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Abstract

We show that there exist infinitely many primitive Pythagorean (resp. rational
right) triangles with sides of certain forms, such as the sum of squares, the sum of
two cubes, the sum (resp. difference) of the reciprocal of two positive integers.

1. Introduction

A right triangle is a triangle whose sides (X,Y, Z) satisfy the Diophantine equation

X2 + Y 2 = Z2.

A primitive triangle is an integral triangle such that the greatest common divisor

of the lengths of its sides is 1. A right triangle is a Pythagorean (resp. rational

right) triangle if the right triangle has integral (resp. rational) sides. A primitive

Pythagorean triangle has sides

(X,Y, Z) = (m2 − n2, 2mn, m2 + n2),

where m > n > 0, gcd (m,n) = 1, and m+ n ≡ 1 (mod 2).
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From Fermat’s Last Theorem, there is no Pythagorean triangle whose sides are

positive integer powers. In 1961, Sierpiński [4] proved that there exist infinitely

many Pythagorean triangles whose two legs (not the hypotenuse) are triangular

numbers tn, where tn = n(n+1)/2. In 1964, Sierpiński [5] introduced a Pythagorean

triangle (given by Zarankiewicz)

(X,Y, Z) = (t132, t143, t164) = (8778, 10296, 13530), (1)

whose three sides are triangular numbers.

In 2010, He, Togbé, and Ulas [3] considered the rational solutions of the Dio-

phantine equations

z2 = f(x)2 ± f(y)2 (2)

for some particular polynomials f(x), which lead to right triangles with two sides

of lengths f(x) and f(y). In [8, 9, 10, 12], many authors have done further research

on the solutions of Equation (2).

In 1783, Euler [2, p. 167] gave sufficient conditions for a right triangle with sides

(x + 1/x, y + 1/y, z). In 2019, Zhang and Zargar [13] considered the non-trivial

rational (parametric) solutions of Equation (2) for some simple Laurent polynomials,

such as

f(x) = x+ b+
c

x
,

(x+ 1)(x+ b)(x+ c)

x
,

with b, c ∈ Z\{0}. Further study of the solutions of Equation (2) for Laurent

polynomials is included in [11].

In 2017, Tengely and Ulas [7] studied the integer solutions of the Diophantine

equations

z2 = f(x)2 ± g(y)2

for some particular polynomials f(x) and g(y).

Sierpiński [6] gave the parametric solutions of a right triangle whose sides are

(1/x, 1/y, 1/z). In [2, p. 188], Turrière discussed the Pythagorean triangle (9, 40, 41)

each of whose sides is the sum of two squares, i.e.,

9 = 32 + 02, 40 = 22 + 62, 41 = 42 + 52.

In this paper, we generalize the example observed by Turrière and obtain the

following theorem.

Theorem 1. There exist infinitely many primitive Pythagorean triangles whose

sides are

(X,Y, Z) =
(
x2 + y2, p2 + q2, r2 + s2

)
,

where x, y, p, q, r, s are positive integers.
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Corollary 1. There exist infinitely many primitive Pythagorean triangles whose

sides are

(X,Y, Z) =
(
x2 + y2, p2, r2 + s2

)
,

where x, y, p, r, s are positive integers.

Remark 1. Fermat proved that the Diophantine equation x4 + y4 = z2 has no

integer solutions, which means that there is no Pythagorean triangle whose sides

are

(X,Y, Z) =
(
x2, y2, r2 + s2

)
,

where r2 + s2 is the hypotenuse, and x, y, r, s are positive integers.

Remark 2. According to the identity(
A2 +B

2A

)2

=

(
A2 −B

2A

)2

+B, (3)

one can easily see that every primitive Pythagorean triple (m2−n2, 2mn,m2 +n2)

is of the form

(X,Y, Z) =
(
x2 − y2, p2 − q2, r2 − s2

)
,

where x > y, p > q, and r > s are positive integers. Indeed,

2mn =
(mn

2
+ 1

)2

−
(mn

2
− 1

)2

,

m2 + n2 =

(
m2 + n2 + 1

2

)2

−
(
m2 + n2 − 1

2

)2

,

where m > n > 0, gcd (m,n) = 1, and m+ n ≡ 1 (mod 2).

We further investigate other forms for the sides of a Pythagorean triangle and

obtain the following theorems.

Theorem 2. There are infinitely many primitive Pythagorean triangles whose sides

are

(X,Y, Z) =
(
x3 + y3, p3 + q3, r3 + s3

)
,

where x, y, p, q, r, s are positive integers.

Theorem 3. There exist infinitely many rational right triangles whose sides are

(X,Y, Z) =

(
1

x
+

1

y
,

1

p
+

1

q
,

1

r
+

1

s

)
,

and there exist infinitely many rational right triangles whose sides are

(X,Y, Z) =

(
1

x
− 1

y
,

1

p
− 1

q
,

1

r
− 1

s

)
,

where x, y, p, q, r, s are positive integers.
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2. Proofs of the Theorems

In this section, we will present the proofs of the theorems and corollaries, and after

each proof, we will provide a concrete example.

Proof of Theorem 1. We first consider the case of a rational right triangle with sides

(x2 + y2, p2 + q2, r2 + s2), where x, y, p, q, r, s are positive rational numbers. By the

Pythagorean theorem, we have

m2 − n2 = x2 + y2, (4)

2mn = p2 + q2, (5)

m2 + n2 = r2 + s2, (6)

where m > n are positive rational numbers.

We start by constructing a family of positive rational solutions of this system.

For Equation (6), one can take m = r = u and n = s = v. Then from Equation (4),

we have

u2 = x2 + y2 + v2. (7)

In order to find a solution of Equation (7), we use the identity

(2t2 + 1)2 = (2t2)2 + (2t)2 + 1. (8)

So one family of rational solutions of Equation (7) is given by setting

u = 2t2 + 1, v = 1, x = 2t2, y = 2t,

where t is a positive rational number. Equation (5) now becomes

2(2t2 + 1) = p2 + q2.

It follows from Equation (3) that we obtain

p =
d2 + 2− k2

2d
, q = k, t =

d2 − 2 + k2

4d
,

where d and k are integers. We thus have

u =
d4 + 2d2k2 + 4d2 + k4 − 4k2 + 4

8d2
,

x =
(d2 − 2 + k2)2

8d2
,

y =
d2 − 2 + k2

2d
.
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To get sides of integral length, we multiply through by the least common denom-

inator 8d2 to get the following family of solutions:

m = d4 + 2(k2 + 2)d2 + (k2 − 2)2, n = 8d2,

x = (d2 − 2 + k2)2, y = 4d(d2 − 2 + k2),

p = 4d(d2 + 2− k2), q = 8kd2,

r = d4 + 2(k2 + 2)d2 + (k2 − 2)2, s = 8d2,

(9)

where k and d are integers. Therefore, the sides of the Pythagorean triangles are

given by

X = (d2 + k2 − 2)2
(
d4 + 2(k2 + 6)d2 + (k2 − 2)2

)
,

Y = 16d2
(
d4 + 2(k2 + 2)d2 + (k2 − 2)2

)
,

Z = d8 + 4(k2 + 2)d6 + 2(3k4 + 4k2 + 44)d4 + 4(k2 + 2)(k2 − 2)2d2 + (k2 − 2)4.

We now specify conditions on d and k such that the Pythagorean triangles are

primitive, that is, m > n > 0, gcd (m,n) = 1, and m+ n ≡ 1 (mod 2). We have

m− n = (d2 + k2 − 2)2,

m+ n = d4 + 2(k2 + 6)d2 + (k2 − 2)2 ≡ d4 + k4 ≡ d+ k (mod 2).

Therefore, if d + k > 1 and d + k ≡ 1 (mod 2), then m > n > 0 and m + n ≡ 1

(mod 2). Furthermore,

gcd (m,n) = gcd
(
d4 + 2(k2 + 2)d2 + (k2 − 2)2, 8d2

)
= gcd

(
d4 + 2(k2 + 2)d2 + (k2 − 2)2, d2

)
= gcd

(
(k2 − 2)2, d2

)
=

(
gcd

(
k2 − 2, d

))2
.

Thus, if

d+ k > 1, d+ k ≡ 1 (mod 2), gcd
(
k2 − 2, d

)
= 1, d, k ∈ Z, (10)

then there exist infinitely many primitive Pythagorean triangles whose sides are

(X,Y, Z) =
(
x2 + y2, p2 + q2, r2 + s2

)
,

where x, y, p, q, r, s are given by (9). Conditions (10) are possible, such as in each

of the following cases:

(i) k = 0, d > 1, d ≡ 1 (mod 2);

(ii) d = 1, k > 0, k ≡ 0 (mod 2);

(iii) d = 2α, α > 0, k > 0, k ≡ 1 (mod 2).
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Example 1. When d = 2, k = 1, we get the primitive Pythagorean triangle with

sides (657, 2624, 2705) satisfying

657 = 92 + 242, 2624 = 402 + 322, 2705 = 412 + 322.

This provides a concrete example of Theorem 1.

Proof of Corollary 1. By setting k = 0 in (9), it follows that q = 0. The corre-

sponding parameters now become

m = d4 + 4d2 + 4, n = 8d2,

x = (d2 − 2)2, y = 4(d2 − 2)d,

p = 4(d2 + 2)d, q = 0,

r = d4 + 4d2 + 4, s = 8d2.

Therefore, the sides of the primitive Pythagorean triangles are given by

X = (d4 + 12d2 + 4)(d2 − 2)2,

Y = 16(d2 + 2)2d2,

Z = d8 + 8d6 + 88d4 + 32d2 + 16,

where d > 1, d ∈ Z, and d ≡ 1 (mod 2).

Example 2. When d = 3, we get the primitive Pythagorean triangle with sides

(9457, 17424, 19825) satisfying

9457 = 492 + 842, 17424 = 1322 + 02, 19825 = 1212 + 722.

This gives a concrete example of Corollary 1.

Remark 3. The identity (8) can be derived from Equation (3) with A = B =

4t2 + 1.

Proof of Theorem 2. For a primitive Pythagorean triangle with sides (x3 + y3, p3 +

q3, r3 + s3), where x, y, p, q, r, s are positive integers, by the Pythagorean theorem,

we have

m2 − n2 = x3 + y3, (11)

2mn = p3 + q3, (12)

m2 + n2 = r3 + s3, (13)

where m > n are positive integers.

We start by constructing a family of positive integer solutions of this system.

First, we consider Equation (13). One infinite family of solutions of Equation (13)

is given by

m = t3, n = k3, r = t2, s = k2,
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where t and k are positive integers.

From Equation (11), we get

(t2)3 = x3 + y3 + (k2)3. (14)

To find a solution of Equation (14), we use the following identity [1]:

(9a4)3 = (9a4 − 3a)3 + (9a3 − 1)3 + 1.

Then

t = 3a2, k = 1, x = 9a4 − 3a, y = 9a3 − 1,

where a is a positive integer.

For Equation (12), we have 54a6 = p3+q3. Letting p = q, we obtain p = q = 3a2.

Further, by the values of t and k, we get

m = 27a6, n = 1, r = 9a4, s = 1.

Therefore, the sides of the Pythagorean triangles are given by

(X,Y, Z) =
(
729a12 − 1, 54a6, 729a12 + 1

)
.

The Pythagorean triangles are primitive if a ≡ 0 (mod 2). Hence, there are in-

finitely many primitive Pythagorean triangles whose sides are (x3 +y3, p3 + q3, r3 +

s3), where x, y, p, q, r, s are given above.

Example 3. When a = 2, we get the primitive Pythagorean triangle with sides

(2985983, 3456, 2985985) satisfying

2985983 = 1383 + 713, 3456 = 123 + 123, 2985985 = 1443 + 13.

This provides a concrete example of Theorem 2.

Proof of Theorem 3. We prove this in two cases.

Case 1. For a rational right triangle with sides
(
1/x + 1/y, 1/p + 1/q, 1/r + 1/s

)
,

where x, y, p, q, r, s are positive integers, by the Pythagorean theorem, we have

m2 − n2 =
1

x
+

1

y
, (15)

2mn =
1

p
+

1

q
, (16)

m2 + n2 =
1

r
+

1

s
, (17)

where m > n are positive rational numbers.
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We start by constructing a family of positive rational solutions of this system.

First we consider Equation (17), and set

m =
1

m1
, n =

1

n1
, r = m2

1, s = n21,

where m1 and n1 are positive integers.

From Equation (15), we have(
1

m1

)2

−
(

1

n1

)2

=
1

x
+

1

y
.

Letting x = x21, y = y21 , x1, y1 ∈ Z+, we get(
1

m1

)2

=

(
1

n1

)2

+

(
1

x1

)2

+

(
1

y1

)2

.

From the identity (8), we get

m1 =
n1

2t2 + 1
, x1 =

n1
2t2

, y1 =
n1
2t
.

Taking n1 = 2t2(2t2 + 1), we have

m1 = 2t2, x1 = 2t2 + 1, y1 = t(2t2 + 1), t ∈ Z+.

Equation (16) now becomes

1

2t4(2t2 + 1)
=

1

p
+

1

q
,

that is,

(q − 4t6 − 2t4)p = 2t4(2t2 + 1)q.

Letting q − 4t6 − 2t4 = 1, we have

p = 2t4(2t2 + 1)(4t6 + 2t4 + 1),

q = 4t6 + 2t4 + 1.

Furthermore,

m =
1

2t2
, n =

1

2t2(2t2 + 1)
,

x = (2t2 + 1)2, y = t2(2t2 + 1)2,

p = 2t4(2t2 + 1)(4t6 + 2t4 + 1), q = 4t6 + 2t4 + 1,

r = 4t4, s = 4t4(2t2 + 1)2,

(18)

where t is a positive integer.
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Therefore, the sides of the rational right triangles are given by

(X,Y, Z) =

(
t2 + 1

t2(2t2 + 1)2
,

1

2t4(2t2 + 1)
,

2t4 + 2t2 + 1

2t4(2t2 + 1)2

)
.

Hence, there are infinitely many rational right triangles whose sides are
(
1/x +

1/y, 1/p+ 1/q, 1/r + 1/s
)
, where x, y, p, q, r, s are given by (18).

Case 2. For a rational right triangle with sides (1/x− 1/y, 1/p− 1/q, 1/r − 1/s),

where x < y, p < q, and r < s are positive integers, by the Pythagorean theorem,

we have

m2 − n2 =
1

x
− 1

y
, (19)

2mn =
1

p
− 1

q
, (20)

m2 + n2 =
1

r
− 1

s
. (21)

First, we consider Equation (19), and set

m =
1

m1
, n =

1

n1
, x = m2

1, y = n21,

where m1 and n1 are positive integers. From Equation (21), we have(
1

m1

)2

+

(
1

n1

)2

=
1

r
− 1

s
.

Letting r = r21, s = s21, r1, s1 ∈ Z+, we obtain(
1

r1

)2

=

(
1

s1

)2

+

(
1

m1

)2

+

(
1

n1

)2

.

From the identity (8), we get

r1 =
n1

2t2 + 1
, m1 =

n1
2t2

, s1 =
n1
2t
.

Taking n1 = 2t2(2t2 + 1), we have

m1 = 2t2 + 1, r1 = 2t2, s1 = t(2t2 + 1), t ∈ Z+.

Equation (20) now becomes

1

(2t2 + 1)2t2
=

1

p
− 1

q
,

that is,

(4t6 + 4t4 + t2 − p)q = (2t2 + 1)2t2p.
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Letting 4t6 + 4t4 + t2 − p = 1, we get

p = 4t6 + 4t4 + t2 − 1,

q = (2t2 + 1)2t2(4t6 + 4t4 + t2 − 1).

Furthermore,

m =
1

2t2 + 1
, n =

1

2t2(2t2 + 1)
,

x = (2t2 + 1)2, y = 4t4(2t2 + 1)2,

p = 4t6 + 4t4 + t2 − 1, q = (2t2 + 1)2t2(4t6 + 4t4 + t2 − 1),

r = 4t4, s = (2t2 + 1)2t2,

(22)

where t is a positive integer.

Therefore, the sides of the rational right triangles are given by

(X,Y, Z) =

(
2t2 − 1

4(2t2 + 1)t4
,

1

(2t2 + 1)2t2
,

(2t2 − 2t+ 1)(2t2 + 2t+ 1)

4t4(2t2 + 1)2

)
.

Hence, there are infinitely many rational right triangles whose sides are
(
1/x −

1/y, 1/p− 1/q, 1/r − 1/s
)
, where x, y, p, q, r, s are given by (22).

Example 4. We provide the following two concrete examples of Theorem 3.

1) When t = 1, we get the rational right triangle with sides (2/9, 1/6, 5/18)

satisfying

2

9
=

1

9
+

1

9
,

1

6
=

1

42
+

1

7
,

5

18
=

1

4
+

1

36
.

2) When t = 1, we get the rational right triangle with sides (1/12, 1/9, 5/36)

satisfying

1

12
=

1

9
− 1

36
,

1

9
=

1

8
− 1

72
,

5

36
=

1

4
− 1

9
.

3. Some Related Questions

In Theorem 2, we get infinitely many primitive Pythagorean triangles whose sides

are

(X,Y, Z) =
(
x3 + y3, p3 + q3, r3 + s3

)
,

with p = q. By some numerical calculations, we find all the solutions:

(x, y, p, q, r, s) = (13, 2, 9, 3, 11, 10), (26, 4, 18, 6, 22, 20),

(39, 6, 27, 9, 33, 30), (48, 8, 13, 11, 46, 24),

(32, 13, 22, 20, 32, 19), (38, 22, 28, 8, 41, 7),

(43, 29, 31, 8, 41, 34)
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in the range (x, y, p, q, r, s) ∈ [1, 50]6 with x > y, p > q, and r > s.

Question 1. For a Pythagorean triangle whose sides are in the form of

(X,Y, Z) =
(
x3 + y3, p3 + q3, r3 + s3

)
,

where x, y, p, q, r, s are positive integers, are there infinitely many positive integer

solutions such that x 6= y and p 6= q?

Question 2. For a Pythagorean triangle whose sides are in the form of

(X,Y, Z) =
(
x3 − y3, p3 − q3, r3 − s3

)
,

where x > y, p > q, and r > s are positive integers, are there infinitely many

positive integer solutions?

For Question 2, by some numerical calculations, we find all the solutions

(x, y, p, q, r, s) = (10, 6, 20, 17, 17, 12), (15, 12, 45, 41, 41, 36),

(20, 12, 40, 34, 34, 24), (31, 19, 18, 2, 29, 9),

(31, 19, 24, 20, 29, 9)

in the range (x, y, p, q, r, s) ∈ [1, 50]6 with x > y, p > q, and r > s.

Question 3. For a Pythagorean triangle whose sides are in the form of

(X,Y, Z) = (xn + yn, pn + qn, rn + sn) ,

or

(X,Y, Z) = (xn − yn, pn − qn, rn − sn) ,

where x, y, p, q, r, s, n are positive integers and n ≥ 4, are there infinitely many

positive integer solutions?

For Question 3, we find all the solutions when n = 4 with sign “−”:

(x, y, p, q, r, s) = (32, 4, 19, 9, 33, 19), (47, 1, 83, 9, 84, 38), (64, 8, 38, 18, 66, 38)

in the range (x, y, p, q, r, s) ∈ [1, 100]6 with x > y, p > q, and r > s.

In 1964, Sierpiński [5] introduced a Pythagorean triangle (see (1), given by

Zarankiewicz), whose three sides are triangular numbers. We have the following

question.

Question 4. For a Pythagorean triangle whose sides are in the form of

(X,Y, Z) = (tx, ty, tz + tw) ,

where x, y, z, w are positive integers, are there infinitely many positive integer solu-

tions?
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For Question 4, we find all the solutions:

(x, y, z, w) = (5, 8, 2, 8), (8, 14, 3, 14), (8, 14, 9, 11), (18, 32, 15, 29),

(29, 64, 9, 64), (32, 44, 33, 33), (49, 63, 28, 62),

(64, 143, 26, 142), (77, 143, 75, 125), (95, 189, 69, 179),

(104, 121, 1, 135), (104, 121, 16, 134), (104, 121, 36, 130),

(104, 121, 53, 124), (104, 121, 67, 117), (104, 121, 82, 107)

in the range (x, y, z, w) ∈ [1, 200]4 with x ≤ y and z ≤ w.

Acknowledgements. The authors thank the referee for his/her comments and

suggestions and helping improve the quality of this paper. Especially, the results of

Remark 2 are given by the referee.
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