) and |λsymif⊗symjg(n)| ≤ d(i+1)(j+1)(n) (7)
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for all i, j ≥ 1, where dν(n) denotes the ν-dimensional divisor function, which

is defined as the number of ordered representations n = n1 . . . nν with integers

n1, . . . , nν ≥ 1.

Let χ be a Dirichlet character modulo q. Then we can define the twisted j-th

symmetric power L-function by the Euler product representation with degree j + 1

L(symjf ⊗ χ, s) =
∏
p

j∏
m=0

(1− αf (p)j−mβf (p)mχ(p)p−s)−1

=

∞∑
n=1

λsymjf (n)χ(n)

ns

for <(s) > 1. In the analogous manner, we can also define the Rankin-Selberg

convolution L-function attached to symif and symjg ⊗ χ by the Euler product

representation with degree (i+ 1)(j + 1)

L(symif ⊗ symjg ⊗ χ, s) =
∏
p

i∏
m=0

j∏
m′=0

(1− αf (p)i−mβf (p)m

×αg(p)j−m
′
βg(p)

m′χ(p)p−s)−1

=

∞∑
n=1

λsymif⊗symjg(n)χ(n)

ns
, <(s) > 1.

We may expand it into a Dirichlet series

L(symif ⊗ symjg ⊗ χ, s) =
∏
p

(
1 +

∑
k≥1

λsymif⊗symjg(p
k)χ(pk)

pks

)

=
∑
n≥1

λsymif⊗symjg(n)χ(n)

ns
.

It is standard that

λf (pj) = λsymjf (p) =
αf (p)j+1 − βf (p)j+1

αf (p)− βf (p)
=

j∑
m=0

αf (p)j−mβf (p)m,

which can be rewritten as

λf (pj) = λsymjf (p) = Ũj(λf (p)/2),

where Ũj(x) is the j-th Chebyshev polynomial of the second kind. For any prime

number p, we also have

λsymif⊗symjg(p) = λsymif (p)λsymjg(p) = λf (pi)λg(p
j). (8)
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As is well-known, to a primitive form f is associated an automorphic cuspidal

representation πf of GL2(AQ), and hence an automorphic L-function L(πf , s) which

coincides with L(f, s). It is predicted that πf gives rise to a symmetric power lift–

an automorphic representation whose L-function is the symmetric power L-function

attached to f .

For 1 ≤ j ≤ 8, the Langlands functoriality conjecture, which states that symjf

is automorphic cuspidal, was established in a series of important work by Gelbart

and Jacquet [8], Kim [28], Kim and Shahidi [27, 26], Shahidi [43], and Clozel and

Thorne [2, 3, 4]. Very recently, Newton and Thorne [33, 34] proved that symjf

corresponds with a cuspidal automorphic representation of GLj+1(AQ) for all j ≥ 1

(with f being a holomorphic cusp form). From the work of about the Rankin-Selberg

theory developed by Jacquet, Piatetski-Shapiro, Shalika [23], Jacquet and Shalika

[21, 22], Shahidi [39, 40, 41, 42], and the reformulation of Rudnick and Sarnak

[37], we know that L(symjf, s), L(symif ⊗ symjg, s), (1 ≤ i ≤ j) and its twisted L-

functions have analytic continuations to the whole complex plane (except possibly

for simple poles at s = 0, 1 if symjπf ∼= symjπg) and satisfy certain Riemann-type

functional equations. We refer the interested readers to [20, Chapter 5] for a more

comprehensive treatment.

Let

rk(n) := #
{

(n1, n2, . . . , nk) ∈ Zk : n21 + n22 + . . .+ n2k = n
}
.

In this paper, we are concerned with the function r6(n). From [49, Lemma 2.1], we

learn that for any positive integer,

r6(n) = 16
∑
d|n

χ(d′)d2 − 4
∑
d|n

χ(d)d2,

where n = dd′, and χ is the non-principal Dirichlet character modulo 4, i.e.,

χ(n) =

 1, if n ≡ 1 (mod 4),
−1, if n ≡ −1 (mod 4),
0, if n ≡ 0 (mod 2).

We can also rewrite r6(n) as

r6(n) = 16
∑
d|n

χ(d)
n2

d2
− 4

∑
d|n

χ(d)d2

:= 16l(n)− 4v(n)

:= l1(n)− v1(n). (9)

It is not hard to find that l(n) and v(n) are multiplicative since the non-principal

character χ(n) is multiplicative. Note that

l(p) = p2 + χ(p) and l(p2) = p4 + p2χ(p) + χ(p2),
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and

v(p) = 1 + p2χ(p) and v(p2) = 1 + p2χ(p) + p4χ(p2).

Let 3 ≤ j ≤ 8 be any fixed positive integer. From the definition of S∗f,j(x), along

with Equations (3) and (9), we have

S∗f,j(x) =
∑
n≤x

λjsym2f (n)
∑

n=a21+a
2
2+a

2
3+a

2
4+a

2
5+a

2
6

(a1,a2,a3,a4,a5,a6)∈Z6

1

=
∑
n≤x

λjsym2f (n)r6(n)

= 16
∑
n≤x

λjsym2f (n)l(n)− 4
∑
n≤x

λjsym2f (n)v(n). (10)

For the sake of simplicity, for l ≥ 1, let

′∏
χ

L(symlf, s) := L(symlf, s− 2)L(symlf ⊗ χ, s),

which means that L(symlf, s− 2) and L(symlf ⊗ χ, s) occur in pairs.

Lemma 1. Let j be an integer such that 3 ≤ j ≤ 8. Let f ∈ H∗k1 be a Hecke

eigenform. Define

Fj(s) :=

∞∑
n=1

λjsym2f (n)l(n)

ns
.

Then

Fj(s) = Gj(s)Hj(s),

where

G3(s) = ζ(s− 2)L(s, χ)

′∏
χ

L(sym2f, s)3L(sym4f, s)2L(sym6f, s),

G4(s) = ζ(s− 2)3L(s, χ)3
′∏
χ

L(sym2f, s)6L(sym4f, s)6L(sym6f, s)3

×L(sym8f, s),

G5(s) = ζ(s− 2)6L(s, χ)6
′∏
χ

L(sym2f, s)15L(sym4f, s)15L(sym6f, s)10

×L(sym8f, s)4L(sym10f, s),
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G6(s) = ζ(s− 2)15L(s, χ)15
′∏
χ

L(sym2f, s)36L(sym4f, s)40L(sym6f, s)29

×L(sym8f, s)15L(sym10f, s)5L(sym12f, s),

G7(s) = ζ(s− 2)36L(s, χ)36
′∏
χ

L(sym2f, s)91L(sym4f, s)105L(sym6f, s)84

×L(sym8f, s)39L(sym10f, s)21L(sym12f, s)6L(sym14f, s),

G8(s) = ζ(s− 2)91L(s, χ)91
′∏
χ

L(sym2f, s)232L(sym4f, s)280L(sym6f, s)238

×L(sym8f, s)154L(sym10f, s)76L(sym12f, s)28L(sym14f, s)7

×L(sym16f, s),

and χ is a non-principal Dirichlet character modulo 4. The function Hj(s) admits

a Dirichlet series which converges uniformly and absolutely in the half-plane <(s) ≥
5
2 + ε, and Hj(s) 6= 0 for <(s) = 3.

Proof. Since λjsym2f (n)l(n) is a multiplicative function, and also satisfies the bound

O(n2+ε) for any ε > 0, for <(s) > 3, we have the Euler product

Fj(s) =
∏
p

(
1 +

∑
k≥1

λjsym2f (pk)l(pk)

pks

)
. (11)

We only give the proof of the case j = 8, since other cases can be handled by a

similar argument. For j = 8, from [30, (13)] and [31, Lemma 2.1], we learn that

λ8sym2f (p) = 91 + 232λsym2f (p) + 280λsym4f (p) + 238λsym6f (p) + 154λsym8f (p)

+76λsym10f (p) + 28λsym12f (p) + 7λsym14f (p) + λsym16f (p). (12)

For <(s) > 3, the L-function

G8(s) := ζ(s− 2)91L(s, χ)91
′∏
χ

L(sym2f, s)232L(sym4f, s)280L(sym6f, s)238

×L(sym8f, s)154L(sym10f, s)76L(sym12f, s)28L(sym14f, s)7

×L(sym16f, s) (13)

can be represented as

G8(s) :=
∏
p

(
1 +

∑
k≥1

b(pk)

pks

)
. (14)
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It is not hard to find that

λ8sym2f (p)l(p) = λ8sym2f (p)(p2 + χ(p))

=
(
91 + 232λsym2f (p) + 280λsym4f (p) + 238λsym6f (p)

+154λsym8f (p) + 76λsym10f (p) + 28λsym12f (p)

+7λsym14f (p) + λsym16f (p)
)
(p2 + χ(p))

= b(p). (15)

Putting Equations (11)−(15) together, for <(s) > 3, we obtain

F8(s) = G8(s)×
∏
p

(
1 +

λ8sym2f (p2)l(p2)− b(p2)

p2s
+ · · ·

)

:= ζ(s− 2)91L(s, χ)91
′∏
χ

L(sym2f, s)232L(sym4f, s)280L(sym6f, s)238

×L(sym8f, s)154L(sym10f, s)76L(sym12f, s)28L(sym14f, s)7

×L(sym16f, s)H8(s).

By Equation (7) and the bound l(n) � n2+ε for any ε > 0, the function H8(s)

converges uniformly and absolutely in the half-plane <(s) ≥ 5
2 +ε for any ε > 0.

In a similar manner, for l ≥ 1, we define

∗∏
χ

L(symlf, s) := L(symlf, s)L(symlf ⊗ χ, s− 2),

which means that L(symlf, s) and L(symlf ⊗ χ, s− 2) occur in pairs.

Lemma 2. Let j be an integer such that 3 ≤ j ≤ 8. Let f ∈ H∗k1 be a Hecke

eigenform. Define

F̃j(s) :=

∞∑
n=1

λjsym2f (n)v(n)

ns
.

Then

F̃j(s) = G̃j(s)H̃j(s),

where

G̃3(s) = ζ(s)L(s− 2, χ)

∗∏
χ

L(sym2f, s)3L(sym4f, s)2L(sym6f, s),

G̃4(s) = ζ(s)3L(s− 2, χ)3
∗∏
χ

L(sym2f, s)6L(sym4f, s)6L(sym6f, s)3

×L(sym8f, s),
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G̃5(s) = ζ(s)6L(s− 2, χ)6
∗∏
χ

L(sym2f, s)15L(sym4f, s)15L(sym6f, s)10

×L(sym8f, s)4L(sym10f, s),

G̃6(s) = ζ(s)15L(s− 2, χ)15
∗∏
χ

L(sym2f, s)36L(sym4f, s)40L(sym6f, s)29

×L(sym8f, s)15L(sym10f, s)5L(sym12f, s),

G̃7(s) = ζ(s)36L(s− 2, χ)36
∗∏
χ

L(sym2f, s)91L(sym4f, s)105L(sym6f, s)84

×L(sym8f, s)39L(sym10f, s)21L(sym12f, s)6L(sym14f, s),

G̃8(s) = ζ(s)91L(s− 2, χ)91
∗∏
χ

L(sym2f, s)232L(sym4f, s)280L(sym6f, s)238

×L(sym8f, s)154L(sym10f, s)76L(sym12f, s)28L(sym14f, s)7

×L(sym16f, s),

and χ is a non-principal Dirichlet character modulo 4. The function H̃j(s) admits

a Dirichlet series which converges uniformly and absolutely in the half-plane <(s) ≥
5
2 + ε, and H̃j(s) 6= 0 for <(s) = 3.

Proof. Since λjsym2f (n)v(n) is a multiplicative function, and also satisfies the bound

O(n2+ε) for any ε > 0, for <(s) > 3, we have the Euler product

F̃j(s) =
∏
p

(
1 +

∑
k≥1

λjsym2f (pk)v(pk)

pks

)
. (16)

We only give the proof of the case j = 8, since other cases can be handled by a

similar argument. For j = 8, from [30, (13)] and [31, Lemma 2.1], we learn that

λ8sym2f (p) = 91 + 232λsym2f (p) + 280λsym4f (p) + 238λsym6f (p) + 154λsym8f (p)

+76λsym10f (p) + 28λsym12f (p) + 7λsym14f (p) + λsym16f (p). (17)

For <(s) > 3, the L-function

G̃8(s) := ζ(s)91L(s− 2, χ)91
∗∏
χ

L(sym2f, s)232L(sym4f, s)280L(sym6f, s)238

×L(sym8f, s)154L(sym10f, s)76L(sym12f, s)28L(sym14f, s)7

×L(sym16f, s) (18)

can be represented as

G̃8(s) :=
∏
p

(
1 +

∑
k≥1

h(pk)

pks

)
. (19)
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It is not hard to find that

λ8sym2f (p)v(p) = λ8sym2f (p)(1 + p2χ(p))

=
(
91 + 232λsym2f (p) + 280λsym4f (p) + 238λsym6f (p)

+154λsym8f (p) + 76λsym10f (p) + 28λsym12f (p)

+7λsym14f (p) + λsym16f (p)
)
(1 + p2χ(p))

= h(p). (20)

Putting Equations (16)-(20) together, for <(s) > 3 we obtain

F̃8(s) = G̃8(s)×
∏
p

(
1 +

λ8sym2f (p2)v(p2)− h(p2)

p2s
+ · · ·

)

:= ζ(s)91L(s− 2, χ)91
∗∏
χ

L(sym2f, s)232L(sym4f, s)280L(sym6f, s)238

×L(sym8f, s)154L(sym10f, s)76L(sym12f, s)28L(sym14f, s)7

×L(sym16f, s)H8(s).

By Equation (7) and the bound v(n) � n2+ε for any ε > 0, it follows that H̃8(s)

converges uniformly and absolutely in the half-plane <(s) ≥ 5
2 +ε for any ε > 0.

Lemma 3. Let i, j ≥ 2 be any two fixed integers. Let f ∈ H∗k1 and g ∈ H∗k2 be two

distinct Hecke eigenforms. Define

Ff,g,i,j(s) :=

∞∑
n=1

λ2symif (n)λ2symjg(n)l(n)

ns
.

Then

Ff,g,i,j(s) = Gi,j(s)Hi,j(s),

where

Gi,j(s) = ζ(s− 2)L(s, χ)

′∏
χ

{ i∏
i1=1

j∏
j1=1

L(sym2i1f, s)L(sym2j1g, s)

×L(sym2i1f ⊗ sym2j1g, s)

}
,

and χ is a non-principal Dirichlet character modulo 4. The function Hi,j(s) admits

a Dirichlet series which converges uniformly and absolutely in the half-plane <(s) ≥
5
2 + ε, and Hi,j(s) 6= 0 for <(s) = 3.
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Proof. This can be proved by an argument similar to of Lemma 2.1 by noting that

λ2symif (p)λ2symjg(p)l(p) = λ2f (pi)λ2g(p
j)l(p)

=

(
1 +

i∑
i1=1

λf (p2i1)

)(
1 +

j∑
j1=1

λg(p
2j1)

)
(p2 + χ(p))

=

(
1 +

i∑
i1=1

λsym2i1f (p)

)(
1 +

j∑
j1=1

λsym2j1g(p)

)
×(p2 + χ(p)).

This completes the proof of the lemma.

Lemma 4. Let 3 ≤ j ≤ 8 be any given integer. Let f ∈ H∗k1 be a Hecke eigenform.

Define

F̃f,g,i,j(s) :=

∞∑
n=1

λ2symif (n)λ2symjg(n)v(n)

ns
.

Then

F̃f,g,i,j(s) = G̃i,j(s)H̃i,j(s),

where

G̃i,j(s) = ζ(s)L(s− 2, χ)

∗∏
χ

{ i∏
i1=1

j∏
j1=1

L(sym2i1f, s)L(sym2j1g, s)

×L(sym2i1f ⊗ sym2j1g, s)

}
,

and χ is a non-principal Dirichlet character modulo 4. The function H̃i,j(s) admits

a Dirichlet series which converges uniformly and absolutely in the half-plane <(s) ≥
5
2 + ε, and H̃i,j(s) 6= 0 for <(s) = 3.

Proof. This can be proved using an approach similar to Lemma 3.

Lemma 5. For any ε > 0, we have∫ T

1

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣12dt� T 2+ε, (21)

uniformly for T ≥ 1, and

ζ(σ + it)�
(
1 + |t|

)max{ 13
42 (1−σ),0}+ε, (22)

L(σ + it, χ)�
(
1 + |t|

)max{ 1
3 (1−σ),0}+ε, (23)

uniformly for 1
2 ≤ σ ≤ 1 + ε and |t| ≥ 1.
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Proof. This first result is given by Heath-Brown [9], the second result is the recent

breakthrough due to Bourgain [1, Theorem 5], and the third result follows from

Heath-Brown [10] and the Phragmén-Lindelöf principle for a strip [20, Theorem

5.53].

Lemma 6. For any ε > 0, we have

L(sym2f, σ + it)�
(
1 + |t|

)max { 6
5 (1−σ),0}+ε

uniformly for 1
2 ≤ σ ≤ 2 and |t| ≥ 1.

Proof. The result follows from the recent work of Lin, Nunes, and Qi [32, Corollary

1.2] and the Phragmén-Lindelöf convexity principle for a strip.

We state some basic definitions and analytic properties of general L-functions.

Let L(φ, s) be a Dirichlet series (associated with the object φ) that admits an Euler

product of degree m ≥ 1, namely

L(φ, s) =

∞∑
n=1

λφ(n)

ns
=
∏
p<∞

m∏
j=1

(
1− αφ(p, j)

ps

)−1
,

where αφ(p, j), j = 1, 2, · · · ,m are the local parameters of L(φ, s) at a finite prime

p. Suppose that this series and its Euler product are absolutely convergent for

<(s) > 1. We denote the gamma factor by

L∞(φ, s) =

m∏
j=1

π−
s+µφ(j)

2 Γ

(
s+ µφ(j)

2

)

with local parameters µφ(j), j = 1, 2, · · · ,m, of L(φ, s) at ∞. The complete L-

function Λ(φ, s) is defined by

Λ(φ, s) = q(φ)
s
2L∞(φ, s)L(φ, s),

where q(φ) is the conductor of L(φ, s). We assume that Λ(φ, s) admits an analytic

continuation to the whole complex plane C and is holomorphic everywhere except

for possible poles of finite order at s = 0, 1. Furthermore, we assume that it satisfies

a functional equation of the Riemann-type

Λ(φ, s) = εφΛ(φ̃, 1− s)

where εφ is the root number with |εφ| = 1 and φ̃ is the dual of φ such that λφ̃(n) =

λφ(n), L∞(φ̃, s) = L∞(φ, s) and q(φ̃) = q(φ). We write φ ∈ S#
e if it is endowed

with the above conditions. We say the L-function L(φ, s) satisfies the Ramanujan

conjecture if λφ(n)� nε for any ε.
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From above, we note that the L-functions L(symjf, s) and L(symif ⊗ symjg, s),

and their twisted L-functions are the general L-functions in the sense of Perelli

[35]. For these L-functions, we have the following individual or averaged convexity

bounds.

Lemma 7. Let χ be a primitive character modulo q. For the general L-functions

Ld
m,n(s, χ) of degree 2A indicated above, we have∫ 2T

T

|Ld
m,n(σ + it, χ)|2dt� (qT )2A(1−σ)+ε (24)

uniformly for 1
2 ≤ σ ≤ 1 and T ≥ 1. Furthermore,

Ld
m,n(σ + it, χ)� (q(|t|+ 1))max{A(1−σ),0}+ε (25)

uniformly for −ε ≤ σ ≤ 1 + ε.

Proof. This can be derived by following an argument similar to that of Zou et al.

[55], which was originally deduced from Jiang and Lü [24].

3. Proofs of Theorems 1 and 2

We only give the proof of Theorem 1, since Theorem 2 can be handled by a similar

approach. In this section, we only give the proof of the case j = 8 in Theorem 1 in

detail, since other cases can be handled by a similar approach.

Proof of Theorem 1, Case j = 8. From Equation (10), we know that

S∗f,j(x) = 16
∑
n≤x

λjsym2f (n)l(n)− 4
∑
n≤x

λjsym2f (n)v(n). (26)

Firstly, we consider the sum 16
∑
n≤x λ

j
sym2f (n)l(n). For j = 8, by applying

Perron’s formula [20, Proposition 5.54] for the generating function F8(s) in Lemma

1, we get

16
∑
n≤x

λ8sym2f (n)l(n) =
16

2πi

∫ η+iT

η−iT
F8(s)

xs

s
ds+O

(
x3+ε

T

)
, (27)

where η = 3 + ε, and 6 ≤ T ≤ x is some parameter to be chosen later.

By shifting the line of integration in Equation (27) to the parallel line with

<(s) = κ := 5
2 + ε, and using Cauchy’s residue theorem, we obtain

16
∑
n≤x

λ8sym2f (n)l(n) = 16Ress=2

{
F8(s)

xs

s

}
+O

(
x3+ε

T

)

+
16

2πi

{∫ κ+iT

κ−iT
+

∫ η+iT

κ+iT

+

∫ κ−iT

η−iT

}
F8(s)

xs

s
ds
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:= x3P ∗8 (log x) + J1 + J2 + J3 +O

(
x3+ε

T

)
, (28)

where P ∗8 (t) is a polynomial in t of degree 90. In fact, the residue of the integrand

coming from the pole at s = 3 with order 91, which is derived from the factor

ζ(s− 2).

Next we evaluate the integrals J1, J2 and J3. Let

G∗8(s) = ζ(s)91L(sym2f, s)232L8(s),

where

L8(s) = L(sym4f, s)280L(sym6f, s)238L(sym8f, s)154L(sym10f, s)76

×L(sym12f, s)28L(sym14f, s)7L(sym16f, s)

is an L-function of degree 38 − 787 = 5774.

For J1, by Lemmas 5 and 6 and Equation (24), along with Hölder’s inequality,

we have

J1 � x
5
2+ε log T max

1≤T1≤T

{
T−11

∫ T1

T1/2

∣∣∣∣G∗8(1

2
+ it

)∣∣∣∣dt}+ x
5
2+ε

� x
5
2+ε log T max

1≤T1≤T

{
1

T1

(∫ T1

T1/2

∣∣∣∣ζ(1

2
+ it

)91∣∣∣∣12dt) 1
12

×
(∫ T1

T1/2

∣∣∣∣L(sym2f,
1

2
+ it

)232∣∣∣∣ 125 dt) 5
12

×
(∫ T1

T1/2

∣∣∣∣L8

(
1

2
+ it

)∣∣∣∣2dt) 1
2
}

+ x
5
2+ε

� x
5
2+ε log T max

1≤T1≤T

{
1

T1

(
max

T1/2≤t≤T1

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣1080
×
∫ T1

T1/2

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣12dt) 1
12
(

max
T1/2≤t≤T1

∣∣∣∣L(sym2f,
1

2
+ it

)∣∣∣∣2774/5
×
∫ T1

T1/2

∣∣∣∣L(sym2f,
1

2
+ it

)∣∣∣∣2dt) 5
12
(∫ T1

T1/2

∣∣∣∣L8

(
1

2
+ it

)∣∣∣∣2dt) 1
2
}

+ x
5
2+ε

� x
5
2+εT−1+( 13

42×
1
2×1080+2)× 1

12+( 6
5×

1
2×

2774
5 + 1

2×3)×
5
12+

1
2×

1
2×5774+ε

� x
5
2+εT

1340573
840 +ε. (29)

For the integrals over the horizontal segments J2 and J3, by Equations (22) and
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(25), along with Lemma 3, we have

J2 + J3 �
∫ 1+ε

1
2+ε

xσ+2

∣∣∣∣ζ(σ + it)91L(sym2f, σ + it)232L8(σ + it)

∣∣∣∣T−1dσ
� max

1
2+ε≤σ≤1+ε

xσ+2T ( 13
42×91+

6
5×232+

1
2×5774)(1−σ)+εT−1

� x3+ε

T
+ x

5
2+εT

95747
60 +ε. (30)

Combining Equations (27)-(30), we obtain

16
∑
n≤x

λ8sym2f (n)l(n) = x3P ∗8 (log x) +O

(
x3+ε

T

)
+O

(
x

5
2+εT

1340573
840 +ε

)
.

On taking x3

T = x
5
2T

1340573
840 , i.e., T = x

420
1341413 , we get

16
∑
n≤x

λ8sym2f (n)l(n) = x3P ∗8 (log x) +O
(
x

4023819
1341413+ε

)
. (31)

Now we compute the explicit form of the coefficients of the polynomial P ∗8 (log x).

From [19, (1.11)] we learn that ζ(s) has the Laurent expansion at the simple pole

s = 1:

ζ(s) =
1

s− 1
+ γ0 +

∞∑
n=1

γj(s− 1)j ,

where γj , j = 0, 1, . . . are suitable constants. In particular, γ := γ0 is Euler’s

constant.

By the Leibniz rule and the method for the computation of residue at the pole

s = 3 for an integrand function, we have

x3P ∗8 (log x) = 16Ress=3

{
F8(s)

xs

s

}
=

16

3
· 1

90!
L(3, χ)91L(sym2f, 1)232L(sym4f, 1)280L(sym6f, 1)238

×L(sym8f, 1)154L(sym10f, 1)76L(sym12f, 1)28L(sym14f, 1)7

×L(sym16f, 1)L(sym2f ⊗ χ, 3)232L(sym4f ⊗ χ, 3)280

×L(sym6f ⊗ χ, 3)238L(sym8f ⊗ χ, 3)154

×L(sym10f ⊗ χ, 3)76L(sym12f ⊗ χ, 3)28L(sym14f ⊗ χ, 3)7

×L(sym16f ⊗ χ, 3)H8(3)x3(log x)90 + . . .+ c∗fx
3,

where c∗f is some suitable constant depending on f and various associated L-

functions.
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Similarly, for j = 8, by applying Perron’s formula [20, Proposition 5.54] for the

generating function F̃8(s) in Lemma 2, we get

4
∑
n≤x

λ8sym2f (n)v(n) =
4

2πi

∫ η+iT

η−iT
F̃8(s)

xs

s
ds+O

(
x3+ε

T

)
, (32)

where η = 3 + ε, and 6 ≤ T ≤ x is some parameter to be chosen later.

By shifting the line of integration in Equation (32) to the parallel line with

<(s) = κ := 5
2 + ε and using Cauchy’s residue theorem, we obtain

4
∑
n≤x

λ8sym2f (n)v(n) =
4

2πi

{∫ κ+iT

κ−iT
+

∫ η+iT

κ+iT

+

∫ κ−iT

η−iT

}
F8(s)

xs

s
ds

+O

(
x3+ε

T

)
,

:= I1 + I2 + I3 +O

(
x3+ε

T

)
, (33)

since in this case there is no singularity in the rectangle obtained, and the integrand

F8(s)x
s

s is analytic in this region.

G̃∗8(s) = L(s, χ)91L̃8(s),

where

L̃8(s) = L(sym2f ⊗ χ, s)232L(sym4f ⊗ χ, s)280L(sym6f ⊗ χ, s)238

×L(sym8f ⊗ χ, s)154L(sym10f ⊗ χ, s)76

×L(sym12f ⊗ χ, s)28L(sym14f ⊗ χ, s)7L(sym16f ⊗ χ, s)

is an L-function of degree 38 − 91 = 6470.

For the integrals I2 and I3 over the horizontal segments, by Equations (23) and

(25), we have

I2 + I3 �
∫ 1+ε

1
2+ε

T−1|G̃∗8(σ + it)|xσ+2dσ

� max
1
2+ε≤σ≤1+ε

xσ+2T ( 1
3×91+

1
2×6470)(1−σ)+εT−1

� x3+ε

T
+ x

5
2+εT

9790
6 +ε. (34)

For the integral I1 over the vertical segment, by Equation (24) and the Cauchy-
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Schwarz inequality, we get

I1 � x
5
2+ε max

1≤T1≤T/2

{
T−1

(∫ 2T1

T1

∣∣∣∣L(1

2
+ it, χ

)91∣∣∣∣2dt) 1
2

×
(∫ 2T1

T1

∣∣∣∣L̃8

(
1

2
+ it, χ

)∣∣∣∣2dt) 1
2
}

+ x
5
2+ε

� x
5
2+εT

6557
4 +ε. (35)

Putting Equations (33)-(35) together, we obtain

4
∑
n≤x

λ8sym2f (n)v(n) = O

(
x3+ε

T

)
+O

(
x

5
2+εT

6557
4 +ε

)
. (36)

Now we choose x
5
2+εT

6557
4 = x3

T , i.e., T = x
2

6561 , we get

4
∑
n≤x

λ8sym2f (n)v(n) = O
(
x

19681
6561 +ε

)
. (37)

Combining Equations (26), (31) and (37), we get

S∗f,j(x) = x3P ∗8 (log x) +O
(
x

19681
6561 +ε

)
.

This completes the proof of Theorem 1. 2
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