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Abstract
Let j be a fixed integer such that 2 < j < 8. Let f be a normalized primitive
holomorphic cusp form of even integral weight for the full modular group I' =
SL(2,Z). Denote by Agym2s(n) the n-th normalized coefficient of the Dirichlet
expansion of the symmetric square L-function L(sym?f,s) attached to f. In this
paper, we are interested in the average behavior of the summatory function

J 2, 2 2, .2, 2 2
E Nymz (a1 + a3 + a3+ aj + a5 + ag)
af+a§+a§+ai+a§+a§§z
(a1,a2,a3,04,a5,a6) EZ°
for x sufficiently large. In a similar manner, we also consider the mean square of

coefficients of the Dirichlet expansions of two symmetric power L-functions attached
to two distinct primitive holomorphic cusp forms over the same sequence.

1. Introduction

The Fourier coeflicients of modular forms are important and interesting objects in
number theory. Let H} be the set of all normalized primitive holomorphic cusp
forms of even integral weight k& > 2 for the full modular group I' = SL(2,Z). Then
the Hecke eigenform f(z) € H} has the Fourier expansion at the cusp oo:

f(z)= Z )\f(n)n%e(nz), I(z) > 0,
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where e(z) = €2™# and \
eigenvalue) such that As(1)
property

#(n) is the n-th normalized Fourier coefficient (Hecke
= 1. Then A;(n) is real and satisfies the multiplicative

A(m)Ap(n) = Y A (W;L) ;

d|(m,n)

where m > 1 and n > 1 are positive integers. In 1974, P. Deligne [5] proved the
Ramanujan-Petersson conjecture

[A(n)] < d(n), (1)

where d(n) is the classical divisor function. By Equation (1), Deligne’s bound is
equivalent to the fact that there exist ay(p), B¢(p) € C satisfying

ap(p)+Bs(p) = As(p) and as(p)Bs(p) = lay(p)| = [B;(p)] = 1. (2)

More generally, for all positive integers [ > 1, one has

Ar(P) = ap(p) + ar(p) ' Br(p) + -+ ar(p)Br(p)' "t + Br(p).

It is an important topic to consider the average behavior of Hecke eigenvalues
of cusp forms in various aspects (see, e.g., [13, 16, 36, 38, 52]). In 2013, Zhai [54]
considered the average behavior of the power sum

Ui(f;z) = Z Af(a? + %)

a?+b2<z
forx > 1,2 <j <8 and a,b,j € Z. Indeed, he successfully proved that
Uj(f;x) = xPj(log ) + O (z*7%),

where 15]~ with j = 2,...,8 are polynomials with degrees deg P, = 0,deg P, =
1,deg Py = 4,deg Pz = 13, and deg P; = 0 for j = 3,5,7. The exponents «; are
given by

2 = 117 3_207 4_467 5_867
184 2
g = 8 , ar = 355’ g = 75 '
187 357 755

Very recently, the results of Zhai were refined and generalized for all j > 2 by Xu
[53], by using the recent breakthrough of Newton and Thorne [33, 34], along with
some nice analytic properties of the associated L-functions.
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Let Agymir(n) denote the n-th normalized coefficient of the Dirichlet expansion
of the j-th symmetric power L-function L(sym’ f, s) (see Section 2 for more details).
Fomenko [6] proved that

Z >\sym2f( % (log 33)

n<x

Later, this sum were studied by many authors (see, e.g., [25, 29, 44]). The analogous
cases for symmetric power lifting sym? my for large j were considered by Lau and
Li [30], and Tang and Wu [51].

On the other hand, Fomenko (7] studied the sum of A2 vmz2f(n). Later, this result
was improved and generalized by a number of authors (see, e.g., [50, 11, 31, 45]).
Recently, Sankaranarayanan, Singh, and Srinivas [45] proved that

> Ny (n) = e1w + 0(1779),
n<x

and
D Ny (n) = o + O(3579),
n<x

where ¢1,c2 > 0 are some suitable constants. Very recently, Luo et al. [31] estab-
lished the asymptotic formulas

Z)‘smef _Ej$+0(x§j+€)’ 3<j <6
n<zx
and
SN2 ) =ga+0(@”),  j=18,
n<zx

where ¢ G (3 < j< 8) is a suitable constant, and 03 = 251 g, = 929 g — 1391 g

635774 = 101375 T 1475>
1907291 07 = 65 ,0g = 3(1)7 respectively. In the same paper, the authors also proved that
0 .
Z ’\syme = zPj(logx) + O(J: -7+s),
n<x

where P; is a polynomial with degP; = 0,degPy = 2,degPs = 5,degFPs =

14,degP7 = 35,degP8 = 907 and 93 = 94 = %,95 = gggg,@ = %,97 =
7442 08 __ 89771

7449078 T 89799
In [46], Sharma and Sankaranarayanan considered the asymptotic behavior of

the sum

1055’

respectively.

Uy(x) = Z )‘gym2f (n)

n:a2+b2+02+d2 <z
(a,b,c,d)ez*
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for j = 2 for x > x(, where zq is sufficiently large. In fact, the authors established
the formula

Ufo(z) = cfac2 + Oy (x%‘*‘s)

for any € > 0, where ¢y > 0 is some suitable constant depending on f. Very recently,
Sharma and Sankaranarayanan [47] established the asymptotic formulae for Uy ;(z)
with j = 3,4. In fact, they proved that

‘w
N

Urs(x) = oz’ + Oy (1’ 17+€)

Y

and
Usa(z) = caz®logz + Of (a:%ﬁ),

where ¢y, ¢ are suitable effective constants depending on f. Afterwards, the author
and his collaborators gave some refinements and generalizations concerning the
above results of Sharma and Sankaranarayanan, the interested readers can refer to
14, 15, 17].

In [48], Sharma and Sankaranarayanan investigated another type of summatory
function related to the coefficients of the symmetric power L-function

2 2 2 2 2 2 2
Spi(z) = Z Asymi (@i + a3 + a3 + aj + a5 + ag),
a?-&-a%-{-a%-ﬁ-ai-&-a?-{-aéﬁw

6
(a1,a2,a3,a4,a5,a6)€EZ

with 7 = 2. In fact, they proved the asymptotic formula
14
Sto(x) = c’f,2x3 + O(x?+8),

where c’f’2 is an effective constant. Very recently, Sharma and Sankaranarayanan
[49] considered the asymptotic formulae for Sy ;(x) for all j > 2, by using the
celebrated work of Newton and Thorne [33, 34], along with some individual and
averaged subconvexity bounds of associated L-functions. More precisely, for j > 2,
they established that

_ 6
Sf,j (x) — c}’jx3 + O(x?’ 3G+1)2+1 +E)’

where c’ﬁ ; 1s some effective constant depending on f and associated L-functions.
Let f € H} be a Hecke eigenform, and let Agypir(n) be the coefficients of the

Dirichlet expansion of the j-th symmetric power L-function associated to f. Inspired

by the above results, the aim in this paper is to consider the summatory function

S}4(@) = > Nz (a3 + a3+ a3 + a3 + a2 + a?), (3)

2, 2, .2, 2, 2, 2
a1+a2+a3+a4+a5+a6§61
(a1,a2,a3,a4,a5,a6)€EZ

with 3 < 7 < 8. More precisely, we are able to establish the following result.
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Theorem 1. Let S} ;(x) be defined by Equation (3). For 3 < j <8 and any € > 0,
we have

S5 (x) = x3P; (logz) + O(:ce;“)

where P is a polynomial with deg Py = 0,deg Py = 2,deg Py = 5,deg By =
14, deg P; = 35,deg Py = 90, and

79 241 727

* — e 0* _ = * _ =

& 27’ 47817 & 243’
g 2185 b 6559 o 19681
6 7 729° T 2187 87 6561

Let f € Hy;, and g € H} be two distinct Hecke eigenforms. Define

6 6
— 2 2 2 2
Sf,gﬂ';j (37) T § : )‘sym'if ( E : ar) )\symjg ( E a’r) ’ (4)
a?+a§+a§+ai+a§+a§§m r=1 r=1
(a1,a2,a3,04,a5,a6) EZ°

where i, j > 2 are two fixed positive integers. In a similar manner as that of Theorem
1, we are also able to prove the following theorem.

Theorem 2. Let Syq; i(x) be defined by Equation (4). Fori,j > 2 any two fized
integers and any € > 0, we have
2
S0, (@) = €5,0,052° + O (2" TG T,

where ¢y 44,5 15 an effective constant given by

16 L A . , A
Cfgij = gL(&X) H H L(sym®2 f,1)L(sym® g, 1) L(sym*" f @ sym*1g,1)

i1=17j1=1

i
< [T I L(sym™ £ @ x,3)L(sym™' g ® x., 3)

i1=1j1=1

X L(sym f @ sym® g @ x,3)H, ;(3),
and x is the non-principal Dirichlet character modulo 4, and H; ;(3) # 0.

Throughout the paper, we always assume that f € Hj and g € Hj be two
distinct Hecke eigenforms. Also, we denote by ¢ > 0 an arbitrarily small positive

constant that may vary in different occurrences. The symbol p always denotes a
prime number.
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2. Preliminaries

In this section,we introduce some background on the analytic properties of auto-
morphic L-functions and give some useful lemmas which play important roles in the
proof of the main results in this paper.

Let f € Hy, be a Hecke eigenform of even integral weight k for the full modular
group I' = SL(2,Z), and let Af(n) denote its n-th normalized Fourier coefficient.
The Hecke L-function L( f, s) associated to f is defined by

L(f75) =

=[O =A@ +p )"

where a¢(p) and S¢(p) are the local parameters satisfying Equation (2). The j-th
symmetric power L-function associated with f is defined by

Lisym’f,5) = ] H L—ay(p) "B (p)"p )", R(s) > L.

p m=0

We may expand it into a Dirichlet series

. 2 Agymi
L(sym'f,s) = Z“;if(”)
n=1
)\smj )‘smf g
_ H(Hygf‘(f’)+...+ylfs(p)+...>,%(s)>1.(5)
» P p

Obviously, Agyms (1) is a real multiplicative function. In particular, for j = 1, we
have L(sym!f,s) = L(f,s). Let g € Hj be a Hecke eigenform. The Rankin-Selberg
L-function L(sym'f ® sym’g, s) attached to sym’f and sym’g is defined as

L(sym'f @ symig,s) = HH H (1—as(p) "B (p)™

p m=0m'=

oy (p)? ™™ By (p)™ p*) 7
)

oo
_ } : Asymif@symjg("
- b

ns

R(s) > 1, (6)
n=1

where a4(p) and S,4(p) are the local parameters of g defined in a manner similar to

that of f in Equation (2), and where f and g are not necessarily different. Similarly,

Asymi f@symig(n) is also a real multiplicative function. From Equation (2), it is not
hard to find that

|Asymjf(n)‘ < dj+1(n) and ‘/\symif®symjg(n)| < d(i+1)(j+1)(n) (7)
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for all ¢,7 > 1, where d,(n) denotes the v-dimensional divisor function, which
is defined as the number of ordered representations n = ny...n, with integers
nNyy,..., Ny > 1.

Let x be a Dirichlet character modulo ¢q. Then we can define the twisted j-th
symmetric power L-function by the Euler product representation with degree j + 1

Lisym' fox,s) = [[ [0 - er@ "8 "x(p)p~*)""

p m=0
_ i Asymjf(n)X(n)
n=1 ns

for R(s) > 1. In the analogous manner, we can also define the Rankin-Selberg
convolution L-function attached to sym’f and sym’/g ® x by the Euler product
representation with degree (i + 1)(j + 1)

Lisym'f @sym’g@x,s) = [[ 1] T] 0 —er®@ ™8™

p m=0m'=0
Xy ()™ By(p)™ x(p)p™*) !
= Z Asym f@syms g (M) X (1) R(s) > 1.

ns ’

n=1

We may expand it into a Dirichlet series

k k
L(sym"f ® sym’g @ x, s) = H (1 +> Symlf@symjg(p )x(p )>

k>1

_ Z )\Symif®symfg(n)X(n)
= > )
n>1

It is standard that

, J+1 _ )it J
Af(P7) = Asymir(p) = os(p )( ) — o1 2 Z ar(p j "Br(p)™,
=0

which can be rewritten as
Ar(P7) = Aeymi £ (0) = U;(As () /2),

where ﬁj(x) is the j-th Chebyshev polynomial of the second kind. For any prime
number p, we also have

Asym’f@symjg(p) = )‘symif(p))‘symjg(p) = )‘f (pZ)Ag(p]) (8)
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As is well-known, to a primitive form f is associated an automorphic cuspidal
representation my of GL2(Ag), and hence an automorphic L-function L(7y, s) which
coincides with L(f,s). It is predicted that 7, gives rise to a symmetric power lift—
an automorphic representation whose L-function is the symmetric power L-function
attached to f.

For 1 < j < 8, the Langlands functoriality conjecture, which states that sym? f
is automorphic cuspidal, was established in a series of important work by Gelbart
and Jacquet [8], Kim [28], Kim and Shahidi [27, 26], Shahidi [43], and Clozel and
Thorne [2, 3, 4]. Very recently, Newton and Thorne [33, 34] proved that sym? f
corresponds with a cuspidal automorphic representation of GL;11(Ag) for all j > 1
(with f being a holomorphic cusp form). From the work of about the Rankin-Selberg
theory developed by Jacquet, Piatetski-Shapiro, Shalika [23], Jacquet and Shalika
[21, 22], Shahidi [39, 40, 41, 42], and the reformulation of Rudnick and Sarnak
[37], we know that L(sym’f,s), L(sym’f ® sym’g, s), (1 <i < j) and its twisted L-
functions have analytic continuations to the whole complex plane (except possibly
for simple poles at s = 0,1 if sym/7¢ & sym’n,) and satisfy certain Riemann-type
functional equations. We refer the interested readers to [20, Chapter 5] for a more
comprehensive treatment.

Let

ri(n) = #{(n1,na,...,np) €ZF © nI+n3+ .. +ni=n}

In this paper, we are concerned with the function rg(n). From [49, Lemma 2.1], we
learn that for any positive integer,

ro(n) = 16 5" x(@)d? — 43" x(d)?,
d|n d|n

where n = dd’, and  is the non-principal Dirichlet character modulo 4, i.e.,
1, ifn=1 (mod 4),

x(n)=4¢ -1, ifn=-1 (mod 4),
0, ifn=0(mod 2).

We can also rewrite rg(n) as

ro(n) = 16 x(d) 5 —4 ) x(d)d
d|n

d|n
= 16l(n) — 4v(n)

= li(n) —vi(n). 9)

It is not hard to find that I(n) and v(n) are multiplicative since the non-principal
character x(n) is multiplicative. Note that

I(p) =p*>+x(p) and I(p*) =p*+p’x(p) + x(p°),
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and

v(p) =1+p°x(p) and w(p®) =1+ p°x(p) + " x(*).

Let 3 < j < 8 be any fixed positive integer. From the definition of S} ; (z), along
with Equations (3) and (9), we have

* — J
Sia(@) = 32 Mymas() 2 !
n<z n=a%+a§+a§+a§+a§+a§
(a1,a2,a3,04,a5,a6) EL°

= > Nep)re(n)

n<x

= 16 N L ()ln) =4 N L (n)o(n). (10)

n<x n<wz

For the sake of simplicity, for [ > 1, let
!/
[T L(sym'f,s) i= Lisym'f, s — 2)L{sym f @ x, s),
X

which means that L(sym!f, s — 2) and L(sym'f ® x, s) occur in pairs.

Lemma 1. Let j be an integer such that 3 < j < 8. Let f € H} be a Hecke
eigenform. Define

)\ 5 (n)l(n
Fi(s) :zzisymf( i )

n=1 n®
Then
Fi(s) = Gj(s)H;(s),
where
Gs(s) = ((s—2)L(s,x) ﬂ L(sym®f,s)> L(sym" f, s)*L(sym° [, ),
x
Ga(s) = ((s—2)°L(s,x)° ﬂ L(sym®f,s)°L(sym" f, s)°L(sym°f, s)*
X L(sym®f,s), '
Gs(s) = ((s—2)°L(s,x)° ﬂ L(sym®f,s)'° L(sym* f, s)'° L(sym® f, s)"°
x

x L(sym® f, s)* L(sym'° f, 5),
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Go(s) = (s —2)"L(s,x)" [ L(sym®f,5)* L(sym* f, 5)** L(sym® f, 5)*°
X
x L(sym® f, s)"L(sym'° f, s)° L(sym** f. 5),

Gr(s) = (s —2)%Ls,x)* [ [ L(sym® £, 5)°" L(sym f, 5)"° L(sym® f, 5)**
X
< L(sym® f,s)* L(sym'® f, 5)* L(sym'® f, s)°L(sym'* f, 5),

/
Gs(s) = C(s—2)"L(s, )" [ [ L(sym>f, 5)**2 L(sym* £, 5)*° L(sym f, 5)**8
X
x L(sym® f, s)54 L(sym'° f,s) " L(sym'? f, s)® L(sym'* f, s)"
x L(sym'®f, s),
and x is a non-principal Dirichlet character modulo 4. The function H;(s) admits

a Dirichlet series which converges uniformly and absolutely in the half-plane R(s) >
S+e, and Hj(s) # 0 for R(s) = 3.

Proof. Since /\gym2 s(n)l(n) is a multiplicative function, and also satisfies the bound
O(n?*¢) for any ¢ > 0, for R(s) > 3, we have the Euler product
Ny (P91 (0F)
fj(s)]'[<1+zyfks>. (11)
p k>1 p

We only give the proof of the case j = 8, since other cases can be handled by a
similar argument. For j = 8, from [30, (13)] and [31, Lemma 2.1], we learn that

/\Sym2 (0) = 91+ 232X 25 (p) + 280 Asymf(P) + 238Asyme ¢ (P) + 154Asyms ¢ (p)
+76/\sym10f (p) + 28>\Sym12f(p) + 7/\sym14f(p) + /\Symlsf(p). (12)

For R(s) > 3, the L-function

Gs(s) = (s —=2)""L(s,0)"" [] L(sym®f, 5)*L(sym" f, )" L(sym® f, 5)***
X
xL(syme, 5)154L(syrnlof7 5)"0L(sym'?f, s)QgL(syme, 3)7
x L(sym'®f, s) (13)

can be represented as
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It is not hard to find that
Aomzf(PP) = Az (0) (0 + X(p))
— (91 4 232\ gym2 (p) + 280Agyms 7 (P) + 238Asyms ()
+154)\Sym8f(p) + 76)\Sym10f(p) + 28 Agymizy (p)
FTsymi (P) + Asymis £ (1)) (0° + x(p))

= bp) (15)
Putting Equations (11)—(15) together, for R(s) > 3, we obtain
Aoymzy (P)U(P?) — b(p®
R = e TT (1 ) Y
P

!/
= (s =2)" L(s, )" [ [ Llsym®f, 8)*** L(sym* f, 5)*° L(sym® f, 5)***
X
x L(sym® f, s)'* L(sym'® f, s)" L(sym'? f, s)** L(sym"* f, 5)"
X L(sym1® , 5)Hg (5)
By Equation (7) and the bound I(n) < n**¢ for any ¢ > 0, the function Hg(s)
converges uniformly and absolutely in the half-plane R(s) > %+€ foranye > 0. O

In a similar manner, for [ > 1, we define
[1L(sym'f,s) := L(sym'f, s) L(sym' f @ x, s — 2),
X

which means that L(sym'f,s) and L(sym!f ® x,s — 2) occur in pairs.

Lemma 2. Let j be an integer such that 3 < j < 8. Let f € Hy be a Hecke
eigenform. Define

ﬁ@:i&wﬁmm
Then
Fj(s) = Gj(s)H,;(s),

where

Ga(s) = C(S)L(s—27X)f[L(smef,s)BL(Sym“f,S)?L(symﬁf, s),

x
Ga(s) = C(S)?’L(S*2,x)3ﬁL(sym2f,5)6L(sym4f, s)°L(sym® f, s)*
x

x L(sym®f, s),
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Gs(s) = ((s)°L(s—2,x)° H L(sym?f,s)'5 L(sym®f, s)> L(sym® f, 5)*°
X
X L(sym f, ) L(sym' , ).

Go(s) = C()"L(s = 2,x)" [ [ L(sym®f,5)* L(sym* f, )" L(sym® f, 5)*°
X
x L(sym® f, s)"L(sym' f, s)° L(sym** f. 5),

Gr(s) = ((s)*°L(s—2,%x)% H L(sym?f, s)° Y L(sym™ f, s)'95 L(sym® f, 5)%*
X
x L(sym® f, )% L(sym'° f, s)*' L(sym*? f, s)S L(sym'* £, 5),

Gs(s) = C()”'L(s = 2.)" [ ] L(sym® £, )*** L(sym* £, 5)** L(sym® f, 5)**°
X

x L(sym® f, s)' " L(sym™ f, s)° L(sym'? f, 5)** L(sym™" f, 5)"
X L(sym'° f,s),
and x is a non-principal Dirichlet character modulo 4. The function ﬁj(s) admits

a Dirichlet series which converges uniformly and absolutely in the half-plane R(s) >
5+e, and Hj(s) # 0 for R(s) = 3.

Proof. Since )\gymz s(n)v(n) is a multiplicative function, and also satisfies the bound

O(n?*¢) for any € > 0, for R(s) > 3, we have the Euler product
- Mz s ()0 (0F)
Fs)=]] (1+Zy2fk> (16)
P k>1 p

We only give the proof of the case j = 8, since other cases can be handled by a
similar argument. For j = 8, from [30, (13)] and [31, Lemma 2.1], we learn that

N (p) = 91+ 2320 (9) + 280Nyt £ (1) + 238Aaymms 1 (0) + 154\ syms s ()
+76Asym10f (p) + 28)‘sym12f (p) + 7Asyml“f (p) + )‘symwf (p) . (17)
For R(s) > 3, the L-function

Gisls) = C(9) L(s — 2, )" [[ Llsym?, )2 L(sym 5L (sym® f, )%
X
xL(sym8f, 3)154L(symmf7 s)76L(syrr112f7 8)28L(Sym14f, 8)7
xL(symlﬁf, s) (18)

can be represented as

Gs(s) =[] (1+Z h(pk)>. (19)
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It is not hard to find that

Nymzp (0)0(P) = Ny ¢ (0)(1 + p°x (D))
= (91 + 232A\sym2 £ (p) + 280Agyma £ (P) + 238Agyms (p)
+154Agyms £(p) + T6Agym10£(p) + 28 gym12(p)
FTym1 () + Asymio f (p)) (1 + p*x ()

— ). (20)
Putting Equations (16)-(20) together, for R(s) > 3 we obtain
N 8 m2p(0*)0(p?) — h(p?
Ao = gL {1+ SO )

= ((s)"L(s = 2,0)" H L(sym?f, s)** L(sym® f, 5)**° L(sym® f, 5)***
X
XL(syme, 3)154L(sym10f, 8)76L(Sym12f7 5)28L(sym14f, 3)7

x L(sym'® f, s) Hg(s).

By Equation (7) and the bound v(n) < n?*¢ for any ¢ > 0, it follows that flg(s)
converges uniformly and absolutely in the half-plane R(s) > %+€ foranye > 0. O

Lemma 3. Leti,j > 2 be any two fized integers. Let f € H}. and g € H} be two
distinct Hecke eigenforms. Define

A2 ()2 (n)l(n
Fraas(s) =y —d 1P g (D),

n=1

nS
Then

Frg.i.5(8) = Gij(s)Hi;(s),
where
Gi,j(s) = ((S - 2 H{ H H L Sym%lf (Sym2jlg S)
i1=1j1=1
x L(sym* f @ sym®/'g, s)},

and x is a non-principal Dirichlet character modulo 4. The function H; ;(s) admits

a Dirichlet series which converges uniformly and absolutely in the half-plane R(s) >
5+e, and H;j(s) #0 for R(s) =3
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Proof. This can be proved by an argument similar to of Lemma 2.1 by noting that

A3 (A2 (") (p)

(1 + Z Af(p2i1)> (1 + i Ag(ijl))(pQ +x(p))

i1=1 j1=1

= (1 + i: Asym?2i1 f (p)) <1 + Zj: )‘sym2j19(p)>

i1=1 J1=1

)\gymi f (p) Agymj g (p) ! (p)

x(p* + x(p))-

This completes the proof of the lemma. O

Lemma 4. Let 3 < j <8 be any given integer. Let f € H} be a Hecke eigenform.
Define

~ > )\3 i (n)/\i  (n)v(n)
Fraij(s) =Y =t nimjg
n=1
Then
Frogig(s) = Gij(s)Hij(s),
where

Gij(s) = ((s)L(s—2,x) H{ H H L(sym*" £, s)L(sym*1 g, s)

i1=17j1=1
x L(sym** f @ sym®™g, 3)},
and x is a non-principal Dirichlet character modulo 4. The function PNI”(S) admits

a Dirichlet series which converges uniformly and absolutely in the half-plane R(s) >
5+e, and H;j(s) #0 for R(s) = 3.

Proof. This can be proved using an approach similar to Lemma 3. O

Lemma 5. For any ¢ > 0, we have

T 1 12
/1 c(2 + it> dt < T, (21)

uniformly for T > 1, and
Clo +it) < (1+ ) mta ) 0rte (22)

max 1 —0O
L(o +it,x) < (1+[t]) {5 (=a) Ote (23)

uniformly for % <o<l+4ceandlt|>1.
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Proof. This first result is given by Heath-Brown [9], the second result is the recent
breakthrough due to Bourgain [1, Theorem 5|, and the third result follows from
Heath-Brown [10] and the Phragmén-Lindel6f principle for a strip [20, Theorem
5.53]. O

Lemma 6. For any € > 0, we have

max{8(l1—o c
L(Sym2f7o' +it) < (1 + |t|) {8(1-0),0}+

uniformly for % <o<2andlt >1.

Proof. The result follows from the recent work of Lin, Nunes, and Qi [32, Corollary
1.2] and the Phragmén-Lindel6f convexity principle for a strip. O

We state some basic definitions and analytic properties of general L-functions.
Let L(¢, s) be a Dirichlet series (associated with the object ¢) that admits an Euler
product of degree m > 1, namely

Lo = > 2 ] (1- 222

n .
p<oo j=1

where ay(p,j),j = 1,2,--- ,m are the local parameters of L(¢, s) at a finite prime
p. Suppose that this series and its Euler product are absolutely convergent for
R(s) > 1. We denote the gamma factor by

Loo(6.5) = st+“f‘j’r<8 i g¢<j>>

j=

=

with local parameters ug(j),7 = 1,2,---,m, of L(¢,s) at co. The complete L-
function A(¢, s) is defined by

A(¢,5) = a(8) % Loo (¢, 5) L(9, ),

where ¢(¢) is the conductor of L(¢,s). We assume that A(¢, s) admits an analytic
continuation to the whole complex plane C and is holomorphic everywhere except
for possible poles of finite order at s = 0, 1. Furthermore, we assume that it satisfies
a functional equation of the Riemann-type

A(p,5) = egA(p,1 — 5)

where €4 is the root number with |es| = 1 and ¢ is the dual of ¢ such that Ag(n) =
W, Lm((ﬁ,s) = Loo(¢,s) and q(&) = q(¢). We write ¢ € S¥ if it is endowed
with the above conditions. We say the L-function L(¢, s) satisfies the Ramanujan
conjecture if Ay(n) <« n® for any e.
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From above, we note that the L-functions L(sym’ f, s) and L(sym®f ® sym?g, s),
and their twisted L-functions are the general L-functions in the sense of Perelli
[35]. For these L-functions, we have the following individual or averaged convexity
bounds.

Lemma 7. Let x be a primitive character modulo q. For the general L-functions
L3, 1(s,X) of degree 2A indicated above, we have

2T
/T 189 (0 + it ) [Pdt < (qT)2A0-)+ (24)

uniformly for % <o<1andT > 1. Furthermore,
Lo n(o +it,x) < (q(Jt] + 1))maxtalize).0d+e (25)
uniformly for —e <o <1+4e€.

Proof. This can be derived by following an argument similar to that of Zou et al.
[55], which was originally deduced from Jiang and Lii [24]. O

3. Proofs of Theorems 1 and 2

We only give the proof of Theorem 1, since Theorem 2 can be handled by a similar
approach. In this section, we only give the proof of the case j = 8 in Theorem 1 in
detail, since other cases can be handled by a similar approach.

Proof of Theorem 1, Case j = 8. From Equation (10), we know that
S3;(x) =16 Z )\Sym2f I(n)—4 Z )\gym2f(n)v(n). (26)

n<x n<x

Firstly, we consider the sum 16}, Qymzf( n)l(n). For j = 8, by applying
Perron’s formula [20, Proposition 5.54] for the generating function Fg(s) in Lemma
1, we get

16 [T x® a3t
1 bl il
6 Z )‘sym2f ) 2mi /17 ‘7:8(8) s ds + O( T )7 (27)

n<x —iT
where n = 3+ ¢, and 6 < T < z is some parameter to be chosen later.

By shifting the line of integration in Equation (27) to the parallel line with
R(s) =k := % + ¢, and using Cauchy’s residue theorem, we obtain

163 Aep(m)i(n) = 16Res, 2{f8< ’ } *O(T>

n<z
Kk+1T n+iT k—1T .I‘S
{ / / / }]:g (s)—ds
27?2 AT s
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3+e
= x?’Pg(logx)+J1+J2+J3+O<xT >7 (28)

where P§(t) is a polynomial in ¢ of degree 90. In fact, the residue of the integrand
coming from the pole at s = 3 with order 91, which is derived from the factor

(s —2).

Next we evaluate the integrals Jp, Jo and Js. Let
Gi(s) = ()" L(sym®f,s)**Lg(s),
where

Lg(s) = L(sym4f7 s)ngL(symﬁf7 5)238L(sym8f, 5)154L(symlof7 )70
x L(sym' f, 5)* L(sym"* f, s)" L(sym'® f, 5)

is an L-function of degree 3% — 787 = 5774.
For J;, by Lemmas 5 and 6 and Equation (24), along with Hélder’s inequality,

we have
1
G (2 +z‘t>
1 91
C<2 + Z't)
12 5
5 12
dt)
2 z i
dt) } +2te
1
c<2 ; ¢t>

Ty
Ji < x3"logT max {Tfl/
1<Ty <7 /2

dt} +x%+€

12 &
)

5 1 i
< x2T¢logT max {</
1<n<T [ Th \ Jr, )2
T 1 232
x(/ L(smef,+it>
T /2 2
T1 1
X </ Lg ( + it)
T /2 2
é-‘rE ]-
< z27%logT max < — max
T1 T

1< <T 1/2<t<Ty
T
X /
Ty /2

1 12 = 1
(| = +it dt max  |L(sym?f, = +it
2 Ty /2<t<T, 2
T
X /
T1/2

2 5 T 2 1
1 12 1 1 2 s
/2

< o3 e+ (33 x 3 x1080+2) X g5 +(E x 5 x 2FE+ 5% 3) X 5 +5 X 5 X577+

1080

2774/5

134

O (29)

For the integrals over the horizontal segments Jo and Js, by Equations (22) and
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(25), along with Lemma 3, we have

1+e

Jot+J3 < / 272 (o 4 it) " L(sym? f, 0 4 it)*? Lg(o + it)| T *do
%+8
< max  go T2 x91+8 x2824 1 x5774) (1—0)+ep—1
%+E§O’S1+€
3+e -
< Tt PERSD e (30)
Combining Equations (27)-(30), we obtain
8 3 1’3+6 5 1340573
16> A8 L2, (n)l(n) = 2 P (log ) + 0( T > + O (23T e,
n<z
On taking % = 23T 887 ie., T = 2111413, we get
16 Y A8 0 (n)l(n) = 2 P (log ) + O (x 1851515 +). (31)

n<zx

Now we compute the explicit form of the coefficients of the polynomial Py (logz).
From [19, (1.11)] we learn that ¢(s) has the Laurent expansion at the simple pole
s=1:

o0
C(s) = 5+ + D (s — 1),
n=1
where «;,5 = 0,1,... are suitable constants. In particular, v := ~g is Euler’s
constant.
By the Leibniz rule and the method for the computation of residue at the pole
s = 3 for an integrand function, we have

S
3P (logz) = 16Ress_3{fg(s)i}
16 1
= 3 90'L(3 )P L(sym? £,1)232 L(sym* £, 1)?%0 L(sym® f,1)**®

x L(sym® f,1)"* L(sym'® f, 1) L(sym"? f, 1)** L(sym** f, 1)"
X L(sym'® f, 1) L(sym® f @ x, 3)***L(sym" f @ x, 3)**°

X L(sym® f @ x, 3)** L(sym®f @ x,3)'**

X L(sym' f @ x,3)L(sym'? f @ x, 3)28L(Sym14f ®x,3)"

x L(sym' f @ x, 3)Hg(3)z3(log )% + ... + cf:E ,

where ¢} is some suitable constant depending on f and various associated L-
functions.
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Similarly, for j = 8, by applying Perron’s formula [20, Proposition 5.54] for the
generating function Fg(s) in Lemma 2, we get

85 s toeto) = o [ A T a0 (), 52)

21 T

n<z

where n = 3+ ¢, and 6 < T < z is some parameter to be chosen later.
By shifting the line of integration in Equation (32) to the parallel line with
R(s) =k := % + ¢ and using Cauchy’s residue theorem, we obtain

N 4 k41T n+iT k—iT s
4 Aovmz f(n)v(n) = {/ +/ +/ }fg(s)ds
nzgm ym?*f 2mi k—iT k44T n—iT $
1‘3—&-8
O
(1)

x3+s
= II+I2+I3+O( T ), (33)

since in this case there is no singularity in the rectangle obtained, and the integrand

fg(S)% is analytic in this region.

ég(s) = L(Sa X)glES(S)7
where
Ls(s) = L(sym*f® y,s)*?L(sym*f @ x, ) L(sym®f @ x, 5)**
X L(sym®f @ x, )" L(sym'’ f @ x, 5)™
x L(sym'?f @ x, 5)** L(sym™ f ® x, s)"L(sym'* f ® x, 5)
is an L-function of degree 3% — 91 = 6470.

For the integrals Iy and I3 over the horizontal segments, by Equations (23) and
(25), we have

1+e ~
L+l < / T7G3(o +it)|z7 2do

1+e
2

< | max 2oH2(3X9144 x6470)(1—0)+ep—1
lie<o<li+e
e 5 9790

< T _|-z§+ET 5 +5' (34)

For the integral I; over the vertical segment, by Equation (24) and the Cauchy-
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Schwarz inequality, we get

. o7, 1 91
I, <« 227 max {T_l(/ L(—i—it,x)
1<T,<T/2 T 2

2 \3
dt)
2Ty | _ /4 2 3 i
x(/ Lg(-i-it,x) dt) }+xz+‘=‘
T1 2

< aitertitee, (35)

Putting Equations (33)-(35) together, we obtain

3+e
4Y N8 e (n)(n) =0 <xT ) +O(a3 T T e, (36)
n<lz
Now we choose z3+eT %" = %3, ie., T = xﬁ, we get
4 28 (n)v(n) = O(z o6t +2). 37
sym? f
n<x

Combining Equations (26), (31) and (37), we get

* * 19681
Sf,j(x) = x3PS (Ing) + O(.T 6561 +€).

This completes the proof of Theorem 1. O
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