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Abstract
We give a complete description of the integer group determinant for C%, where Cy
is the cyclic group of order 4.

1. Introduction

At the meeting of the American Mathematical Society in Hayward, California, in
April 1977, Olga Taussky-Todd [11] asked if one could characterize the values that
can be obtained as the determinant of an integer circulant matrix [3, 4]. This is
the same as asking for the values obtained by the group determinant for a cyclic
group when it is evaluated on integers. One may ask the same question for any
finite group, not just for the cyclic groups.

Recall that for a finite group G, assigning a variable x4 for each g € G, the group
determinant of G is defined as det (Jjgh—l)g,h < The group determinant is called
an integer group determinant of G when the all variables z, are integers. We denote
the set of all integer group determinants of G by S(G):

S(GQ) = {det (xgh—l)g’hec | zq4 € Z}.

For every group G of order at most 15, S(G) was determined (see [6, 8]). Let C,
be the cyclic group of order n and D,, be the dihedral group of order n. For the
groups of order 16, the complete descriptions of S(G) were obtained for Dig [1,
Theorem 5.3], Ci6 [17], C3 [18] and Cg x Cy [13, Theorem 1.5]. In this paper, we
determine S (C3).
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Theorem 1. Let P:={p|p=—3 (mod8) is a prime number} and

A:={(8k—3)(8—3)(8n —3)(8n — 3) |
keZ,8—3,8n—38n—-3€P, k+1lZ%m+n (mod?2)}
C{16m —7|m e Z}.

Then we have
S5(Ci) ={16m+1,2%p@2m+1),2"%m |meZ pe P} UA.

There are fourteen groups of order 16 up to isomorphism [2, 19], and five of
them are abelian. Our result leaves C4 x C3 as the only abelian group of order
16 for which S(G) has not been determined (this group and all of the non-abelian
groups of order 16 have recently been resolved as well [5, 9, 10, 12, 15, 16] and [7,
Theorems 3.1 and 4.1]).

2. Preliminaries
For any 7 € C,, with r € {0,1,...,n — 1}, we denote the variable 27 by z,, and let

D, (zo,x1,...,Tp_1) :=det (xgh‘l)g,hecn'

For any (7,3) € C? with r,s € {0,1,2,3}, we denote the variable Y(r,5) by yj, where
j:=r-+4s, and let

Dyxa(yo,y1,- -, 415) = det (ygh“)g,hgcg'

From the G = C4 and H = {0, 2} case of [13, Theorem 1.1], we have the following
corollary.

Corollary 1. We have

D4(I0,SE1,I’2,I’3) = DQ(IO + T2,T1 + IEg)DQ (JCO — T2, \/jl(l’l — 1’3))
= {(1’0 + 1'2)2 — (xl + £B3)2} {(:L'o - 1’2)2 + (1’1 — $3)2} .

Remark 1. From Corollary 1, we have Dy(xo, x1, z2,23) = —Dy(x1, X2, T3, T0).
From the H = K = Cy4 case of [14, Theorem 1.1], we have the following corollary.
Corollary 2. Let D := Dyx4(yo,y1,---,Y15). Then we have

3 3 3 3 3
D=1]][Ds (Z NEST > v Ty, > v 1 g4, > v —lksy3+4s> :
s=0 s=0 s=0 s=0

k=0 =
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Throughout this paper, we assume that ag, a1,...,a15 € Z, and let
bi := (a; + aiy8) + (Giya + ait12), 0<i<3,
ci = (a; + airg) — (aita + air12), 0<i<3,
d; = a; — a;ys, 0<i<T,
Q1= di+\/_1di+47 OSZ S 3.

Remark 2. For any 0 < ¢ < 3, the following hold:
(1) by =ci =d; + dirq (mod 2);
(2) b; + ¢; = 2d; (mod 4);
(3) b — ¢; =2d;14 (mod 4).
Let
a = (ag,a1,...,a1s5), b := (bo, b1, b, b3), c:= (cp,c1,C2,C3),
B = (g + a2)? — (a1 + az)?, v = (ap — a2)® + (o1 — az)?.

From Corollaries 1 and 2, we have the following relation which will be frequently
used in this paper:

Dyya(a) = Da(b)Dy(c) BBV,

where @ denotes the complex conjugate of a € C. From

B=(ag+ as+as+as)(a+as — a1 —ag)
={(do+da+dy +ds) + V=1(ds + dg + ds + d7) }
x {(do +dp — dy — ds) + V—=1(dy + dg — d5 — dz) } ,
v = {(ao — az) + V—1(a1 — ag)} {(an — az) — V—1(c1 — a3)}
={(do — ds — d5 + d7) + V—1(ds — dg + d1 — d3)}
x {(dy —do + d5 — d7) + V—1(ds — dg — d1 + d3) } ,

we have the following lemma.
Lemma 1. The following hold:
BB = {(do +da + d1 + d3)* + (ds + dg + d5 + d7)*}
x {(do + dy — di — ds)? + (ds + dg — d5 — d7)*},
vy = {(do — dz — ds + d7)* + (ds — dg + d1 — d3)*}
x {(do — dz + d5 — d7)* + (dg — dg — dy + d3)*} .

Remark 3. From Lemma 1, each 33 and ~7 is invariant under the replacing of
(dos - .., d7) with (d4, ds, ds, d7, do, d1, dz2, d3).
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Lemma 2. We have Dyx4(a) = Dy(b) = Dy(c) = B3 = v7 (mod 2).
Proof. From Corollary 1, it follows that for any xg, x1, 2, 3 € Z,
Dy(zo,x1,T2,23) = xo + 1 + 22 + x5 (mod 2).
Also, from Lemma 1, we have
BB=do+di+ - +dr=vy (mod 2).
Therefore, from Remark 2 (1), we have Dy(b) = Dy(c) = 38 = v¥ (mod 2).
The following lemma is immediately obtained from Lemma 1.

Lemma 3. We have
— 2
BB = {(do + d2)2 + (ds + d6)2 + (dy + d3)2 + (ds + d7)2}
— 4{(do + d2)(d1 + d3) + (da + dg)(ds + dr)}*
_ 2
v = {(do — d2)* + (ds — dg)* + (d1 — d3)* + (ds — d7)*}
— 4{(do — d2)(ds — dr) — (ds — dg)(dy — d3)}” .
By direct calculation, we have the following lemma.
Lemma 4. We have
{(do+d2)* + (ds + do)” + (d1 + da)? + (ds5 + d7)*}
— {(do — da)® + (da — dg)® + (dy — d3)® + (ds — d7)*}
=8 (dj +d3+dj +di +di +dj +dz + d3) (dods + dads + d1d3 + dsdsr).
Lemma 5. The following hold:
1) 2(dods + dadg + d1ds + dsdy) = bgba + b1bs + cgea + ¢1c3

2) 2(dod7 + dads + dads + dgdy

b3 + baby — cocs — cacy

4

(1) 2( ) ( )
(2) 2( ) ( )
(3) 2(dods + dady + dady + dgds) = bobs + baby + cocs + cac1 (mod 4);
(4) 2(dods + dadr + dady + dgds) = boby + babs — coct — cacs ( )
(5) 2( )= ( )-

5) 2(dody + dads + dads + dgd7) = bgb1 + babs + cocq + cacs
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Proof. We obtain (1) from

boba + b1b3 + coca + c1c3 = (ao + ag + aq + ai2)(az + a0 + ag + a14)
+ (a1 + ag + as + a13)(az + a11 + a7 + axs)
+ (ap + ag — a4 — a12)(az2 + a0 — ag — ai4)
+ (a1 + a9 — as — ai3)(az + ayy — ar — as)
= 2(ap + ag)(az + aio) + 2(as + ai2)(as + aia)
+2(a1 + ag)(as + a11) + 2(as + ai3)(ar + ais)
= 2(dods + dadg + drd3 + dsd7)  (mod 4).

In the same way, we can prove (2)—(5). O

Let P:={p|p=—3 (mod8) is a prime number}. It is well known that a pos-
itive integer n is expressible as a sum of two squares if and only if in the prime
factorization of n, every prime of the form 4k + 3 occurs an even number of times.
From this, we have the following corollary.

Corollary 3. If a? + b*> = —3 (mod 8), then there exist k € Z and 8] —3 € P
satisfying a® + b* = (8k + 1)(81 — 3).

3. Integer Group Determinant of C4

Lemma 6 ([13, Lemmas 4.6 and 4.7]). For any k,l,m,n € Z, the following hold:
(1) Dy(2k+1,20,2m,2n) = 8m + 1 (mod 16);
(2) Dy(2k,214+1,2m+1,2n+1)=8(k+1+n) — 3 (mod 16).
Let Zyqq be the set of all odd numbers.

Lemma 7. For any k,l,m,n € Z, the following hold:

24Z0aa, k+m#ZIl+n (mod 2),

1) D4(2k,2l,2m,2n) €
(1) Da( m,2n) {QSZ7 kE+m=1+n (mod 2);

24Zodda k+m % l+n (mOd 2)7
(2) Dy(2k+1,2141,2m+1,2n+1) € { 27Zoqq, (K+m)(l+n)=—1 (mod 4),
297, otherwise;

(3) D4(2k,20+1,2m,2n + 1)

2%Zodd;, k—m=1—n=1 (mod 2),
€ < 2Zoqa, k=m (mod 2), (2k + 21+ 1)(2m +2n + 1) = +£3 (mod 8),
277, otherwise;



INTEGERS: 24 (2024) 6

(4) D4(2k,21,2m +1,2n + 1)

247044, (2k+2m +1)(2l +2n+ 1) = £3 (mod 8),
2°7, (2k +2m +1)(2l +2n+1) = £1 (mod 8).

To prove Lemma 7, we remark the following.
Remark 4 ([18, Remark 3.5]). For any k,l,m,n € Z, the following hold:
(1)
(2)

2k+20+1)(2m+2n+1) =1 (mod 8) if and only if k—m = —I+n (mod 4);

2k+21+1)2m+2n+1) =
mod 4);

1 (mod 8) ifand only if k+m=—-l—n—1

mod 4);

(4) Ck+20+1)2m+2n+1) = =3 (mod 8) ifandonlyif k —m=2—-1+n

mod 4).

(
(
(
) Ck+20+1)2m+2n+1) =3 (mod 8) ifandonlyif k+m =1—-1—-n
(
(
(

Proof of Lemma 7. We obtain (1) from
Dy(2k,21,2m,2n) = {(2k + 2m)* — (20 + 2n)*} {(2k — 2m + (20— 2n)*}
=2 {(k+m)> = (1+n)?*} {(k—m)*+ (I —n)?}.
We obtain (2) from

Dy(2k + 1,214+ 1,2m +1,2n + 1)
= {(2k +2m +2)? — (2l + 2n + 2)*} {(2k — 2m)? + (20 — 2n)?}
=2 {(k+m+1)?—(+n+1)°}{(k—m)*>+ (I —n)?}

and

Zoad, E+m=zl+n (mod?2),
22Zoad, (k+m)(l+n)=-1 (mod4),
247, (k+m)(l+n)=1 (mod 4),
237, E+m=Il+n=0 (mod 2),

(k+m+1)2—(14+n+1)?2c

Zoad, k+m#Zl+n (mod 2),
(k—m)*>+ (1 —n)? € 2Zqq, k+m=Il+n=1 (mod 2),
227, k+m=1l+n=0 (mod 2).
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We prove (3). From Remark 4, we have

{(k+m) (l+n+1 }{k m)? l—n)2}
2Zoda, k—m=l—n=1 (mod 2),
237, kZm,l=n (mod2),

237, when (I),

QQZOdd, when (II),

€

where
(I) k=m (mod 2) and (2k + 20+ 1)(2m +2n+ 1) = £1 (mod 8);
(II) k=m (mod 2) and (2k+ 21+ 1)(2m +2n+ 1) = £3 (mod 8).
Therefore, (3) is obtained from

Dy(2k,20 +1,2m,2n + 1)
= {(2k +2m)* — (20 + 2n + 2)*} {( 2k—2m + (2 — 2n)*}
=2 {(k+m)> = (l+n+1)2} {(k—m)*+ (I—n)’}.

We prove (4). From Remark 4, we have

227, 2k+2m+1)(20+2n+1)=1 (mod 8),
k+m—1l—n€Zoaa, (2k+2m+1)2014+2n+1)=-1o0r 3 (mod ),
2Zoaq;, (2k+2m+1)21+2n+1) = -3 (mod 8),
Zoaa, (2k+2m+1)(2l+2n+1)=1or —3 (mod 8),
k+m+1l+n+1¢€ 227, (2k’+2m+1)(2l—|—2n+1)——1 (m0d8)
2Zodaa;, (2k+2m+1)(21+2n+1)=3 (mod 8).

Therefore, (4) is obtained from
Da(2k,20,2m +1,2n + 1)
={(2k+2m+1)* — (20 +2n+1)*} {(2k —2m — 1)* + (2L — 2n — 1)*}
=2(k+m+l+n+1)(k+m—1-n)
x{2(k—m)(k—m—-1)+2(l—-n)(l—n—-1)+1}. O

4. Odd Values Must Be of the Stated Form

In this section, we prove that the odd values must be of the stated form. Let

A:={(8k—3)(81—3)(8n —3)(8n — 3) |
keZ,81—3,8m—38n—3€P, k+1lZm+n (mod2)}.
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Lemma 8. We have S(C%) N Zoqqa C {16m +1|m € Z} U A.
To prove Lemma 8, we use the following five lemmas.

Lemma 9. Let by + by # b1 + bs (mod 2). Then we have the following:
(1) If (boba + b1bs, coca + c1e3) = (0,0) or (2,2) (mod 4), then

Dy(b)Dy(c) € {8k + 1)l +1) | k,l € Z, k=1 (mod2)};

(2) If (boba + b1bs, coca + c1c3) = (0,2) or (2,0) (mod 4), then

Dy(b)Dy(c) € {8k + )81+ 1) | k1€ Z, k21 (mod2)};

(3) If (boba + b1bs, coca + c1e3) = (1,1) or (—1,—1) (mod 4), then

Dy(b)Dy(c) € {(8k —3)(8l - 3) | k.1 € Z, k=1 (mod?2)};

(4) If (boba 4 b1bs, coca + c1e3) = (1,—1) or (=1,1) (mod 4), then
Dy(b)Dy4(c) € {(8k —3)(81 —3) | k, 1 €Z, k#! (mod2)}.

Proof. First, we prove (1) and (2). If bobs 4+ b1bs = 0 (mod 2), then exactly three
of by, b1, ba, b3 are even. On the other hand, for any k,l,m,n € Z,

m =0 (mod 2) if and only if (2k + 1)(2m) + (2])(2n) =0 (mod 4).

Therefore, from Remarks 1 and 2 (1) and Lemma 6 (1), we have (1) and (2). Next,
we prove (3) and (4). If bobs + b1b3 =1 (mod 2), then exactly one of by, b1, be, b3 is
even. On the other hand, for any k,l,m,n € Z,

kE+l+n=0 (mod 2)ifand only if (2k)(2m+1)+(20+1)(2n+1) =1 (mod 4).
Therefore, from Remarks 1 and 2 (1) and Lemma 6 (2), we have (3) and (4). O
The following lemma is immediately obtained from Lemma 9.
Lemma 10. If by + by # by + b3 (mod 2), then
Dy (b)Dy(c) =1 — 4(boba + b1bs + coca + c1¢3)  (mod 16).

Lemma 11. Let by + by # by + b3 (mod 2) and B3 = —3 (mod 8). Then the
following hold:

(1) If bobs + b1bs + coca + c1c3 =0 (mod 4), then

Dy(b)Dy(c) € {8k —3)(81 —3) |k € Z, 8l —3 € P, k #1 (mod 2)} ;
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(2) If bobo + b1b3 + coca + c1c3 =2 (mod 4), then
Da(b)Da(c) € {8k —3)(81 —3) | k€ Z, 81 -3 € P, k=1 (mod 2)}.

Proof. From by + by # by + by (mod 2) and Remark 2 (1), dop + do + dy + dg Z
dy + ds + ds + dy (mod 2) holds. Moreover, from 3 = —3 (mod 8) and Lemma 3,
exactly one of dy + ds, dy + d3, dy + dg, ds + d7 is even. For any k,l € Z satisfying
D4(b)Dy4(c) = (8k — 3)(8l — 3), it follows from Lemma 10 that k # [ (mod 2) if
bgbg + b1b3 + coca +c103 = 0 (HlOd 4), k=1 (HlOd 2) if bobg + b1b3 + cpco + c1c3 =
2 (mod 4). Below, we prove that there exist & € Z and 8/ — 3 € P satisfying
D4(b)D4(c) = (8k — 3)(8! — 3). First, suppose that bobs + b1b3 = 0 (mod 2). Then,
exactly three of by, b1, ba, bs are even. From Remark 1, we have

D4(b)Dy(c) = D4(by, ba, b3, bg)Ds(cy, c2,c3,c0)
= Dy(b2, b3, by, b1)Du(ca, c3,co, 1)
= Dy (b, by, b1,b2)Da(cs, co, €1, ¢2).

Therefore, from Remark 2 (1), we may assume without loss of generality that b =
c¢=(1,0,0,0) (mod 2). From Remark 2, we have

2(d1 +d3) = b1 +b3+01 +c3 = b1 +b3 —Cl —C3 = 2(d5 +d7) (mod 4)

Thus, d1+d3 must be odd since dy+ds = ds+d; (mod 2). Hence, from by +bs+c1+
cs = 2(dy+ds) =2 (mod 4), we have (b +bs,c1+¢3) = (0,2) or (2,0) (mod 4). We
consider the case of (b1 +b3,¢1+¢3) = (0,2) (mod 4). From b = (1,0,0,0) (mod 2)
and Lemma 6 (1), there exists j € Z satisfying D4(b) = 8j + 1. On the other hand,
from ¢ = (1,0,0,0) (mod 2) and ¢; +¢3 =2 (mod 4), we have ¢; —c3 =2 (mod 4).
Thus, from Corollary 3, there exist I € Z, 81—3 € P satisfying (co—cz)?+(c1—c3)? =
(81" +1)(81 —3). Also, there exists k" € Z satisfying (co +c2)? — (c1 +c3)? = 8k’ — 3.
From Corollary 1, we have Dy(c) = (8k" — 3)(80' + 1)(8] — 3). Therefore, there
exists k € Z satisfying Dy(b)D4(c) = (8k — 3)(8] — 3). In the same way, the case of
(b1 4+ b3, c1 +¢3) = (2,0) (mod 4) can also be proved.

Next, suppose that bobs + bibs = 1 (mod 2). Then, exactly one of by, by, ba, bs
is even. From Remarks 1 and 2 (1), we may assume without loss of generality
that b = ¢ = (0,1,1,1) (mod 2). In the same way as in the above, we have
(b1+b3,c1+c3) = (0,2)0r (2,0) (mod 4). We consider the case of (b1 +bs,c1+c3) =
(0,2) (mod 4). From ¢ = (0,1,1,1) (mod 2) and Lemma 6 (2), there exists k' € Z
satisfying Dy(c) = 8k’ — 3. On the other hand, from b = (0,1,1,1) (mod 2) and
b1 + b3 =0 (mod 4), we have by — b = 2 (mod 4). Thus, from Corollary 3, there
exist I’ € Z, 81 — 3 € P satisfying (bg — b2)? + (b1 — b3)? = (81" + 1)(8] — 3). Also,
there exists j € Z satisfying (b + b2)? — (b1 + b3)? = 85 + 1. From Corollary 1,
we have Dy(b) = (85 + 1)(81' 4+ 1)(81 — 3). Therefore, there exists k € Z satisfying
D4(b)Dy4(c) = (8k —3)(8!—3). In the same way, the case of (b +b3,c1+c3) = (2,0)
(mod 4) can also be proved. O
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Lemma 12. Let by + be # by + b3 (mod 2). Then we have
ﬁB —VY = 4(b0b2 + b1bs + coca + 0103> (mod 16).

Proof. From Remark 2 (1), we have dy + da + dy + dg # d1 + d3 + d5 + d7 (mod 2).
Thus, d2 +d3 +d3 +d2 + d? + d% + d2 + d? =1 (mod 2). Also, since exactly one
or three of dy + ds, dy + dg, d1 + d3, ds + d7 are even, it holds that

{(do + d2)(dy + ds) + (dy + dg)(ds + d7)}>
= {(do — do)(d5 — dr) — (ds — dg)(d1 — d3)}*  (mod 4).

From the above and Lemmas 3, 4 and 5 (1), we have

BB — vy = 8(dg + d3 + dj + dg + di + d3 + d3 + d7)(dods + dads + dids + dsdy)
= 8(doda + dade + d1d3 + dsdr)
= 4(b0b2 + b1bs + coeo + C1C3) (mod 16). O

Lemma 13. Let by + by # by + b3 (mod 2) and B3 = —3 (mod 8). Then the
following hold:

(1) If boba + b1bs + coca + c1c3 =0 (mod 4), then
BBYY € {(8j +1)(8m — 3)(8n — 3) |
JEZ,8m—3,8n—3€ P, j=m+n (mod2)};
(2) If bobg + b1b3 + coco + c1c3 = 2 (HlOd 4), then

BByY € {(8j +1)(8m — 3)(8n — 3) |
JEZ,8m—3,8n—3€c P, j£Zm+n (mod2)}.

Proof. From Remark 2 (1) and Lemma 12, we have vy = 38 = —3 (mod 8). There-
fore, from Corollary 3, there exist m’,n’ € Z, 8n — 3,8n — 3 € P satisfying

BB = (8m'+1)(8m —3), 7= (8n'+1)(8n — 3).
Let j := 8m'n’+m’+n’. Then, 83v¥ = (8 +1)(8m —3)(8n—3). From Lemma 12,
8(m+m' +n+n')= BB —7 = 4(boby + bibs + coca + cic3)  (mod 16).

Therefore, we have 2(j +m 4+ n) = 2(m' +n' +m + n) = bobay + b1b3 + coca + c1c3
(mod 4). O

Proof of Lemma 8. Let Dyx4(a) = Dy(b)Dy(c)BBYY € Zoaa- Then, by + by #
by + bz (mod 2) holds from D4(b) € Zyqq and Corollary 1. Since 33 is an odd
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number expressible in the form 22 + y2, we have 83 = 1 (mod 4). Therefore, from
Lemma 12,

BByY = BB{BB — 4(boby + bibs + coca + c1¢3) }
= (8B)* — 4(bobz + b1bs + cocz + c1c3)  (mod 16).

From this and Lemma 10, we have

Dy (b)Dy(c)BB~7 = {1 — 4(bobs + b1bs + cocz + c1c3)}
x {(BB) — 4(bobz + bibs + cocz + c1c3) }
= (BB)* — 8(boby + bibs + coca + c1c3)  (mod 16).

Moreover, from Remark 2 (1), it follows that D4(b)D4(c)BBv7 = (88)? (mod 16).
Therefore, if 38 = 1 (mod 8), then Dyyx4(a) € {16m+1|meZ}. If 38 = -3
(mod 8), then we have Dyy4(a) € A’ from Lemmas 11 and 13, where

A= {(8j +1)(8k — 3)(8] — 3)(8m — 3)(8n — 3) |
Jk€Z,81—3,8m—3,8n—3€cP,jZzk+1l+m+n (mod2)}.

Since A’ = A, the lemma is proved. O

5. Even Values Must Be of the Stated Form

In this section, we prove that the even values must be of the stated form.
Lemma 14. The following hold:
(1) S(C3)N2Z c 2¥Z;
(2) S(C3)N2%Zoaq C {2p(2m +1) | pe P, m e Z}.
To prove Lemma 14, we use the following five lemmas.
Lemma 15. The following hold:

(1) If bg = by = by = b3 =0 (mod 2), then

QSZOdd, bo+b1+by+bs=cop+c1+co+c3=2 (mod 4),
2127, otherwise;

Dy (b) Dy (C) S {

(2) If bo = by = by = b3 =1 (mod 2), then

28ZOdd, bo+bi +by+bs=co+ci+cates=2 (mod 4),
2117, otherwise;

D, (b)Dy(c) € {
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(3) If bg = by £ by = b3 (mod 2), then

D4(b)D4(c)
2107 0ad, bo—ba=b; —b3=co—ca=c; —c3 =2 (mod 4),
2117, otherwise;

(4) If bg + by = by + b3 =1 (mod 2), then

D4(b)D4(c)
28Z0aa, (bo +b2)(by +b3) = £3, (co+c2)(c1 +c3) =43 (mod 8),
297, otherwise.

Proof. For any k,l,m,n € Z,

k+m=zl+n (mod?2)if and only if 2k + 20 +2m +2n =2 (mod 4),
kE—m=l—n=1 (mod 2)if and only if 2k —2m =2/ —2n =2 (mod 4).

Therefore, from Remarks 1 and 2 (1) and Lemma 7, the lemma is proved. O
Lemma 16. The following hold:
(1) If bg + by = by + b3 = 0 (mod 2), then

ﬁg’yﬁ c 24Zodd7 bo+b1+bs+b3Fcog+c1+co+cs (mOd 4),
282, b0+bl+b2+63560+01+02—|—63 (mod 4),
(2) If bo+ by =b1 + b3 =1 (mod 2), then
_ 2"Z0qa, d=2 (mod 4),
S
o {28Z, d=0 (mod 4),

where

d = {(do + d2)(d5s + d7) + (da + ds)(d1 + d3)}
X {(do — dg)(dl — d3) + (d4 — dﬁ)(ds - d7)} .

Proof. We prove (1). Let by + b2 = b1 +b3 =0 (mod 2). Then, from Remark 2 (1),
we have dg+dy+ds+dg = dy +d3+ds+dy; =0 (mod 2). Also, from Remark 2 (1)
and (2), by + by + by + b3 = co + ¢1 + c2 + ¢3 (mod 4) if and only if

2(d0+d2) =bg+byt+cgt+ca=b+bg+cg+e3= 2(d1 +d3) (HlOd 4)

Therefore, if by + by + b + b3 Z co+ ¢1 + c2 + ¢z (mod 4), then dy+dy = dy +dg £
di + d3 = ds + d7 (mod 2). Thus, from Lemma 1, we have 38vy € 2%Zyqq. If
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bo+b1+ba+bs =cog+c1+catces (HlOd 4), then dop+do = dy+dg = di1+ds = ds+dr
(mod 2). Thus, from Lemma 1, we have 38v7 € 287Z.

We prove (2). Let by + by = by + b3 =1 (mod 2). Then, from Remark 2 (1), we
have dy +dy +dy +ds = dy +ds + ds + d7 =1 (mod 2). From Remark 3, we may
assume without loss of generality that dg+dy =0, dy +dg =1 (mod 2). We divide
the proof into the following two cases:

Y

(i) do+de=dy +ds=0,dys +ds =ds +d7 =1 (mod 2

We remark that if (i), then d = dy + da + d; + d3 (mod 4) holds, and if (ii), then
d = dy — do + ds — d7 (mod 4) holds. First, suppose that (i) holds. Then, from
Lemma 1, we have v3 € 22Zgqq. Also, from

)
(ii) do+do=ds+dr=0,dg+dsg=di+d3 =1 (modZ).
)
t

(do —+ dQ —+ dl + dg,do + dg — d1 — dg) = (0,0) or (2,2) (HlOd 4),
(d4 +dg+ds +d7,dy + dg — ds — d7) = (O, 2) or (2, 0) (mod 4)

and Lemma 1, we have

ﬂBG 25Zodd; d=dy+do+di +d3s=2 (m0d4),
26Z, d=dy+doy+di+d3 =0 (m0d4)

Next, suppose that (i) holds. Then, from Lemma 1, we have 83 € 22Z,qq. Also,
from

(do —do —ds+d7,dy — do + ds — d7) = (0,0) or (2, 2) (mod 4),

(dy —dg +dy — d3,dg — dg — dy + d3) = (0,2) or (2,0) (mod 4)

and Lemma 1, we have

= c 25Z0aq, d=do—ds+ds—d; =2 (mod 4),
77522, d=dy—dst+ds—d; =0 (mod 4).

This completes the proof. O
Lemma 17. The following hold:
(1) If b = by = by = b3 =1 (mod 2) and Dy4(b)Dy(c) € 21 Zoqa, then

bobo + b1bs + coea + c1e3 =2 (mod 4);

(2) If by = by # by = bz (mod 2), Dy(b)Dy(c) € 21 Zpqq and BBV € 2*Zoqd,
then
bobg + b1b3 + cpc2 +c103 = 2 (HlOd 4)
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Proof. We prove (1). Let by = by = by = b3 = 1 (mod 2) and D4(b)Dy(c) €
211744. Then, from Remark 2 (1) and Lemma 7, one of the following cases holds:

(1) D4(b) S 24Zodd and D4(C) € 27Zodd;
(ii) D4(b) S 27Z0dd and D4(C) S 24Z0dd-

If (i), then by + bo # by + b3 (mod 4) and ¢y + ¢ = ¢1 + ¢3 = 0 (mod 4) hold.
Therefore, (boby + b1b3, coca + c1c3) = (0,2) (mod 4) holds. Thus, we have byobs +
bibs + coca + c1c3 = 2 (mod 4). In the same way, the case (ii) can also be proved.
We prove (2). Let by = by # by = bz (mod 2), Dy(b)Dy(c) € 211 Zyqq and BBYY €
24Zoaa. Then, from Remarks 1 and 2 (1), we may assume without loss of generality
that b=¢ = (0,1,0,1) (mod 2). From Lemma 7, either one of the following cases
holds:

(iii) D4(b) S 25Zodd and D4(C) S 26Z0dd;
(iV) D4(b) S QGZOdd and D4(C) S 25Zodd-

If (iii), then by — ba = by —bs = 2 (mod 4) and ¢g = c2 = 0 or 2 (mod 4) hold.
Therefore, bobz + b1b3 = —1 (mod 4) and by + by + ba + b3 = 2 (mod 4) hold. Also,
since by + by + by + bs Z co + ¢1 + c2 + ¢3 (mod 4) from Lemma 16, it follows that
coco + c1cs3 = —1 (mod 4) holds. Thus, we have boby + b1bs + coca + c1c3 = 2
(mod 4). In the same way, the case (iv) can also be proved. O

Lemma 18. Suppose that by + by = by + by = 0 (mod 2), BBYY € 2%Zgqq and
bobs +b1bs+coca+cics =2 (mod 4). Then BBy € {2'p(2m +1) |[pe P, m € Z}.

Proof. Since by +by = by +b3 =0 (mod 2) and 3877 € 24Zyq4, from Remark 2 (1),
we have

do+do+ds+de=di +d3+ds+dy =0 (mod 2).
On the other hand, from Lemma 16, we have by 4+ by + b + b3 Z ¢ + ¢1 + ¢2 + ¢3
(mod 4). From this and Remark 2 (1) and (2), we have
2dg + 2do = by + by + ¢ + co ¢b1+b3—|—61 + c3 = 2dy + 2d3 (mod 4)

Thus, dy + do # dy + d3 (mod 2). From the above, we have dy + do = dy + dg #
dy + d3 = ds + d7 (mod 2). Hence,

{(do + d2)(dy + d3) + (dg + ds)(ds + d7)}*
—{(do — d2)(d5 — dz) — (da — d)(dy — d3)}*
= 4(dods + dadg + dids + dsd7)  (mod 8),
(d2 +d2 + d3 + d2 + d2 + d% + d2 + d?)(dody + dydg + dids + dsd7) =0 (mod 4).
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Therefore, from Lemmas 3, 4 and 5 (1),

BB — 7 = 8(d3 +dj +dj + di +di + dj + d2 + d?)(doda + dads + d1d3 + dsdr)
+ 16(dods + dade + d1d3 + dsdy)
= 16(d0d2 + dudg + did3 + d5d7)
= 8(b0b2 + b1b3 + coco + 6163) (mod 32)
Since boby + b1b3 + coca +cie3 = 2 (mod 4), we have 33 —+F = 16 (mod 32). Note
that 88 = 4 or —12 (mod 32) since S8 = 4 (mod 16) from Lemma 3. If 55 = 4
(mod 32), then v§ =4 —16 = —12 (mod 32). This implies that 77 has at least one

prime factor of the form 8k — 3. If 53 = —12 (mod 32), then 33 has at least one
prime factor of the form 8k — 3. O

Lemma 19. Suppose that by + by = by + bz = 1 (mod 2), D4(b)D4(c) € 28Zaq
and BBV € 2"Zoaa. Then Dy(b)D4(c)BBvY € {2%p(2m +1) | p € P, m € Z}.

Proof. From Lemmas 15 and 16, we have
(bo+b2)(by +b3) =3, (co+c2)(cr +c3) =+3 (mod 8), d=2 (mod4),
where

d:={(do + d2)(d5 + d7) + (ds + ds)(d1 + d3)}
X {(do — dQ)(dl — dg) + (d4 - d6)(d5 — d7)} .

We divide the proof into the following cases:

(i) (bobs 4 baby, cocs + cac1) = (0,0), (0,2) or (2,0) (mod 4);
(ii) (bobs + bab1,cocs + cac1) = (2,2) (mod 4);
(iil) (boby + babs, coc1 + cacz) = (0,0), (0,2) or (2,0) (mod 4);
(iv) (boby + babs, coc1 + cac3) = (2,2) (mod 4).

First, we consider the case (i). If bobs + baby =0 (mod 4), then
(bo — b2)(b1 — bg) = (bo + bQ)(bl + bg) — 2(b0b3 + bgbl) =43 (mod 8)

Thus, (bg — b2)? + (b1 — b3)?> = —6 (mod 16). It implies that (bg — b2)? + (b1 — b3)?
has at least one prime factor of the form 8% — 3. That is, D4(b) has at least one
prime factor of the form 8% — 3. In the same way, we can prove that D4(c) has at
least one prime factor of the form 8% — 3 when cocz + cacy =0 (mod 4). Therefore,
if (i), then

Dy(b)Dy(c) € {2°p(2m +1) |[pE P, m €L} .



INTEGERS: 24 (2024) 16

We can obtain the same conclusion for the case (iii). Next, we consider the case (ii).
From by + by = b1 + b3 = 1 (mod 2) and Remark 2 (1), we have dy +dz +ds +ds =
dy 4+ ds +ds + d7 =1 (mod 2). From Remark 3, we may assume without loss of
generality that dg + d2 =0, dy +dg =1 (mod 2). Then, either one of the following
cases holds:

(11—1) d() + dg = d1 + d3 = 0, d4 + dg = d5 + d7 =1 (mod 2),
(ii—?) do+do=ds+d; =0, day+dg=di+d3=1 (mod 2).
Suppose that (ii) and (ii-1) hold. Then, from Lemma 5 (2), it follows that

(do — d2) + (d1 — d3) = (do — d2)(d5 — d7) + (da — ds)(d1 — d3)
= (do + do)(ds + d) + (da + de)(dy + ds)
4 2(dody + dads + dads + dgdy)
= d + (bobs + bab1) — (cocs + cacy)
=2 (mod 4).

Therefore, from Lemma 3, we have 757 =4 — 16 = —12 (mod 32). Thus, 7 has at
least one prime factor of the form 8k — 3. Suppose that (ii) and (ii-2) hold. Then,
from Lemma 5 (3), it follows that

(do + d2) + (ds + d7) = (do + d2)(d1 + d3) + (dg + dg)(ds + d7)
= (do — d2)(dy — d3) + (da — dg)(d5 — dr)
+ 2(dods + dady + dad7 + deds)
= d + (bobs + bab1) + (cocs + cacy)
=2 (mod 4).

Therefore, from Lemma 3, we have 83 = 4 — 16 = —12 (mod 32). Thus, 33 has at
least one prime factor of the form 8% — 3. From the above, if (ii), then

BBy € {2'p(2m+1) [pe P, m € L} .

We can obtain the same conclusion for the case (iv) by using Lemma 5 (4) and
(5). O

Proof of Lemma 14. We prove (1). Let Dyx4(a) = Ds(b)Dy(c)BBvY € 2Z. Then,
from Lemma 2, we have D4(b) € 2Z. Thus, by + by = by + b3 (mod 2) from
Corollary 1. Therefore, from Lemmas 15 and 16, we obtain (1). We prove (2).
Let Dyx4(a) € 2157 44. Then, from Lemmas 15 and 16, one of the following cases
holds:

(i) b =by = by =b3 =1 (mod 2), Dy(b)Dy(c) € 211 Zpqq and BBV € 2*Zoq4;
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(ii) bo = by 5_'5 b1 = b3 (mod 2), D4(b)D4(C) € 211Zodd and 53'77 S 24Zodd§
(iii) bo+by=b+b3=1 (mod 2), D4(b)D4(C) S 28Z0dd and ﬁB’YW € 27Z0dd.

Therefore, from Lemmas 17-19, we obtain (2). O

6. Achieving the Values

In this section, we complete the proof of Theorem 1. Lemmas 8 and 14 imply that
S (C3}) does not include every integer that is not mentioned in Lemmas 20-22.

Lemma 20. For any m € Z, the following are elements of S(C3):

(1
(2

16m + 1;
216(4m +1);
(3) 216(4m — 1);
(4) 2°(2m).

Lemma 21. For any k € Z, 161—3, 16m—3, 16n—3, 16/+5, 16m+5, 16n+5 € P,
the following are elements of S(C3):

(1) (16k — 3)(161 + 5)(16m — 3)(16n — 3);

)
)
)
)

(
(2) (16k — 3)(161 + 5)(16m + 5)(16n + 5);
(3) (16k + 5)(161 — 3)(16m — 3)(16n — 3);
(4) (16k + 5)(161 — 3)(16m + 5)(16n + 5).
Lemma 22. For any m € Z and p € P, we have 2'°p(2m + 1) € S(C%).
Proof of Lemma 20. We obtain (1) from
Dysa(m+1,m,...,m) = Dy(4m + 1,4m, 4m,4m)D4(1,0,0,0)>
= (8m +1)% — (8m)?
=16m + 1.
We obtain (2) from
Dyxs(m+2,m,m,m,m,m,m~+1,mm+1,m,...,m)
= Dy(4m + 3,4m, 4m + 1,4m)D4(3,0, —1,0)
x Dy (1,0,4/=1,0) D4 (1,0, —v—1,0)
= {Bm+4)? - (8m)*} 222 4% (14 v=1)" (1 - v=1)"
=21(4m 4 1).
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We obtain (3) from

Dyxa(m+1,m,m,m—1,m,m—1,m,m,m,m,m,m—1,mm-—1,m—1,m)
= Dy(dm+1,4m — 2,4m — 1,4m — 2)Dy(1,2,1,—2)
x Dy (1,0,v/=1,0) D4 (1,0, —v/—1,0)
= {(8m)% — (8m —4)%} - 22.22. 42 (14 v=1)" (1= v=1)"
=216(4m —1).
We obtain (4) from
Dyxa(m+1,m,m,m,m,m,m,m,m+1,m—1,m;m,mm—1,m,m)
= Dy(dm + 2,4m — 2,4m,4m)D4(2,0,0,0)
x Dy (0,14 +/—1,0,0) D4(0,1 — /=1,0,0)
={(Bm+2)*>—(8m—2)*}2%.22.2° . (1+V=-1)*'(1 - vV-1)*
= 2'%(2m). O

Remark 5. When

d0:2t721}, d1:2t+2w+1, d2:2t+2v+26, d3:2t72w,
dy=2u+2w+1, dsy=2u+2v+1, dg=2u— 2w, d7 = 2u — 2v,

where e € {0,1}, from Lemma 1, we have
BBYY = {(8t +2e+1)% + (8u+2)*} {(8v + 2e + 1)® + (8w + 2)} .

Proof of Lemma 21. We remark that for any 16m — 8e + 5,16n — 8e + 5 € P with
e € {0,1}, there exist ¢, u, v, w € Z satisfying

16m — 8e + 5 = (8t + 2e + 1) + (Su + 2)?, »

k

16n — 8¢ +5 = (8v+2e +1)* + (8w + 2)2.

We prove (1) and (2). For any 16! + 5 € P, we can take r, s € Z satisfying
161 +5= (8 +1)% + (85 +2)%

Also, we take ¢, u, v, w satisfying (x). Let

apg=k—r—+t—w, ap=k—s+t+w, aa=k+r+t+v+e,
a3 =k+s+t—w, ag=—-k+r+u+w+1, as=-k+s+ut+v-+1,
ag = —k—r+u—w, ar=—-k—s+u—wo, ag=k—r—t+w,

ag=k—s—t—w-1, apo=k+r—t—v—e, a1 =k+s—t+w,
ap=—-k+r—u—w, az=-k+s—u-—uv, a1y = —k—r—u+w,

a5 = —k—s—u-+w.
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Then, from Remark 5, we have

Dyxa(a) = Dy(1,0,0,0)Dy(4k — 4r — 1,4k — 4s — 2,4k + 4r, 4k + 45)BBvy
={(8k — 1) — (8k — 2)*} {(8r + 1)* + (85 + 2)*}
x {(8t +2e+1)* + (8u+2)?} {(8v + 2e + 1)* + (8w + 2)?}
= (16k — 3)(16 + 5)(16m — 8e + 5)(16n — 8¢ + 5).

We prove (3) and (4). For any 16/ — 3 € P, we can take r, s € Z satisfying
161 —3 = (8r +3)* + (8s + 2)%.

Also, we take ¢, u, v, w satisfying (x). Let

a=k+r+t—v+1, ag=k+s+t+w+1, aa=k—r+t+v+te,
a3 =k—s+t—w, ag=—k—r+u+w, a5 =—k—s+u+w,
ag=—-k+r+u—w, ar=—-k+s+u—w, ag=k+r—t+uv+1,
ag=k+s—t—w, apg=k—r—t—v—e, a1 =k—s—t+w,

agp=—k—-r—u—w-1, az=—-k—s—u—v-1, au=—-k+r—u-+w,

a5 = —k+s—u-+w.
Then, from Remark 5, we have

Dyxa(a) = Dy(1,0,0,0)Dy(4k + 4r + 3,4k + 4s + 2,4k — 4r, 4k — 45)BByy
= {(8k +3)% — (8k +2)*} {(87 +3)* + (85 + 2)*}
x {(8t+2e+1)%+ (Bu+2)*} {(8v +2e + 1) + (8w +2)*}
= (16k + 5)(161 — 3)(16m — 8e + 5)(16n — 8e¢ + 5). O

Proof of Lemma 22. For any p € P, there exist r, s € Z satisfying 2p = (8 + 3)% +
(8s+1)2. Let

apg=m-+r+1, ar=m-+r+1, as=m+r+1, as =m—+r,

as=m+ s, as =m+ s, ag =m+s+1, a7y =m+ s,
ag=m—r-+1, ag=m—r, alg=m-—r, a1 =m-—r—1,
aijp =M — S, aiz = m — S, a4 =M — S, ais =M — S.

Then, from Lemma 1, we have 8577 = 23 {(8r +3)%+ (8s + 1)2} = 24p. Hence,
we have
Dyys(a) = Dy(dm +2,4m + 1,4m + 2,4m — 1)Dy(2,1,0, —1)3Bv7
={(8m+4)? — (8m)?} - 2227 (22 +2%) - 2%
=2Yp(4m +1).



INTEGERS: 24 (2024) 20

On the other hand, let

apg=m-+r, ap=m-+4r, as=m-+r+1, ag=m-+r,

ag =m+ s, as =m+ s, ag =m—+ s, ar=m-+s—1,
ag =m —r, ag=m—r—1, ajg=m-—r, a1 =m-—r—1,
ajpo =m—Ss, a3 =m — s, aggs=m-—s—1, a5 =m—s— 1.

Then, from Lemma 1, we have 387y = 2° {(8r + 3)% + (85 4+ 1)*} = 2*p. Hence,
we have

Dyxa(a) = Dy(4m,4m — 1,4m,4m — 3)D4(0, —1,2,1)83~7
={(8m)*> — (8m —4)*} - 2%.2%. (22 +2%). 2%
=2%p(4m —1). O

From Lemmas 8, 14 and 20-22, Theorem 1 is proved.
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