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Abstract

We show that every equation that is derived by the application of the Euclidean
algorithm to two coprime positive integers can be written as a modular inverse
switching formula, and this allows us to provide a backward recurrence relation
for computing modular inverses. Using the recurrence relation, we then give an
alternative proof of a theorem due to Rankin, which states that for two positive
integers, the pair of Bézout coefficients that is provided by the Euclidean algorithm
is, as a point in the plane, nearest to the origin. We also derive bounds on the two
Bézout coefficients and we examine when the bounds can be sharpened.

1. Introduction

Modular inversion is a key operation in modular arithmetic, with many important

practical and theoretical applications, as in public-key cryptography and in solv-

ability of systems of linear congruences by the Chinese remainder theorem [5, 7].

The extended Euclidean algorithm, which is based on the Euclidean algorithm, is

the standard method for computing modular inverses [5, 7]. In this work, we derive

a modular inverse switching formula and we show that every equation provided by

the application of the Euclidean algorithm to two coprime positive integers can take

the form of the derived switching formula yielding a backward recurrence relation

for computing modular inverses. Next, using the derived recurrence relation, we

show that for two positive integers m and n, the pair of Bézout coefficients that is

provided by the Euclidean algorithm is such that the coefficient of m is the least

absolute inverse of m
gcd(m,n) modulo n

gcd(m,n) , and likewise, the coefficient of n is the

least absolute inverse of n
gcd(m,n) modulo m

gcd(m,n) . This allows us to show that the

pair of Bézout coefficients that is provided by the Euclidean algorithm is, as a point

in the plane, nearest to the origin, which is a result already obtained by Rankin

[6] using induction on the number of steps in the Euclidean algorithm. Finally, we
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derive bounds on the two Bézout coefficients that slightly improve those given by

Rankin, and we examine when the bounds can be sharpened.

2. Modular Inverse Switching

In what follows, if an integer a is invertible modulo a positive integer n, then we

denote by a−1 mod n the inverse of a modulo n, which is unique modulo n.

Lemma 1. Let m and n be coprime positive integers. If (x, y) is a pair of Bézout

coefficients for (m,n), then x = m−1 mod n and y = n−1 mod m.

Proof. Let (x, y) be a pair of Bézout coefficients for (m,n). As a result,

xm + yn = 1. (1)

By Equation (1), we have xm ≡ 1 (mod n) and yn ≡ 1 (mod m). As a result,

x = m−1 mod n and y = n−1 mod m.

Remark 1. Substituting the expressions of x and y into Equation (1) and solving

for m−1 mod n, we obtain

m−1 mod n =
1 + n(−n−1 mod m)

m
. (2)

Equation (2) is known as Arazi’s inversion formula and is used to compute the

inverse of m modulo n from the inverse of n modulo m [2, 4].

Lemma 2. Let m and n be positive integers, let t be an integer, and let both m and

t be coprime to n. There exists an integer k such that m = kn + t if and only if

(t−1 mod n)m + (n−1 mod m)n = 1. (3)

Proof. Let there exist an integer k such that m = kn + t. As a result, m ≡ t

(mod n). Also, both m and t are invertible modulo n, since both m and t are

coprime to n. Thus, m−1 mod n = t−1 mod n. Besides, by Lemma 1, we have

(m−1 mod n)m+(n−1 mod m)n = 1 and substituting the expression of m−1 mod n,

we arrive at Equation (3).

Now, let Equation (3) hold. Since m and n are coprime and positive, it follows

from Lemma 1 that (m−1 mod n)m + (n−1 mod m)n = 1. Subtracting Equation

(3) from the last equation yields (m−1 mod n − t−1 mod n)m = 0, and since m is

nonzero, we have m−1 mod n = t−1 mod n, whence m ≡ t (mod n), and thus there

exists an integer k such that m = kn + t.
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Remark 2. Solving Equation (3) for t−1 mod n, we express the inverse of t modulo

n in terms of the inverse of n modulo m, while solving for n−1 mod m, we express

the inverse of n modulo m in terms of the inverse of t modulo n, and taking into

account that m = kn + t, this can be considered as modular inverse switching (or

shifting). For this reason, we call Equation (3) a modular inverse switching formula.

3. The Euclidean Algorithm as a Sequence of Modular Inverse Switching
Formulas

Let m and n be positive integers. We assume that m is not a multiple of n and

n is not a multiple of m, either, so that the Euclidean algorithm provides a pair

of Bézout coefficients for m and n. As a result, both integers m and n are greater

than 1 and they are not equal. Hence, without loss of generality, we assume that

m > n > 1. Since m and n are not both zero, it follows that gcd(m,n) exists in

positive integers. Further, since n - m, we have that n is not a common divisor

of m and n. Also, since n is positive, it follows that n is the greatest divisor of

itself. As a result, gcd(m,n) < n, and combining with m > n > 1, we obtain

m > n > gcd(m,n) ≥ 1, whence m
gcd(m,n) > n

gcd(m,n) > 1, and setting r0 = m
gcd(m,n)

and r1 = n
gcd(m,n) , we get r0 > r1 > 1, and r0 and r1 are coprime. Next, applying

the Euclidean algorithm to r0 and r1 yields that there exists a positive integer n

such that for every i = 1, . . . , n, we have

ri−1 = qiri + ri+1, (4)

where r2, . . . , rn+1 are positive integers and r0 > r1 > . . . > rn+1 = 1, and

where q1, . . . , qn are also positive integers. We note that rn+1 = gcd(r0, r1). By

Equation (4), we have gcd(ri, ri+1) = gcd(ri−1, ri) for every i = 1, . . . , n, and

since gcd(r0, r1) = 1, successive application of the previous equation yields that

gcd(ri, ri+1) = gcd(ri−1, ri) = 1 for every i = 1, . . . , n. Hence, both ri−1 and ri+1

are coprime to ri for every i = 1, . . . , n. Thus, by Lemma 2, for every i = 1, . . . , n,

Equation (4) is equivalent to (r−1i+1 mod ri)ri−1 + (r−1i mod ri−1)ri = 1, and setting

r−1j = r−1j mod rj−1 for every j = 1, . . . , n + 1, we arrive at

r−1i+1ri−1 + r−1i ri = 1. (5)

We have thus transformed the system of Equations (4) into the system of Equations

(5), where for every i = 1, . . . , n, the i-th equation of the former is equivalent to

the i-th equation of the latter. Further, for i = n, Equations (4) and (5) read

rn−1 + (−qn)rn = 1 and r−1n+1rn−1 + r−1n rn = 1, respectively, and treating rn−1 and

rn as independent variables, we derive that

r−1n+1 = 1. (6)



INTEGERS: 24 (2024) 4

We note that, since rn+1 = 1, the inverse r−1n+1 of rn+1 modulo rn is 1 + krn, where

k is an integer. However, as we showed comparing Equations (4) and (5) for i = n,

the Euclidean algorithm provides the value 1 for r−1n+1.

Equation (5) can be written as

r−1i =
1− r−1i+1ri−1

ri
, (7)

for every i = 1, . . . , n. In view of Equation (6), Equation (7) yields a unique inverse

r−1i for every i = 1, . . . , n. Since it gives the inverse of ri modulo ri−1 in terms

of the inverse of ri+1 modulo ri, Equation (7) is a two-term backward recurrence

relation for computing modular inverses. It is important to note that Equation (7)

uses, as inputs, only the given integers r0 and r1, and the remainders r2, . . . , rn that

are provided by the Euclidean algorithm; it does not use the quotients q1, . . . , qn.

Variants of the extended Euclidean algorithm that use three-term backward re-

currence relations are described by Glasby [1]. Equation (7) is a two-term recur-

rence relation. However, apart from a multiplication and an addition (subtraction),

Equation (7) also involves a division, contrary to the relations described by Glasby,

which involve only multiplications and additions (subtractions). On the other hand,

the division in Equation (7) is exact for every i = 1, . . . , n, and fast algorithms for

exact division have long been available (see, for instance, [3]). Also, Equation (7)

is suitable for computing modular inverses with the use of a hand calculator.

Example 1. We will compute the inverse of 779 modulo 2141. The integer 2141 is

prime and does not divide 779; thus, 779 and 2141 are coprime. As a result, 779 is

invertible modulo 2141. Applying the Euclidean algorithm to 2141 and 779 yields

the following equations:

2141 = 2 · 779 + 583,

779 = 583 + 196,

583 = 2 · 196 + 191,

196 = 191 + 5,

191 = 38 · 5 + 1.

Hence, following our notation, we have r0 = 2141, r1 = 779, and the sequence of

remainders r2 = 583, r3 = 196, r4 = 191, r5 = 5, and r6 = 1. Next, taking into

account that r−16 = 1, successive application of Equation (7) yields r−15 = 1−r4
r5

=

−38, r−14 =
1−r−1

5 r3
r4

= 39, r−13 =
1−r−1

4 r2
r3

= −116, r−12 =
1−r−1

3 r1
r2

= 155, and

r−11 =
1−r−1

2 r0
r1

= −426. Consequently, the inverse of 779 modulo 2141 is equal to

−426; i.e., 779−1 mod 2141 = −426.

If an integer a is invertible modulo a positive integer n, then the inverse of a

modulo n is unique modulo n. This means that if x is an inverse of a modulo n,
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then the residue class of x modulo n contains exactly the inverses of a modulo n. As

a result, every complete system of residues modulo n contains a unique inverse of a

modulo n. We call the unique inverse of a modulo n that is contained in the complete

system of least absolute residues modulo n, the least absolute inverse of a modulo n.

We note that if n is even, then the complete system of least absolute residues modulo

n is the set {−(n
2 − 1), . . . ,−1, 0, 1, . . . , n

2 } or the set {−n
2 , . . . ,−1, 0, 1, . . . , n

2 − 1},
while if n is odd, then the complete system of least absolute residues modulo n

is the set {−n−1
2 , . . . ,−1, 0, 1, . . . , n−1

2 }. As a result, an integer m belongs to the

complete system of least absolute residues modulo n if and only if |m| ≤ n
2 if n is

even, and |m| ≤ n−1
2 if n is odd.

Lemma 3. If there exists j ∈ {1, . . . , n} such that r−1j+1 is the least absolute inverse

of rj+1 modulo rj, then r−1j is the least absolute inverse of rj modulo rj−1.

Proof. First, we observe that, since j < n + 1 for every j = 1, . . . , n, we have that

rj > rn+1 = 1, and thus r−1j+1 6= 0; otherwise, 0 ≡ 1 (mod rj), whence rj |−1, which

contradicts that rj > 1. We note that r−11 is also nonzero, as a result of r0 > 1.

Next, let there exist j ∈ {1, . . . , n} such that r−1j+1 is the least absolute inverse of

rj+1 modulo rj . As shown, r−1j+1 6= 0, whence r−1j+1 > 0 or r−1j+1 < 0. We will examine

the two cases separately.

(i) If r−1j+1 > 0, then, in view of Equation (7),

|r−1j | =
r−1j+1rj−1 − 1

rj
. (8)

Further, since r−1j+1 is the least absolute inverse of rj+1 modulo rj , it follows that

r−1j+1 ≤
rj
2 if rj is even, or r−1j+1 ≤

rj−1
2 <

rj
2 if rj is odd. Hence, in both cases, r−1j+1 ≤

rj
2 . Multiplying both sides of the last inequality by

rj−1

rj
> 0 yields

r−1
j+1rj−1

rj
≤ rj−1

2 .

Next, adding − 1
rj

to both sides of the last inequality, we obtain
r−1
j+1rj−1

rj
− 1

rj
≤

rj−1

2 −
1
rj

<
rj−1

2 , whence
r−1
j+1rj−1−1

rj
<

rj−1

2 , and in view of Equation (8), we arrive

at

|r−1j | <
rj−1

2
. (9)

If rj−1 is even, then by Equation (9), the inverse r−1j belongs to the complete system

of least absolute residues modulo rj−1, and since it is an inverse of rj modulo rj−1,

it is the least absolute inverse of rj modulo rj−1. If rj−1 is odd, then there exists

an integer k such that rj−1 = 2k + 1, and Equation (9) reads |r−1j | < k + 1
2 . Next,

since |r−1j | is an integer, the last inequality implies that |r−1j | ≤ k =
rj−1−1

2 , whence

|r−1j | ≤
rj−1−1

2 . Hence, r−1j belongs to the complete system of least absolute residues

modulo rj−1, and since it is an inverse of rj modulo rj−1, it is the least absolute

inverse of rj modulo rj−1.
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(ii) If r−1j+1 < 0, then in view of Equation (6), we have j+1 < n+1, whence j < n,

and thus j ≤ n − 1, since j is an integer. As a result, rj ≥ rn−1 > rn > rn+1 = 1,

whence rj ≥ rn−1 > rn > 1. Consequently, rn ≥ 2 and rn−1 ≥ 3, and thus rj ≥ 3,

whence
1

rj
≤ 1

3
. (10)

Besides, in view of Equation (7), we have, since r−1j+1 < 0,

|r−1j | =
1− r−1j+1rj−1

rj
. (11)

Also, as a result of r−1j+1 being the least absolute inverse of rj+1 modulo rj , we

have that −r−1j+1 ≤
rj
2 if rj is even, or −r−1j+1 ≤

rj−1
2 <

rj
2 if rj is odd. Hence, in

both cases, −r−1j+1 ≤
rj
2 . Multiplying both sides of the last inequality by

rj−1

rj
> 0

yields
−r−1

j+1rj−1

rj
≤ rj−1

2 . Next, adding 1
rj

to both sides of the last inequality and

taking into account Equation (11), we obtain |r−1j | ≤
rj−1

2 + 1
rj

. Finally, in view of

Equation (10), the last inequality gives

|r−1j | ≤
rj−1

2
+

1

3
. (12)

If rj−1 is even, then
rj−1

2 is an integer, and since |r−1j | is also an integer, Equation

(12) yields |r−1j | ≤
rj−1

2 . Hence, r−1j belongs to the complete system of least absolute

residues modulo rj−1, and since it is an inverse of rj modulo rj−1, it is the least

absolute inverse of rj modulo rj−1. If rj−1 is odd, then there exists an integer k

such that rj−1 = 2k+ 1, and Equation (12) reads |r−1j | ≤ k+ 1
2 + 1

3 < k+ 1. Hence,

|r−1j | < k + 1 (strict inequality), and since |r−1j | is an integer, the last inequality

yields |r−1j | ≤ k =
rj−1−1

2 ; i.e., |r−1j | ≤
rj−1−1

2 . As a result, r−1j belongs to the

complete system of least absolute residues modulo rj−1, and since it is an inverse

of rj modulo rj−1, it is the least absolute inverse of rj modulo rj−1. The proof is

thus complete.

Corollary 1. For every i = 1, . . . , n+1, the inverse r−1i is the least absolute inverse

of ri modulo ri−1.

Proof. As explained in the beginning of the proof of Lemma 3, we have that all

inverses r−11 , . . . , r−1n+1 are nonzero. Hence, by Equation (6), we see that r−1n+1 is

the least absolute inverse of rn+1 modulo rn. By successive application of Lemma

3, we derive that r−1i is the least absolute inverse of ri modulo ri−1 for every

i = 1, . . . , n.

Remark 3. The reader may easily verify that in Example 1, each of the inverses

r−11 , . . . , r−16 is the least absolute inverse.
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Lemma 4. The pair of Bézout coefficients that is provided by the Euclidean al-

gorithm for (m,n) is such that the coefficient of m is the least absolute inverse

of m
gcd(m,n) modulo n

gcd(m,n) , and likewise, the coefficient of n is the least absolute

inverse of n
gcd(m,n) modulo m

gcd(m,n) .

Proof. Since m = r0 gcd(m,n) and n = r1 gcd(m,n), the equations of the Eu-

clidean algorithm for m and n result from those for r0 and r1; i.e., from the system

of Equations (4), if each remainder is multiplied by gcd(m,n) and each quotient

remains unchanged. Since the quotients do not change, the pair of Bézout coeffi-

cients does not change either; i.e., the pair of Bézout coefficients that is provided by

the Euclidean algorithm for (m,n) is equal to the pair of Bézout coefficients that

is provided by the Euclidean algorithm for (r0, r1). Besides, for i = 1, Equation

(5) yields that (r−12 , r−11 ) is the pair of Bézout coefficients that is provided by the

Euclidean algorithm for (r0, r1). Further, by Corollary 1, the inverse r−12 is the least

absolute inverse of r2 modulo r1 and the inverse r−11 is the least absolute inverse of

r1 modulo r0. Also, for i = 1, Equation (4) reads r0 = q1r1 + r2, whence r0 ≡ r2
(mod r1). Further, both r0 and r2 are coprime to r1, and thus they are both invert-

ible modulo r1. Hence, the last congruence implies that r0 and r2 have the same

inverses modulo r1. As a result, the least absolute inverse of r2 modulo r1 is equal

to the least absolute inverse of r0 modulo r1. Thus, the pair (r−12 , r−11 ) of Bézout

coefficients that is provided by the Euclidean algorithm for (r0, r1) is such that the

coefficient r−12 of r0 is equal to the least absolute inverse of r0 modulo r1 and the

coefficient r−11 of r1 is equal to the least absolute inverse of r1 modulo r0. Further,

since the pair of Bézout coefficients for (m,n) is equal to that for (r0, r1), we con-

clude that the coefficient of m is equal to r−12 and the coefficient of n is equal to r−11 .

Therefore, the coefficient of m is the least absolute inverse of r0 = m
gcd(m,n) modulo

r1 = n
gcd(m,n) and the coefficient of n is the least absolute inverse of r1 = n

gcd(m,n)

modulo r0 = m
gcd(m,n) .

Lemma 5. The pair of Bézout coefficients that is provided by the Euclidean algo-

rithm for (m,n) is such that each coefficient is least in absolute value.

Proof. Since r0 and r1 are coprime, it follows from Lemma 1 that every pair of

Bézout coefficients for (r0, r1) is such that the coefficient of r0 is an inverse of r0
modulo r1, and likewise, the coefficient of r1 is an inverse of r1 modulo r0. As a

result, the absolute value of the coefficient of r0 is no less than the absolute value

of the least absolute inverse of r0 modulo r1, and likewise, the absolute value of the

coefficient of r1 is no less than the absolute value of the least absolute inverse of r1
modulo r0. Further, as explained in Lemma 4, the pair of Bézout coefficients that

is provided by the Euclidean algorithm for (r0, r1), say (x0, y0), is such that x0 is

the least absolute inverse of r0 modulo r1 and y0 is the least absolute inverse of r1
modulo r0. Consequently, the pair (x0, y0) is such that each coefficient is least in
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absolute value. Next, it is easily seen that if (x, y) is a pair of Bézout coefficients

for (r0, r1), then (x, y) is also a pair of Bézout coefficients for (m,n), and vice versa.

As a result, the pair (x0, y0) is a pair of Bézout coefficients for (m,n), too, and

each coefficient is least in absolute value. Finally, as explained in Lemma 4, the

pair of Bézout coefficients that is provided by the Euclidean algorithm for (m,n) is

equal to the pair of Bézout coefficients that is provided by the Euclidean algorithm

for (r0, r1). As a result, the pair (x0, y0) is the pair of Bézout coefficients that

is provided by the Euclidean algorithm for (m,n). Therefore, the pair of Bézout

coefficients that is provided by the Euclidean algorithm for (m,n) is such that each

coefficient is least in absolute value.

Corollary 2. The pair of Bézout coefficients that is provided by the Euclidean

algorithm for (m,n) is, as a point in the plane, nearest to the origin.

Proof. Let (x, y) be the pair of Bézout coefficients that is provided by the Euclidean

algorithm for (m,n) and let (x′, y′) be any pair of Bézout coefficients for (m,n). By

Lemma 5, we have |x| ≤ |x′| and |y| ≤ |y′|. Squaring both sides of both inequalities,

adding the two resulting inequalities, and taking square roots on both sides of the

resulting inequality, we obtain
√
x2 + y2 ≤

√
(x′)2 + (y′)2. Therefore, the point

(x, y) is nearest to the origin.

As explained in Lemma 4, the pair of Bézout coefficients that is provided by the

Euclidean algorithm for (m,n) is equal to (r−12 , r−11 ), where r−12 is equal to the least

absolute inverse of r0 modulo r1 and r−11 is equal to the least absolute inverse of r1
modulo r0. As a result, r−12 belongs to the complete system of least absolute residues

modulo r1 and r−11 belongs to the complete system of least absolute residues modulo

r0. Since r0 and r1 are coprime, they cannot be both even. As a result, r0 and r1
are both odd, r0 is odd and r1 is even, or r0 is even and r1 is odd. In the first case,

we have |r−11 | ≤ r0−1
2 and |r−12 | ≤ r1−1

2 , in the second case, we have |r−11 | ≤ r0−1
2

and |r−12 | ≤ r1
2 , and in the third case, we have |r−11 | ≤ r0

2 and |r−12 | ≤ r1−1
2 .

The previous bounds slightly improve those given by Rankin [6, Proposition 1].

Now, squaring each of the previous three pairs of inequalities and adding, each

time, the two resulting inequalities, we obtain (r−11 )2 + (r−12 )2 ≤ (r0−1)2+(r1−1)2
4 ,

(r−11 )2+(r−12 )2 ≤ (r0−1)2+r21
4 , and (r−11 )2+(r−12 )2 ≤ r20+(r1−1)2

4 , respectively. Hence,

in the plane, the point (r−12 , r−11 ) lies in the interior of the circle or on the circle

centered at the origin with radius

√
(r0−1)2+(r1−1)2

2 ,

√
(r0−1)2+r21

2 , and

√
r20+(r1−1)2

2 ,

respectively. Further, the point (r−12 , r−11 ) is unique, as a result of the modular

inverse being unique with respect to the modulus.

Next, we will show that if r0 and r1 are both odd or if r0 is odd and r1 is even,

then the previous bounds on r−11 and r−12 cannot be sharpened, while if r0 is even

and r1 is odd, then they can. We note that r0 > r1 > 1.
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Lemma 6. Let r0 and r1 be both odd. It holds that |r−11 | = r0−1
2 and |r−12 | = r1−1

2

if and only if r0 − r1 = 2.

Proof. We assume that |r−11 | = r0−1
2 and |r−12 | = r1−1

2 . By Equation (5) for i =

1, we have 1 = r−12 r0 + r−11 r1, and since r0 and r1 are both positive, it follows

that r−11 and r−12 have different signs. If r−11 = − r0−1
2 and r−12 = r1−1

2 , then

1 = r1−1
2 r0 − r0−1

2 r1 = r1−r0
2 < 0, which is a contradiction. If r−11 = r0−1

2 and

r−12 = − r1−1
2 , then 1 = r0−r1

2 , whence r0 − r1 = 2.

Next, we assume that r0 − r1 = 2. Since r0 and r1 are both odd, we have

r0 = 2k + 1 and r1 = 2(k − 1) + 1, for some integer k > 1. Applying the Euclidean

algorithm to r0 and r1 yields

r0 = 1 · r1 + 2,

r1 = (k − 1) · 2 + 1.

Hence, we have

1 = r1 − (k − 1) · 2 = r1 − (k − 1) · (r0 − r1) = −(k − 1)r0 + kr1;

that is, −(k − 1)r0 + kr1 = 1, and since k = r0−1
2 and k − 1 = r1−1

2 , we have

− r1−1
2 r0 + r0−1

2 r1 = 1. Finally, comparing the last equation with Equation (5) for

i = 1, we arrive at |r−11 | = r0−1
2 and |r−12 | = r1−1

2 .

We remark that if r0 and r1 are both odd, then, taking into account that r0 > r1,

we have r0 − r1 ≥ 2. If, additionally, r0 − r1 > 2, then, by Lemma 6, at least one

of the inequalities |r−11 | ≤ r0−1
2 and |r−12 | ≤ r1−1

2 is strict.

Lemma 7. Let r0 be odd and r1 be even. It holds that |r−11 | = r0−1
2 and |r−12 | = r1

2

if and only if r1 = 2.

Proof. We assume that |r−11 | = r0−1
2 and |r−12 | = r1

2 . By Equation (5) for i = 1, we

have 1 = r−12 r0+r−11 r1, and since r0 and r1 are both positive, it follows that r−11 and

r−12 have different signs. If r−11 = r0−1
2 and r−12 = − r1

2 , then 1 = − r1
2 r0 + r0−1

2 r1 =

− r1
2 < 0, which is a contradiction. If r−11 = − r0−1

2 and r−12 = r1
2 , then 1 = r1

2 ,

whence r1 = 2.

Next, we assume that r1 = 2. Since r0 > r1 and r0 is odd, it follows that

r0 = 2k + 1, for some positive integer k. As a result, r0 = kr1 + 1, and thus

r0 − kr1 = 1. Comparing the last equation with Equation (5) for i = 1, we obtain

r−12 = 1 = r1
2 and r−11 = −k = − r0−1

2 , whence |r−11 | = r0−1
2 and |r−12 | = r1

2 .

As a consequence of Lemma 7, if r0 is odd and r1 is even and greater than 2,

then at least one of the inequalities |r−11 | ≤ r0−1
2 and |r−12 | ≤ r1

2 is strict.

Lemma 8. If r0 is even and r1 is odd, then at least one of the inequalities |r−11 | ≤ r0
2

and |r−12 | ≤ r1−1
2 is strict.
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Proof. Suppose to the contrary that none of the two given inequalities is strict. As a

result, there exist r0 and r1 such that |r−11 | = r0
2 and |r−12 | = r1−1

2 . By Equation (5)

for i = 1, we have 1 = r−12 r0+r−11 r1, and since r0 and r1 are both positive, it follows

that r−11 and r−12 have different signs. As a result, r−11 = r0
2 and r−12 = − r1−1

2 , or

r−11 = − r0
2 and r−12 = r1−1

2 . In the first case, we have 1 = − r1−1
2 r0 + r0

2 r1 = r0
2 ,

whence r0 = 2, and thus 2 > r1 > 1, which is a contradiction, since r1 is an integer.

In the second case, we have 1 = − r0
2 < 0, which is a contradiction, too.

Remark 4. As a consequence of Lemma 8, if r0 is even and r1 is odd, then the

point (r−12 , r−11 ) lies in the interior of the circle centered at the origin with radius√
r20+(r1−1)2

2 .
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