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Abstract

Let f be a normalized primitive holomorphic cusp form of even integral weight k
for the full modular group Γ = SL(2,Z), and denote by λf (n) the nth normalized
Fourier coefficient of f . Let λf×f (n) be the nth normalized coefficient of the Dirich-
let expansion of the Rankin-Selberg L-function L(f × f, s) associated with f . In
this paper, we investigate the asymptotic behavior of the sum∑

n≤x
n≡l( mod q)

λ2f×f (n),

where q is a prime with (l, q) = 1. In a similar manner, we also consider the general
divisor problem of the coefficients of Rankin-Selberg L-functions associated with f
over the set of arithmetic progressions.

1. Introduction

The Fourier coefficients of modular forms are important and interesting objects in

number theory. Let H∗k be the set of all normalized primitive holomorphic cusp

forms of even integral weight k ≥ 2 for the full modular group Γ = SL(2,Z). Then

the Hecke eigenform f(z) ∈ H∗k has the Fourier expansion at the cusp ∞:

f(z) =

∞∑
n=1

λf (n)n
k−1
2 e(nz), =(z) > 0,

where e(z) = e2πiz, and λf (n) is the n-th normalized Fourier coefficient (Hecke

eigenvalue) such that λf (1) = 1. Then λf (n) is real and satisfies the multiplicative
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property

λf (m)λf (n) =
∑

d|(m,n)

λf

(
mn

d2

)
, (1)

where m ≥ 1 and n ≥ 1 are positive integers. In 1974, P. Deligne [8] proved the

Ramanujan-Petersson conjecture

|λf (n)| ≤ d(n), (2)

where d(n) is the classical divisor function. By Equation (2), Deligne’s bound is

equivalent to the fact that there exist αf (p), βf (p) ∈ C satisfying

αf (p) + βf (p) = λf (p), αf (p)βf (p) = |αf (p)| = |βf (p)| = 1. (3)

More generally, for all positive integers l ≥ 1, one has

λf (pl) = αf (p)l + αf (p)l−1βf (p) + · · ·+ αf (p)βf (p)l−1 + βf (p)l.

In 1927, Hecke [11] proved that∑
n≤x

λf (n)� x
1
2 . (4)

Later, the upper bound in Equation (4) was improved by several authors (see, for

example, [8, 14, 46]). In particular, Wu [49] has shown that∑
n≤x

λf (n)� x
1
3 logρ x,

where

ρ =
102 + 7

√
21

210

(
6−
√

21

5

) 1
2

+
102− 7

√
21

210

(
6 +
√

21

5

) 1
2

− 33

35
= −0.118 · · · .

Using the Sato-Tate conjecture proved by T. Barnet-Lamb et al. [1], one has the

best result to date that∑
n≤x

λf (n)� x
1
3 (log x)−(1−

8
3π ).

In the 1930s, Rankin [45] and Selberg [47] independently proved the following

asymptotic formula, ∑
n≤x

λ2f (n) = cfx+O(x3/5), (5)
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where cf > 0 is a positive constant depending on f , and ε > 0 is an arbitrarily small

positive number. Recently, the exponent in Equation (5) was improved to 3
5 − δ in

place of 3
5 by Huang [16] , where δ ≤ 1/560. More recently, motivated by the work

of Kowalski, Lin, and Michel [28] concerning the Rankin-Selberg coefficients in large

arithmetic progressions, Huang [17] further sharpened the exponent of the result to
3
5 − δ2 with δ2 = 3

305 . This remains the best possible result in this direction.

Later, based on the work about symmetric power L-functions, Moreno and

Shahidi [40] were able to prove∑
n≤x

τ40 (n) ∼ c1x log x, x→∞,

where τ0(n) = τ(n)/n
11
2 is the normalized Ramanujan tau-function, and c1 > 0 is

a positive constant. Obviously, Moreno and Shahidi’s result also holds true if we

replace τ0(n) with the normalized Fourier coefficient λf (n).

Let f ∈ H∗k be a Hecke eigenform and denote its nth normalized Fourier coeffi-

cient by λf (n). Define

Sj(f ;x) =
∑
n≤x

λjf (n),

where j ∈ Z+ and x ≥ 1.

Based on the work of Moreno and Shahidi concerning the symmetric power L-

functions L(symjf, s) for j = 1, 2, 3, 4, Fomenko [9] established the estimate

S3(f ;x)�f,ε x
5/6+ε, S4(f ;x) = cfx log x+ dfx+Of,ε(x

9/10+ε),

where cf > 0 and df are suitable constants depending on f ; here ε is an arbitrarily

small positive number. Later, Lü (see, e.g., [29, 30, 31]) considered higher moments

Sj(f ;x) for 3 ≤ l ≤ 8, which improved and generalized the work of Fomenko. Later,

Lau, Lü, and Wu [32] proved that

Sj(f ;x) = xP ∗j (log x) +Of,ε
(
xθj+ε

)
, 3 ≤ j ≤ 8,

where P ∗j (t) ≡ 0 are the constant functions for j = 3, 5, 7, and P ∗4 (t), P ∗6 (t), P ∗8 (t)

are polynomials of degree 1, 4, 13, respectively, and

θ3 =
7

10
, θ5 =

40

43
, θ7 =

176

179
,

θ4 =
151

175
, θ6 =

175

181
, θ8 =

2933

2957
.

Lau and Lü [33] derived the general results for Sj(f ;x) for all j ≥ 2 under the

assumption that L(symlf, s) is automorphic cuspidal for some positive l. Now we

know that L(symjf, s) is automorphic for all j ≥ 1 due to the recent celebrated

works of Newton and Thorne [42, 43].
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Andrianov and Fomenko [3] firstly considered the second power sum of λf (n) over

arithmetic progressions for holomorphic cusp forms. Later, Andrianov [2] improved

the error term. Ichihara [19, 20] has investigated λ2f (n) over arithmetic progresssions

for holomorphic cusp forms for x� q2:∑
n≤x

n≡l( mod q)

λ2f (n) =
c

ϕ(q)

∏
p|q

(1− αf (p)2p−1)(1− p−1)(1− βf (p)2)(1 + p−1)−1x

+Of,ε(x
3
5 q

4
5+ε),

where c is some suitable constant depending on f , and αf (p), βf (p) are the Satake

parameters given by Equation (3). Later, Jiang and Lü [22] considered the sum of

λ2jf (n) over arithmetic progressions for j = 2, 3, 4. In a similar manner, they also

established the corresponding results for the normalized Hecke-Maass cusp form

with respect to SL(2,Z) for j = 2, 3, 4.

Very recently, Zou et al. [52], by using the existence of automorphic cuspidal

self-dual representation symjπf for all j ≥ 1 due to Newton and Thorne [42, 43]

in combination with some nice properties of the corresponding automorphic L-

functions, established the following result.

Theorem 1.1 ([52, Theorem 1]). Let f ∈ H∗k be a Hecke eigenform. Let q be a

prime with (q, l) = 1. For j ≥ 2 and q ≤ x 3
4 δj , one has∑

n≤x
n≡l( mod q)

λ2f (nj) =
cjx

ϕ(q)
+Of,ε

(
qx1−

3
2 δj+ε

)

for any ε > 0, where cj > 0 are some suitable constants, and δ2 = 92
597 and δj =

92
69(j−1)(j+3)+247 for j ≥ 3.

Let f ∈ H∗k be a Hecke eigenform, and the Rankin-Selberg L-function L(f×f, s)
associated with f is defined as

L(f × f, s) =
∏
p

(
1− αf (p)2

ps

)−1(
1− 1

ps

)−2(
1− βf (p)2

ps

)−1
.

Then we can rewrite L(f × f, s) as

L(f × f, s) = ζ(2s)

∞∑
n=1

λf (n)2

ns
:=

∞∑
n=1

λf×f (n)

ns
.

For any given integer w ≥ 1, we write

L(f × f, s)w =

∞∑
n=1

λw,f×f (n)

ns
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for <(s) > 1. Then

λw,f×f (n) =
∑

n=n1...nw

λf×f (n1) . . . λf×f (nw).

In particular, λ1,f×f (n) = λf×f (n).

Define

Uw(x) :=
∑
n≤x

λw,f×f (n).

A classical problem is to investigate the asymptotic behaviour of Uw(x), which

can be regarded as the general divisor problem considered by Kanemitsu, Sankara-

narayanan, and Tanigawa [24]. When w = 1, Rankin [45] and Selberg [47] indepen-

dently proved that

U1(x) = Cfx+Of (x
3
5 ),

where Cf is some suitable constant depending on f . For w ≥ 2, Kanemitsu,

Sankaranarayanan, and Tanigawa [24] showed that

Uw(x) = Mw(x) +Of,ε
(
x1−

1
2w+ε

)
, (6)

where Mw(x) denotes the residue of the function L(f×f,s)w
s xs at s = 1, which takes

the form of xPw−1(log x), where Pw−1(t) denotes a polynomial of t with degree

w − 1.

In [36], Liu and Zhang established the asymptotic formula∑
n≤x

λf×f (n)2 = xP (log x) +Of,ε
(
x

6
7+ε
)
,

where P (t) is a polynomial of t with degree 1, and they also proved that

Uw(x) =


Mw(x) +Of,ε

(
x1−

84
131w+42+ε

)
, if 2 ≤ w ≤ 5,

Mw(x) +Of,ε
(
x1−

84
131w+33+ε

)
, if 6 ≤ w ≤ 11,

Mw(x) +Of,ε
(
x1−

84
131w+24+ε

)
, if w ≥ 12,

where Mw(x) is defined as in Equation (6). For more results in this direction, the

interested readers can refer to [34, 35, 50, 38, 51].

Inspired by the above results, for j ≥ 1, in this paper we firstly consider the

distribution of the coefficients λ2f×f (n) over arithmetic progressions by adopting

the similar approach given by Zou et al. [52] and the celebrated work of Newton

and Thorne [42, 43]. More precisely, we establish the following result.

Theorem 1.2. Let f ∈ H∗k be a Hecke eigenform, and let q be a prime with

(q, l) = 1. For j ≥ 1 and q � xη, one has∑
n≤x

n≡l( mod q)

λ2f×f (n) =
x

ϕ(q)
P (log x) +Of,ε

(
qx1−

3
2η+ε

)
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for any ε > 0, where η = 23
261£¬ and P (t) is a polynomial in t of degree 1 with

leading positive coefficient.

By using a similar approach as that of Theorem 1.2, along with some nice prop-

erties of the associated L-functions, we also establish the following theorem.

Theorem 1.3. Let f ∈ H∗k be a Hecke eigenform, and let q be a prime with

(q, l) = 1. For w ≥ 2 and q � xϑw , one has∑
n≤x

n≡l( mod q)

λw,f×f (n) =
x

ϕ(q)
Pw−1(log x) +Of,ε

(
qx1−

3
2ϑw+ε

)

for any ε > 0, where ϑw = 92
247w+10 , and Pw−1(t) is a polynomial in t of degree

w − 1 with positive leading coefficient.

Throughout the paper, we always assume that f ∈ H∗k is a Hecke eigenform. Let

ε > 0 be an arbitrarily small positive constant that may vary in different occurrence.

The symbols p and q always denotes prime numbers.

2. Preliminaries

In this section, we introduce some background on the analytic properties of auto-

morphic L-functions and give some useful lemmas which play an important role in

the proof of the main results in this paper.

Let f ∈ H∗k be a Hecke eigenform, and let λf (n) denote its n-th normalized

Fourier coefficient. It is natural to define the Hecke L-function L(f, s) associated

to f by

L(f, s) =

∞∑
n=1

λf (n)

ns
=
∏
p

(1− λf (p)p−s + p−2s)−1

=
∏
p

(
1− αf (p)

ps

)−1(
1− βf (p)

ps

)−1
, <(s) > 1,

where αf (p), βf (p) are the local parameters satisfying (3). The j-th symmetric

power L-function associated with f is defined by

L(symjf, s) =
∏
p

j∏
m=0

(1− αf (p)j−mβf (p)mp−s)−1, <(s) > 1.
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We may expand it into a Dirichlet series:

L(symjf, s) =

∞∑
n=1

λsymjf (n)

ns
,

=
∏
p

(
1 +

λsymjf (p)

ps
+ · · ·+

λsymjf (pk)

pks
+ · · ·

)
, <(s) > 1. (7)

Apparently, λsymjf (n) is a real multiplicative function. In particular, for j = 1, we

have L(sym1f, s) = L(f, s).

It is standard to find that

λf (pj) = λsymjf (p) =
αf (p)j+1 − βf (p)j+1

αf (p)− βf (p)
=

j∑
m=0

αf (p)j−mβf (p)m,

which can be rewritten as

λf (pj) = λsymjf (p) = Uj(λf (p)/2),

where Uj(x) is the j-th Chebyshev polynomial of the second kind. It is not hard to

find that

|λsymjf (n)| ≤ dj+1(n),

where dj+1(n) denotes the number of representations of n as the product of j + 1

positive integers, which can also be regarded as the Dirichlet coefficients of ζ(s)j+1;

here, as usual, ζ(s) denotes the classical Riemann zeta function.

Let χ be a Dirichlet character modulo q. Then, we can define the twisted jth

symmetric power L-function by the Euler product representation with degree j + 1

L(symjf ⊗ χ, s) =
∏
p

j∏
m=0

(1− αf (p)j−mβf (p)mχ(p)p−s)−1

=

∞∑
n=1

λsymjf (n)χ(n)

ns

for <(s) > 1.

As is well-known, to a primitive form f is associated an automorphic cuspidal

representation πf of GL2(AQ), and hence an automorphic L-function L(πf , s) which

coincides with L(f, s). It is predicted that πf gives rise to a symmetric power lift–

an automorphic representation whose L-function is the symmetric power L-function

attached to f .

For 1 ≤ j ≤ 8, the Langlands functoriality conjecture, which states that symjf

is automorphic cuspidal, was proven by a series of important work of Gelbart and
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Jacquet [10], Kim [27], Kim and Shahidi [26, 25], Shahidi [48], and Clozel and

Thorne [5, 6, 7]. Very recently, Newton and Thorne [42, 43] proved that symjf

corresponds with a cuspidal automorphic representation of GLj+1(AQ) for all j ≥ 1

(with f being a holomorphic cusp form). Then we know that L(symjf, s), j ≥ 1,

has the analytic continuation to the whole complex plane as an entire function and

satisfies a certain Riemann-type functional equation. We refer the interested readers

to [21, Chapter 5] for a more comprehensive treatment.

Lemma 2.1. Let f ∈ H∗k be a distinct Hecke eigenform, and let χ be a primitive

character modulo a prime q. Then the complete L-function

Λ(symif ⊗ χ, s) := q(i+1)s/2γ(s)L(symif ⊗ χ, s)

can be extended to the whole complex plane as an entire function, and satisfies the

functional equation

Λ(symif ⊗ χ, s) = ε(f, χ)Λ(symif ⊗ χ̄, 1− s),

where i ≥ 1 and |ε(f, χ)| = 1. Here, γ(s) denotes the product of some gamma

functions Γ((s+ κn))/2, n = 1, 2, . . . , (i+ 1), with κn depending on the weight of f

and the parity of the character χ and <(κn) ≥ 0.

Proof. This can be deduced by a similar argument as done by Zou et al. [52].

Lemma 2.2. ([36, Lemma 2.2]) For <(s) > 1, define

F1(s) =

∞∑
n=1

λ2f×f (n)

ns
.

Then we have

F1(s) = ζ2(s)L3(sym2f, s)L(sym4f, s)U(s),

where the function U(s) admits the Dirichlet series which converges absolutely and

uniformly in the half-plane <(s) ≥ 1
2 + ε, and U(s) 6= 0 for <(s) = 1.

Let f ∈ H∗k be a Hecke eigenform, and let χ be the Dirichlet character modulo

q. Define

F1(s, χ) =

∞∑
n=1

λ2f×f (n)χ(n)

ns
. (8)

Lemma 2.3. Let F1(s, χ) be defined by (8), then

F1(s, χ) = L2(s, χ)L3(sym2f ⊗ χ, s)L(sym4f ⊗ χ, s)Ũ(s, χ),

where Ũ(s, χ) admits the Dirichlet series which converges absolutely for <(s) ≥ 1
2+ε,

and the convergence for all cases is uniform in q.
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Proof. This follows a similar approach as that of [52, Lemma 10] by using Lemma

2.2.

Lemma 2.4. For any ε > 0, we have∫ T

1

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣12dt� T 2+ε, (9)

uniformly for T ≥ 1, and

ζ(σ + it)�
(
1 + |t|

)max{ 13
42 (1−σ),0}+ε (10)

uniformly for 1
2 ≤ σ ≤ 1 + ε and |t| ≥ 1.

Proof. The first result is given by Heath-Brown [12] and the second result is the

recent breakthrough due to Bourgain [4, Theorem 5].

Lemma 2.5. For any ε > 0, we have

L(sym2f, σ + it)�
(
1 + |t|

)max{ 6
5 (1−σ),0}+ε (11)

uniformly for 1
2 ≤ σ ≤ 1 + ε and |t| ≥ 1.

Proof. From the result given by Lin et al. [39, Corollary 1.2], we can easily deduce

that

L

(
sym2f,

1

2
+ it

)
�
(
1 + |t|

) 3
5+ε. (12)

We can obtain the required result from the Phragmén-Lindelöf principle for a strip

[21, Theorem 5.53] and the Equation (12).

Lemma 2.6. Let χ be a primitive character modulo q. For T ≥ 1 and q � T 2,

L(σ + iT, χ)�ε (q(1 + |T |))max{ 1
3 (1−σ),0}+ε (13)

L(σ + iT, sym2f ⊗ χ)�ε (q(1 + |T |))max{ 67
46 (1−σ),0}+ε, (14)

and further for q is a prime,∫ T

0

|L(σ + it, χ)|12dt�ε q
4(1−σ)T 3−2σ+ε. (15)

Proof. The results follow from the work of Heath-Brown [13], Huang [15], and

Motohashi [41], together with the Phragmén-Lindelöf principle for a strip, respec-

tively.
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From above, we note that the automorphic L-functions L(symjf, s) and L(symjf⊗
χ, s) are the general L-functions in the sense of Perelli [44]. For these L-functions,

we have the following individual or averaged convexity bounds.

Lemma 2.7. Let χ be a primitive character modulo q. For the general L-functions

Ld
m,n(s, χ) of degree 2A indicated above, we have∫ 2T

T

|Ld
m,n(σ + it, χ)|2dt� (qT )2A(1−σ)+ε (16)

uniformly for 1
2 ≤ σ ≤ 1 and T ≥ 1. Furthermore,

Ld
m,n(σ + it, χ)� (q(|t|+ 1))max{A(1−σ),0}+ε (17)

uniformly for −ε ≤ σ ≤ 1 + ε.

Proof. This can be derived by following a similar argument as in Zou et al. [52],

which was originally deduced from Jiang and Lü [22].

Remark 2.8. For the automorphic L-functions L(symjf, s), j ≥ 1 we can regard

the modulus q to be 1.

3. Proof of Theorem 1.2

In order to prove Theorem 1.2, we firstly consider the sum
∑
n≤x λ

2
f×f (n)χ(n),

where χ is a primitive character modulo a prime q.

Proposition 3.1. Let f ∈ H∗k be a Hecke eigenform, and let χ be a primitive

character modulo a prime q. For any ε > 0 and q � xη, we have∑
n≤x

λ2f×f (n)χ(n) = Of,ε
(
qx1−

3
2η+ε

)
, (18)

where η = 23
261 .

Proof. Applying Perron’s formula [21, Proposition 5.54] to the generating function

F1(s, χ) appearing in Lemma 2.3, and using Deligne’s bound, we obtain

∑
n≤x

λ2f×f (n)χ(n) =
1

2πi

∫ 1+ε+iT

1+ε−iT
F1(s, χ)

xs

s
ds+Of,ε

(
x1+ε

T

)
,

where s = σ + it, and 1 ≤ T ≤ x is a parameter to be chosen later.



INTEGERS: 24 (2024) 11

By shifting the line of integration to the parallel line with <(s) = 1
2 + ε, and

invoking Cauchy’s residue theorem, we get∑
n≤x

λ2f×f (n)χ(n) =
1

2πi

{∫ 1
2+ε+iT

1
2+ε−iT

+

∫ 1
2+ε−iT

1+ε−iT
+

∫ 1+ε+iT

1
2+ε+iT

}
F1(s, χ)

xs

s
ds

+Of,ε

(
x1+ε

T

)
:= I1,1 + I1,2 + I1,3 +Of,ε

(
x1+ε

T

)
. (19)

For the integral over the vertical segment, by Equations (14), (15) and (16),

together with Hölder’s inequality, for q � T 2, it follows that

I1,1 � x
1
2+ε log T sup

1≤T1≤T/2

{
1

T1

∫ 2T1

T1

∣∣F1(σ + it, χ)
∣∣dt}

� x
1
2+ε log T sup

1≤T1≤T/2

{
1

T1

(∫ 2T1

T1

∣∣∣∣L2

(
1

2
+ it, χ

)∣∣∣∣6dt) 1
6

×
(∫ 2T1

T1

∣∣∣∣L3

(
sym2f ⊗ χ, 1

2
+ it

)∣∣∣∣3dt) 1
3

×
(∫ 2T1

T1

∣∣∣∣L(sym4f ⊗ χ, 1

2
+ it

)∣∣∣∣2dt) 1
2
}

� x
1
2+ε log T sup

1≤T1≤T/2

{
1

T1

(∫ 2T1

T1

∣∣∣∣L2

(
1

2
+ it, χ

)∣∣∣∣6dt) 1
6

×
(

max
T1≤t≤2T1

∣∣∣∣L(sym2f ⊗ χ, 1

2
+ it

)∣∣∣∣7
×
∫ 2T1

T1

∣∣∣∣L(sym2f ⊗ χ, 1

2
+ it

)∣∣∣∣2dt) 1
3

×
(∫ 2T1

T1

∣∣∣∣L(sym4f ⊗ χ, 1

2
+ it

)∣∣∣∣2dt) 1
2
}

� x
1
2+εq

87
23+εT

64
23+ε. (20)

For the integrals over the horizontal segments, by Equations (13), (14) and (17),

we have

I1,2+!‘!‘I1,3 �
∫ 1+ε

1
2+ε

xσ
∣∣F1(σ + it, χ)

∣∣T−1dσ
� max

1
2+ε≤σ≤1+ε

xσ(qT )(
1
3×2+3× 67

46+
5
2 )(1−σ)+εT−1

� x1+ε

T
+ x

1
2+εq

260
69 T

191
69 . (21)
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Combining Equations (19)-(21) and taking T = x
23
174 /q, we get (18). Since

q � T 2, we have q � x
23
261 . This proves the desired result.

Proposition 3.2. Let f ∈ H∗k be a Hecke eigenform, and let χ be a principal

character modulo a prime q. For any ε > 0 and q � x, we have∑
n≤x

λ2f×f (n)χ(n) = xP (log x) +Of,ε
(
xη̃+ε

)
, (22)

where η̃ = 179
209 , and P (t) is a polynomial in t of degree 1 with leading positive

coefficient.

Proof. From Lemmas 2.2-2.3, we know that

F1(s, χ0) :=

∞∑
n=1

λ2f×f (n)χ0(n)

ns

= F1(s)H1(s, χ), (23)

where H1(s, χ) is a Dirichlet series which converges absolutely for <(s) ≥ 1
2 + ε and

uniformly in q. Applying Perron’s formula and invoking Cauchy’s residue theorem,

we obtain∑
n≤x

λ2f×f (n)χ(n) =

∫ 1+ε+iT

1+ε−iT
F1(s, χ0)

xs

s
ds+Of,ε

(
x1+ε

T

)

=
1

2πi

{∫ 1
2+ε+iT

1
2+ε−iT

+

∫ 1
2+ε−iT

1+ε−iT
+

∫ 1+ε+iT

1
2+ε+iT

}
F1(s, χ0)

xs

s
ds

+Ress=1

(
F1(s, χ0)

xs

s

)
+Of,ε

(
x1+ε

T

)

:= I2,1 + I2,2 + I2,3 + xP (log x) +Of,ε

(
x1+ε

T

)
, (24)

where P (t) is a polynomial in t of degree 1 with leading positive coefficient. Here,

due to the holomorphy of L(sym2f, s) and L(sym4, s) at s = 1, the main term

xP (log x) is derived from the residue of F1(s, χ0)x
s

s at the pole s = 1 of order 2,

coming from the factor ζ(s)2.

Now we begin to handle the three terms I2,1, I2,2 and I2,3. For I2,1, by Equations
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(9), (17), and Lemma 2.5, and Hölder’s inequality, we have

I2,1 � x
1
2+ε log T sup

1≤T1≤T/2

{
1

T1

∫ 2T1

T1

∣∣F1(σ + it)
∣∣dt}

� x
1
2+ε log T sup

1≤T1≤T/2

{
1

T1

(∫ 2T1

T1

∣∣∣∣ζ2(1

2
+ it

)∣∣∣∣6dt) 1
6

×
(

max
T1≤t≤2T1

∣∣∣∣L(sym2f,
1

2
+ it

)∣∣∣∣7 ∫ 2T1

T1

∣∣∣∣L(sym2f,
1

2
+ it

)∣∣∣∣2dt) 1
3

×
(∫ 2T1

T1

∣∣∣∣L(sym4f,
1

2
+ it

)∣∣∣∣2dt) 1
2
}

� x
1
2+εT

149
60 +ε. (25)

For I2,2 and I2,3, by Equations (10), (11) and (17), we have

I2,2+!‘!‘I2,3 �
∫ 1+ε

1
2+ε

xσ
∣∣F1(σ + it)

∣∣T−1dσ
� max

1
2+ε≤σ≤1+ε

xσT ( 13
42×2+3× 6

5+
5
2 )(1−σ)+εT−1

� x1+ε

T
+ x

1
2+εT

991
420 . (26)

Putting together Equations (24)-(26), we obtain∑
n≤x

λ2f×f (n)χ(n) = xP (log x) +Of,ε
(
x

1
2+εT

149
60 +ε

)
+Of,ε

(
x1+ε

T

)
, (27)

On taking T = x
30
209 in Equation (27), we get∑
n≤x

λ2f×f (n)χ(n) = xP (log x) +Of,ε
(
x

179
209+ε

)
.

This completes the proof of the proposition.

Proof of Theorem 1.2 Let χ be a Dirichlet character modulo a prime q. By the

orthogonality of Dirichlet character, we get∑
n≤x

n≡l( mod q)

λ2f×f (n) =
1

ϕ(q)

∑
χ( mod q)

χ̄(l)
∑
n≤x

λ2f×f (n)χ(n)

=
1

ϕ(q)

∑
n≤x

λ2f×f (n)χ0(n) +O

(∑
n≤x

λ2f×f (n)χ(n)

)
,

where ϕ(q) is the Euler function and ϕ(q) = q − 1.
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From Equations (18) and (22), and noting that 1− 3
2η > η̃, we have∑

n≤x
n≡l( mod q)

λ2f×f (n) =
x

ϕ(q)
P (log x) +Of,ε

(
qx1−

3
2η+ε

)
,

where P (t) is a polynomial in t of degree 1 with leading positive coefficient. This

completes the proof of Theorem 1.2.

4. Proof of Theorem 1.3

Now we are at the stage where we are able to give the proof of Theorem 1.3. Let

f ∈ H∗k and let χ be a Dirichlet character modulo q. For <(s) > 1, by [36, Lemma

2.1], we define

F2(s, χ) :=

∞∑
n=1

λw,f×f (n)χ(n)

ns

= L(f × f ⊗ χ, s)wG1(s, χ)

= L(s, χ)wL(sym2f ⊗ χ, s)wG1(s, χ),

where G1(s, χ) is a Dirichlet series which converges absolutely for <(s) ≥ 1
2 + ε and

uniformly in q.

Proposition 4.1. Let f ∈ H∗k a Hecke eigenform, and let χ be a primitive character

modulo a prime q. For any ε > 0, q � xϑw and w ≥ 2, we have∑
n≤x

λw,f×f (n)χ(n) = Of,ε
(
qx1−

3
2ϑw+ε

)
, (28)

where ϑw = 92
247w+10 .

Proof. Applying Perron’s formula to the generating function F2(s, χ), shifting the

line of integration to the parallel line with <(s) = 1
2 + ε, and invoking Cauchy’s

residue theorem, we obtain

∑
n≤x

λw,f×f (n)χ(n) =
1

2πi

{∫ 1
2+ε+iT

1
2+ε−iT

+

∫ 1
2+ε−iT

1+ε−iT
+

∫ 1+ε+iT

1
2+ε+iT

}
F2(s, χ)

xs

s
ds

+Of,ε

(
x1+ε

T

)
:= J1,1 + J1,2 + J1,3 +Of,ε

(
x1+ε

T

)
, (29)

where s = σ + it, and 1 ≤ T ≤ x is some parameter to be chosen later.
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For J1,1, by Lemma 2.6, Equation (16), and Hölder’s inequality, we have

J1,1 � x
1
2+ε log T sup

1≤T1≤T/2

{
1

T1

(
max

T1≤t≤2T1

∣∣∣∣L(1

2
+ it, χ

)∣∣∣∣6w−12
×
∫ 2T1

T1

∣∣∣∣L(1

2
+ it, χ

)∣∣∣∣12dt) 1
6
(

max
T1≤t≤2T1

∣∣∣∣L(sym2f ⊗ χ, 1

2
+ it

)∣∣∣∣ 32w−2
×
∫ 2T1

T1

∣∣∣∣L(sym2f ⊗ χ, 1

2
+ it

)∣∣∣∣2dt) 1
3

×
(

max
T1≤t≤2T1

∣∣∣∣L(sym2f ⊗ χ, 1

2
+ it

)∣∣∣∣w−2
×
∫ 2T1

T1

∣∣∣∣L(sym2f ⊗ χ, 1

2
+ it

)∣∣∣∣2dt) 1
2
}

� x
1
2+εq

247
276w+ 5

138+εT
247
276w−

133
138+ε. (30)

For the integrals over the horizontal segments J1,2 and J1,3, by Equations (13)

and (14), it follows that

J1,2 + J1,3 �
∫ 1+ε

1
2+ε

xσ
∣∣F2(σ + it, χ)

∣∣T−1dσ
�

∫ 1+ε

1
2+ε

xσ
∣∣L(σ + it, χ)L(sym2f ⊗ χ, σ + it)

∣∣wT−1dσ
� x1+ε

T
+ x

1
2+εq

247
276w+εT

247
276w−1+ε. (31)

Combining Equations (29)-(31), we obtain (28) by setting T = x
138

247w+10 /q. Since

q � T 2, we have q � x
92

247w+10 .

Proposition 4.2. Let f ∈ H∗k a Hecke eigenform, and let χ be a principal character

modulo a prime q. For any ε > 0, q � x and w ≥ 2, we have∑
n≤x

λw,f×f (n)χ0(n) = xPw−1(log x) +Of,ε
(
xϑ̃w+ε

)
, (32)

where ϑ̃w = 1− 210
317w+115 , and Pw−1(t) is a polynomial of t with degree w − 1.

Proof. For χ0(n) being a principal character modulo q, we have

F2(s, χ0) =

∞∑
n=1

λw,f×f (n)χ0(n)

ns

= ζ(s)wL(sym2f, s)wG2(s, χ),
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where G2(s, χ) is a Dirichlet series which converges absolutely for <(s) ≥ 1
2 + ε and

uniformly in q.

Applying Perron’s formula, moving the line of integration to the parallel line

<(s) = 1
2 + ε, and invoking Cauchy’s residue theorem, we obtain

∑
n≤x

λw,f×f (n)χ0(n) =
1

2πi

{∫ 1
2+ε+iT

1
2+ε−iT

+

∫ 1
2+ε−iT

1+ε−iT
+

∫ 1+ε+iT

1
2+ε+iT

}
F2(s, χ0)

xs

s
ds

+Ress=1

(
F2(s, χ0)

xs

s

)
+Of,ε

(
x1+ε

T

)
:= J2,1 + J2,2 + J2,3 + xPw−1(log x) +Of,ε

(
x1+ε

T

)
, (33)

where Pw−1(t) is a polynomial in t of degree w − 1.

For the integral over the vertical segment J2,1, by Lemmas 2.4-2.5, Equation

(16), and Hölder’s inequality, we get

J2,1 � x
1
2+ε log T sup

1≤T1≤T/2

{
1

T1

∫ 2T1

T1

∣∣∣∣F2

(
1

2
+ it, χ0

)∣∣∣∣dt}

� x
1
2+ε log T sup

1≤T1≤T/2

{
1

T1

(∫ 2T1

T1

∣∣∣∣ζ(1

2
+ it

)w∣∣∣∣6dt) 1
6

×
(∫ 2T1

T1

∣∣∣∣L(sym2f,
1

2
+ it

)w
2
∣∣∣∣3dt) 1

3

×
(∫ 2T1

T1

∣∣∣∣L(sym2f,
1

2
+ it

)w
2
∣∣∣∣2dt) 1

2
}

� x
1
2+ε log T sup

1≤T1≤T/2

{
1

T1

(
max

T1≤t≤2T1

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣6w−12
×
∫ 2T1

T1

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣12dt) 1
6

×
(

max
T1≤t≤2T1

∣∣∣∣L(sym2f,
1

2
+ it

)∣∣∣∣ 32w−2 ∫ 2T1

T1

∣∣∣∣L(sym2f,
1

2
+ it

)∣∣∣∣2dt) 1
3

×
(

max
T1≤t≤2T1

∣∣∣∣L(sym2f,
1

2
+ it

)∣∣∣∣w−2 ∫ 2T1

T1

∣∣∣∣L(sym2f,
1

2
+ it

)∣∣∣∣2dt) 1
2
}

� x
1
2+εT

317
420w−

61
84+ε. (34)

The estimates for the integrals J2,2 and J2,3 can be treated similarly. By Equa-
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tions (10) and (11), we have

J2,2 + J2,3 �
∫ 1+ε

1
2+ε

xσ
∣∣F2(σ + it, χ0)

∣∣T−1dσ
�

∫ 1+ε

1
2+ε

xσ
∣∣ζ(σ + it)L(sym2f, σ + it)

∣∣wT−1dσ
� x1+ε

T
+ x

1
2+εT

317
420w−1+ε. (35)

Putting together Equations (33)-(35), we obtain∑
n≤x

λw,f×f (n)χ0(n) = xPw−1(log x) +Of,ε
(
x

1
2+εT

317
420w−

61
84+ε

)
+Of,ε

(
x1+ε

T

)
. (36)

On taking T = x
210

317w+115 in Equation (36), we get∑
n≤x

λw,f×f (n)χ0(n) = xPw−1(log x) +Of,ε
(
x1−

210
317w+115+ε

)
.

This proves the proposition.

Proof of Theorem 1.3 Let χ be a Dirichlet character modulo a prime q. By the

orthogonality of Dirichlet character, we get∑
n≤x

n≡l( mod q)

λw,f×f (n) =
1

ϕ(q)

∑
χ( mod q)

χ̄(l)
∑
n≤x

λ2f×f (n)χ(n)

=
1

ϕ(q)

∑
n≤x

λw,f×f (n)χ0(n) +O

(∑
n≤x

λw,f×f (n)χ(n)

)
,

where ϕ(q) is the Euler function and ϕ(q) = q − 1.

From Equations (28) and (32), and noting 1− 3
2ϑw > ϑ̃w, we have∑

n≤x
n≡l( mod q)

λw,f×f (n) =
x

ϕ(q)
Pw−1(log x) +Of,ε

(
qx1−

3
2ϑw+ε

)
,

where Pw−1(t) is a polynomial in t of degree w− 1 with leading positive coefficient.

This completes the proof. 2
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[33] Y.-K. Lau and G. S. Lü, Sums of Fourier coefficients of cusp forms, Quart. J. Math. 62
(2011), 687-716.
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