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Abstract

Let A be a nonempty finite set of integers. The sumset and difference set of A are
defined as follows

A+A = {a+ b : a, b ∈ A},
A−A = {a− b : a, b ∈ A}.

Then A is said to be sum-dominant or more-sum-than-difference (MSTD) if |A +
A| > |A − A|. Recently, Chu et al. [3] gave an infinite family F of finite sets and
conjectured that all sets in the family were MSTD. They proved that some periodic
subfamilies of this family are MSTD. In this article, we give a non-periodic subfamily
that contains no MSTD sets, thus disproving the above conjecture. Finally, we
generalize Chu et al.’s subfamily of MSTD sets to obtain a more general collection
of MSTD sets.

1. Introduction

Let N and Z be the sets of positive integers and all integers, respectively. For

integers a and b, let [a, b] = {x ∈ Z | a ≤ x ≤ b}. Let A be a nonempty finite set of

integers. Define the sumset and the difference set of A, respectively, as

A+A := {a+ b : a, b ∈ A},
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and

A−A := {a− b : a, b ∈ A}.

For an integer x, define

{x} −A := {x− a : a ∈ A}.

The cardinality of A is denoted by |A|. Set A is said to be

• sum-dominated (or MSTD) if |A+A| > |A−A|,

• balanced if |A+A| = |A−A|,

• difference-dominated if |A+A| < |A−A|,

• an arithmetic progression of length k if A = {a+ id : i ∈ [0, k − 1]}, for some

a, d ∈ Z,

• symmetric if there exists an integer x such that A = {x} −A.

Let X be a family of sets. Then X is said to be a

• sum-dominated family (or MSTD family) if |A+A| > |A−A| for all A ∈ X ,

• balanced family if |A+A| = |A−A| for all A ∈ X ,

• difference-dominated family if |A+A| < |A−A| for all A ∈ X .

In an abelian group G, the addition of two distinct elements is commutative,

that is,

a+ b = b+ a;

but the subtraction of two distinct elements may not be, that is, it is possible that

a− b 6= b− a,

unless a − b has order 2. This certainly suggests that most finite sets A satisfy

|A+A| ≤ |A−A|. In support to this, Roesler [14] proved that the average value of

|A−A| over the average value of |A+A|, where A is a subset of {0, 1, 2, . . . , n} with

k elements, lies in [1, 2). In the 1960s, it was an open question whether an MSTD

set exists or not. On the other hand, it is easy to construct balanced sets. Every

symmetric set, for example, is a balanced set.

It is believed that Conway gave the first example, A = {0, 2, 3, 4, 7, 11, 12, 14},
of an MSTD set in 1969, and after that, a lot of work has been done on MSTD

sets (see [7, 8, 13, 12, 15]). Martin and O’Bryant [9] proved that the proportion of

MSTD subsets of {0, 1, 2, . . . , n−1} is bounded below by a positive constant (about

2 · 10−7) as n→∞, which later was improved by Zhao [18] to about 4 · 10−4. Using

the base expansion method [7, 12], we can construct a new MSTD set from a given
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MSTD set. Nathanson [13] gave the first explicit construction of infinite families of

MSTD sets. After that, many including Hegarty [7], Miller et al. [10] and Miller

et al. [11] gave explicit construction of an infinite family of MSTD sets. Zhao [17]

used bidirectional ballot sequences to construct a large family of MSTD sets.

Hegarty [7] also proved that there is no MSTD set of cardinality less than 8

using clever algorithms. Chu [2, 4] gave a different and computer-free proof that an

MSTD set must have at least 7 elements. Also, Chu et al. [1] and Chu [5] gave some

interesting families of sets that are not MSTD. Inspired by some already existing

MSTD sets, Chu et al. [3] gave an infinite family F of sets and conjectured that F
is MSTD. They showed that the conjecture holds for a periodic subfamily of F .

In Section 2, we first give a balanced subfamily of F (Theorem 1) and a difference-

dominated subfamily of F (Theorem 2), which are counter-examples to the conjec-

ture of Chu et al. [3]. Next, we give some non-periodic MSTD subfamilies of F
(Theorem 3 and Theorem 4). In Section 3, we give a more general family than F ,

denoted by T , and give a periodic MSTD subfamily of T in Theorem 5.

We use the following notation in the paper. The positive subset of a set A,

denoted by A+, is defined as

A+ = {a ∈ A : a > 0}.

Therefore

A−A = −(A−A)+ ∪ {0} ∪ (A−A)+.

So |A−A| = 2|(A−A)+|+ 1. It is easy to check that

((α ·A) + β) + ((α ·A) + β) = α · (A+A) + 2β

and

((α ·A) + β)− ((α ·A) + β) = α · (A−A),

for some α, β ∈ R. So |A+A| and |A−A| are translation and dilation invariant. So,

we assume that A is a set of non-negative integers with min(A) = 0 and d(A) = 1,

where

d(A) = gcd{ai : ai ∈ A}.

In 1973, Spohn [16] introduced a way to represent a set of integers. Let X =

{x1, x2, x3, . . . , xn} be a finite set of integers such that x1 < x2 < · · · < xn. The

sequence of consecutive differences (SCD) of set X is the sequence

x2 − x1, x3 − x2, x4 − x3, . . . , xn − xn−1.

ThenX = (x1 | x2−x1, x3−x2, . . . , xn−xn−1). For example, ifA = {0, 1, 6, 7, 8, 17, 24},
then the SCD of A is 1, 5, 1, 1, 9, 7 and A = (0 | 1, 5, 1, 1, 9, 7). Conversely, for a

given A = (a1 | a2, . . . , ak), we can get the underlying set

A =

{
t∑

i=1

ai : t ∈ [1, k]

}
.
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For a given set A = (a1 | a2, . . . , an), by a run of A, we mean

ai, ai+1, . . . , aj ,

where 2 ≤ i ≤ j ≤ n. The sum of a run gives a positive element of A−A; in fact,

(A−A)+ =

{
j∑

t=i

at : ai, ai+1, . . . , aj ∈ SCD with 2 ≤ i ≤ j ≤ n

}
.

Consider the following MSTD sets, where A1 and A2 are found in [9], A3 and A4

are found in [7], and A5 is found in [6];

A1 = {0, 1, 2, 4, 5, 9, 12, 13, 14, 16, 17},
A2 = {0, 1, 2, 4, 5, 9, 12, 13, 17, 20, 21, 22, 24, 25},
A3 = {0, 1, 2, 4, 5, 9, 12, 13, 14},
A4 = {0, 1, 2, 4, 5, 9, 12, 13, 17, 20, 21, 22, 24, 25, 29, 32, 33, 37, 40, 41, 42, 44, 45},
A5 = {0, 1, 2, 4, 5, 9, 12, 13, 14, 16, 17, 21, 24, 25, 26, 28, 29}.

These sets appeared random initially, but their SCD follows a pattern. We can

write A1, A2, and A3 in their SCD form as follows:

A1 = (0 | 1, 1, 2, 1, 4, 3, 1, 1, 2, 1),

A2 = (0 | 1, 1, 2, 1, 4, 3, 1, 4, 3, 1, 1, 2, 1),

A3 = (0 | 1, 1, 2, 1, 4, 3, 1, 1).

Inspired by the above MSTD sets, Chu et al. [3] gave an infinite family F of sets,

which is described as follows.

Let k1, k2, k3, . . . , kl and l be positive integers. Let Mk denote the sequence

1, 4, . . . , 4︸ ︷︷ ︸
k times

, 3. Then F is the family of sets A such that

A = (0 | 1, 1, 2,Mk1 ,Mk2 ,Mk3 , . . . ,Mkl ,M1),

where M1 is either 1, 1 or 1, 1, 2 or 1, 1, 2, 1. Note that there is a typo in the definition

of F in the paper [3]. Instead of 1, 1, 2, 1 (in the starting of SCD) it should be 1, 1, 2.

Also, we could not achieve the set A15 (which is A4 in our paper) by the family F .

In the same article, they propose the following conjecture.

Conjecture 1 ([3, Conjecture 1.3]). All sets in F are MSTD.

To support Conjecture 1, a subfamily of F was given by Chu at el. [3]. Conjecture

1 is not true; in fact, we have a balanced subfamily of F (see Theorem 1) and a

difference-dominated subfamily of F (see Theorem 2).
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Now, considering the sets A4 and A5, we have

A4 = (0 | 1, 1, 2, 1, 4, 3, 1, 4, 3, 1, 1, 2, 1, 4, 3, 1, 4, 3, 1, 1, 2, 1),

A5 = (0 | 1, 1, 2, 1, 4, 3, 1, 1, 2, 1, 4, 3, 1, 1, 2, 1).

Inspired by these examples, we provide a more general family of sets by repeating

the full block of interior blocks.

Definition 1. Let l, t, k1, k2, . . . , kl be positive integers and Mki denote the se-

quence 1, 4, . . . , 4︸ ︷︷ ︸
ki times

, 3. Let T be the family of sets A such that

A = (0 | 1, 1, 2,Mk1 , . . . ,Mkl ,M1︸ ︷︷ ︸,Mk1 , . . . ,Mkl ,M2︸ ︷︷ ︸, . . . ,Mk1 , . . . ,Mkl ,Mt︸ ︷︷ ︸︸ ︷︷ ︸
t times

),

where Mi is either 1, 1 or 1, 1, 2 or 1, 1, 2, 1 for i ∈ [1, t].

Remark 1. If t = 1, then T = F .

2. Some Balanced, Difference-Dominated, and MSTD Subfamilies of T

Theorem 1. Let k be a positive integer. Let M be the family of sets A such that

A = (0 | 1, 1, 2,Mk,Mk+1, 1, 1).

Then M is a balanced family.

Proof. We have

A = (0 | 1, 1, 2, 1, 4, 4, . . . , 4︸ ︷︷ ︸
k times

, 3, 1, 4, 4, . . . , 4︸ ︷︷ ︸
k+1 times

, 3, 1, 1).

Then A can be written explicitly as

A = {0, 2, 4, 8 + 4k, 16 + 8k, 18 + 8k} ∪ {1 + 4i : i ∈ [0, 2k + 4]}.

Therefore, for i ∈ [0, 2k + 4], we have

1 + 4i = 0 + (1 + 4i) ∈ A+A,

2 + 4i = 1 + (1 + 4i) ∈ A+A,

and

3 + 4i = 2 + (1 + 4i) ∈ A+A.
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Also, for j ∈ [2k + 4, 4k + 8], we have

1 + 4j = (1 + 4j − 16− 8k) + (16 + 8k) ∈ A+A,

2 + 4j = (2 + 4j − 17− 8k) + (17 + 8k) ∈ A+A,

and

3 + 4j = (3 + 4j − 18− 8k) + (18 + 8k) ∈ A+A.

Thus, A + A contains all integers of the form 1 + 4i, 2 + 4i, and 3 + 4i, where

i ∈ [0, 4k + 8]. Note also that the only elements of the form 4m, in A+A, are

0, 4, 8, 8 + 4k, 12 + 4k, 16 + 8k, 20 + 8k, 24 + 12k, 32 + 16k, and 36 + 16k.

Hence |A+A| = 37 + 12k.

Next, we find |A−A| by finding (A−A)+. For i ∈ [0, 2k + 4], we have

1 + 4i ∈ A+ ⊆ (A−A)+.

Since the sum of a run gives an element of (A−A)+, we have the following:

1. Run 1, 2, 1, 4, 4, . . . , 4︸ ︷︷ ︸
i times

gives 4 + 4i ∈ (A−A)+, where i ∈ [0, k].

2. Run 1, 2, 1, 4, 4, . . . , 4︸ ︷︷ ︸
k times

, 3, 1, 4, 4, . . . , 4︸ ︷︷ ︸
i times

gives 8 + 4k + 4i ∈ (A − A)+, where

i ∈ [0, k + 1].

3. Run 1, 2, 1, 4, 4, . . . , 4︸ ︷︷ ︸
k times

, 3, 1, 4, 4, . . . , 4︸ ︷︷ ︸
k+1 times

, 3, 1 gives 16 + 8k ∈ (A−A)+.

Thus, 4i ∈ (A−A)+ for all i ∈ [1, 2k + 4]. Using a similar argument, we can prove

by starting each run at 2, 1, that 3 + 4i ∈ (A−A)+ for all i ∈ [0, 2k+ 3]. Note that

2− 0 = 2 ∈ (A−A)+,

8 + 4k − 2 = 6 + 4k ∈ (A−A)+,

18 + 8k − (8 + 4k) = 10 + 4k ∈ (A−A)+,

18 + 8k − 4 = 14 + 8k ∈ (A−A)+,

18 + 8k − 0 = 18 + 8k ∈ (A−A)+.

These are the only elements of the form 2 + 4m that are in (A−A)+. Hence,

|(A−A)+| = 6k + 18.

So

|A−A| = 37 + 12k.

Thus, A is a balanced set.
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We omit the proofs of the following two theorems as they are very similar to the

proof of Theorem 1.

Theorem 2. Let k be a positive integer. Let M be the family of sets A such that

A = (0 | 1, 1, 2,Mk,Mk+1,Mk+1, 1, 1).

Then M is a difference-dominated family.

Theorem 3. Let k be a positive integer. Let M be the family of sets A such that

A = (0 | 1, 1, 2,Mk,Mk+1,M1),

where M1 is either 1, 1, 2 or 1, 1, 2, 1. Then M is an MSTD family.

Theorem 4. Let k be a positive integer. Let M be the family of sets A such that

A = (0 | 1, 1, 2,Mk+1,Mk,M1),

where M1 is either 1, 1 or 1, 1, 2 or 1, 1, 2, 1. Then M is an MSTD family.

Proof. Let M1 be 1, 1. We have

A = (0 | 1, 1, 2, 1, 4, 4, . . . , 4︸ ︷︷ ︸
k+1 times

, 3, 1, 4, 4, . . . , 4︸ ︷︷ ︸
k times

, 3, 1, 1).

Then A can be written explicitly as

A = {0, 2, 4, 12 + 4k, 16 + 8k, 18 + 8k} ∪ {1 + 4i : i ∈ [0, 2k + 4]}.

Therefore, for i ∈ [0, 2k + 4], we have

1 + 4i = 0 + (1 + 4i) ∈ A+A,

2 + 4i = 1 + (1 + 4i) ∈ A+A,

and

3 + 4i = 2 + (1 + 4i) ∈ A+A.

Also, for j ∈ [2k + 4, 4k + 8], we have

1 + 4j = (1 + 4j − 16− 8k) + (16 + 8k) ∈ A+A,

2 + 4j = (2 + 4j − 17− 8k) + (17 + 8k) ∈ A+A,

and

3 + 4j = (3 + 4j − 18− 8k) + (18 + 8k) ∈ A+A.
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Thus, A + A contains all integers of the form 1 + 4i, 2 + 4i, and 3 + 4i, where

i ∈ [0, 4k+ 8]. Note also that the only elements of the form 4m, that are in A+A,

are

0, 4, 8, 12 + 4k, 16 + 4k, 16 + 8k, 20 + 8k, 24 + 8k, 28 + 12k, 32 + 16k, and 36 + 16k.

Hence, |A+A| = 38 + 12k.

Next, we find |A−A| by finding (A−A)+. We have, for i ∈ [0, 2k + 4],

1 + 4i ∈ A+ ⊆ (A−A)+.

Since the sum of a run gives an element of (A−A)+, we have the following:

1. Run 1, 2, 1, 4, 4, . . . , 4︸ ︷︷ ︸
i times

gives 4 + 4i ∈ (A−A)+, where i ∈ [0, k + 1].

2. Run 1, 2, 1, 4, 4, . . . , 4︸ ︷︷ ︸
k+1 times

, 3, 1, 4, 4, . . . , 4︸ ︷︷ ︸
i times

gives 12 + 4k + 4i ∈ (A − A)+, where

i ∈ [0, k].

3. Run 1, 2, 1, 4, 4, . . . , 4︸ ︷︷ ︸
k+1 times

, 3, 1, 4, 4, . . . , 4︸ ︷︷ ︸
k times

, 3, 1 gives 16 + 8k ∈ (A−A)+.

Thus, 4i ∈ (A−A)+ for all i ∈ [1, 2k + 4]. Using a similar argument, we can prove

by starting each run at 2, 1, that 3 + 4i ∈ (A−A)+ for all i ∈ [0, 2k+ 3]. Note that

2− 0 = 2 ∈ (A−A)+,

18 + 8k − (12 + 4k) = 6 + 4k ∈ (A−A)+,

12 + 4k − 2 = 10 + 4k ∈ (A−A)+,

18 + 8k − 4 = 14 + 8k ∈ (A−A)+,

18 + 8k − 0 = 18 + 8k ∈ (A−A)+.

These are the only elements of the form 2 + 4m that are in (A−A)+. Hence

|(A−A)+| = 6k + 18.

So

|A−A| = 37 + 12k.

Thus, A is an MSTD set. The proofs when M1 is either 1, 1, 2 or 1, 1, 2, 1, are similar

to the case when M1 is 1, 1, so we omit the details.
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3. A Periodic MSTD Subfamily of T

Let W(k, l, t) be a periodic subfamily of T in which k1 = k2 = · · · = kl = k, Mi is

1, 1, 2 for i ∈ [1, t − 1], and Mt is either 1, 1 or 1, 1, 2 or 1, 1, 2, 1. Then for any set

A ∈ W(k, l, t), we have

A = (0 | 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸, 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸, . . . , 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸︸ ︷︷ ︸
t times

,Mt),

where the block 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸ represents

1, 1, 2, 1, 4, . . . , 4︸ ︷︷ ︸
k times

3, 1, 4, . . . , 4︸ ︷︷ ︸
k times

, 3, . . . , 1, 4, . . . , 4︸ ︷︷ ︸
k times

, 3

︸ ︷︷ ︸
l times

.

Remark 2. From now on, unless otherwise stated, Mk is repeated l times in the

block Mk, . . . ,Mk︸ ︷︷ ︸.
For t = 1, Chu et al. proved that W(k, l, t) is MSTD ([3, Theorem 1.6]). In

Theorem 5, we prove W(k, l, t) is MSTD for all t ≥ 1.

Theorem 5. Let k, l, and t be positive integers. Let A be

(0 | 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸, 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸, . . . , 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸︸ ︷︷ ︸
t times

Mt),

where Mk = 1, 4, 4, · · · , 4︸ ︷︷ ︸
k times

, 3 and Mt is either 1, 1 or 1, 1, 2 or 1, 1, 2, 1. Then A is

an MSTD set.

Proof. We prove the theorem when Mt is 1, 1, 2, 1. The proofs when Mt is 1, 1 or

1, 1, 2 are similar. The proof is divided into two subsections. In Subsection 3.1,

we prove that |A − A| = 6klt + 8lt + 8t + 11 and in Subsection 3.2, we prove that

|A+A| ≥ 6klt+ 10lt+ 8t+ 11. Therefore

|A+A| − |A−A| ≥ 6klt+ 10lt+ 8t+ 11− (6klt+ 8lt+ 8t+ 11) = 2lt > 0.

This proves that A is an MSTD set.

3.1. Difference Set

Lemma 1. Let k, l, and t be positive integers. Let A be

(0 | 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸, 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸, . . . , 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸︸ ︷︷ ︸
t times

, 1, 1, 2, 1).

Then the following hold:
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(1) 4i ∈ (A−A)+, where i ∈ [1, 1 + t(kl + l + 1)],

(2) 1 + 4i ∈ (A−A)+, where i ∈ [1, 1 + t(kl + l + 1)],

(3) 3 + 4i ∈ (A−A)+, where i ∈ [0, t(kl + l + 1)].

Proof. Observe that the set of partial sums of the run

1, 2,Mk, . . . ,Mk, 1, 1, 2︸ ︷︷ ︸, . . . ,Mk, . . . ,Mk, 1, 1, 2︸ ︷︷ ︸︸ ︷︷ ︸
t times

, 1

contains all multiples of 4 from 4 to 4 + 4t(kl + l + 1). This proves Item (1) of the

lemma. Similarly, we obtain Item (2) and Item (3) of the lemma by considering the

runs

1, 1, 2,Mk, . . . ,Mk, 1, 1, 2︸ ︷︷ ︸, . . . ,Mk, . . . ,Mk, 1, 1, 2︸ ︷︷ ︸︸ ︷︷ ︸
t times

, 1

and

2,Mk, . . . ,Mk, 1, 1, 2︸ ︷︷ ︸, . . . ,Mk, . . . ,Mk, 1, 1, 2︸ ︷︷ ︸︸ ︷︷ ︸
t times

, 1,

respectively. This completes the proof of the lemma.

Now we consider elements of the form 2 + 4i, where i ∈ Z. It is easy to check

that 2 ∈ A − A because of the run 1, 1. We find all possible runs which give the

sums of the form 6 + 4i, in the next lemma.

Lemma 2. Let k, l, and t be positive integers. Let A be

(0 | 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸, 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸, . . . , 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸︸ ︷︷ ︸
t times

, 1, 1, 2, 1).

Any run that generates elements of the form 6+4m, must have one of the following

forms:

(R1)

1, 1, 2,Mk, . . . ,Mk, 1, 1︸ ︷︷ ︸, 2,Mk, . . . ,Mk, 1, 1︸ ︷︷ ︸, . . . , 2,Mk, . . . ,Mk, 1, 1︸ ︷︷ ︸︸ ︷︷ ︸
j times

for j ∈ [1, t];

(R2)

2,Mk, . . . ,Mk, 1, 1, 2︸ ︷︷ ︸, . . . ,Mk, . . . ,Mk, 1, 1, 2︸ ︷︷ ︸︸ ︷︷ ︸
j times

,Mk,Mk, . . . ,Mk︸ ︷︷ ︸
i times

for j ∈ [0, t− 1] and i ∈ [1, l];
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(R3)

2,Mk, . . . ,Mk, 1, 1, 2︸ ︷︷ ︸,Mk, . . . ,Mk, 1, 1, 2︸ ︷︷ ︸, . . . ,Mk, . . . ,Mk, 1, 1, 2︸ ︷︷ ︸︸ ︷︷ ︸
j times

for j ∈ [1, t];

(R4)

Mk, . . . ,Mk, 1, 1︸ ︷︷ ︸, 2,Mk, . . . ,Mk, 1, 1︸ ︷︷ ︸, 2, . . . , 2,Mk, . . . ,Mk, 1, 1︸ ︷︷ ︸︸ ︷︷ ︸
j times

for j ∈ [1, t].

Proposition 1. Runs (R1) and (R3) give the same elements.

Proof. The set A can be written explicitly as follows:

A = (0 | 1, 1, 2, 1, 4, . . . , 4︸ ︷︷ ︸
k times

, 3, . . . , 1, 4, . . . , 4︸ ︷︷ ︸
k times

, 3

︸ ︷︷ ︸
l times

, 1, 1, 2, 1, 4, . . . , 4︸ ︷︷ ︸
k times

, 3, . . . , 1, 4, . . . , 4︸ ︷︷ ︸
k times

, 3

︸ ︷︷ ︸
l times

,

. . . , 1, 1, 2, 1, 4, . . . , 4︸ ︷︷ ︸
k times

, 3, . . . , 1, 4, . . . , 4︸ ︷︷ ︸
k times

, 3

︸ ︷︷ ︸
l times

, 1, 1, 2, 1).

Since we repeat the block, it is enough to consider all possible runs starting from

any block.

Case 1. A run starts at the first 1 in 1, 1, 2, 1. Since we have 1 + 1 + 2 + 1 = 5 < 6,

the run must contain 1, 1, 2, 1 and proceed further.

(i) If the run ends at 4, then it gives a sum that is congruent to 1 (mod 4).

(ii) If the run ends at 3, then it gives a sum that is congruent to 0 (mod 4).

(iii) If the run ends at 3, 1, then it gives a sum that is congruent to 1 (mod 4).

(iv) If the run ends at 3, 1, 1, then it gives a sum that is congruent to 6 (mod 4).

In this case, the run belongs to the form (R1).

(v) If the run ends at 3, 1, 1, 2, then it gives a sum that is congruent to 0 (mod 4).

(vi) If the run ends at 3, 1, 1, 2, 1, then it gives a sum that is congruent to 1

(mod 4).
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Case 2. A run starts at the second 1 in 1, 1, 2, 1. Since we have 1 + 2 + 1 = 4 < 6,

the run must contain 1, 2, 1 and proceed further. Using similar arguments as in

Case 1, we can prove that no run gives a sum that is congruent to 6 (mod 4).

Case 3. A run starts at 2 in 1, 1, 2, 1. Since we have 2 + 1 = 3 < 6, the run must

contain 2, 1 and proceed further. Using similar arguments as in Case 1, we can

prove that if the run ends at 3 or 3, 1, 1, 2, then it gives that the run belongs to the

form (R2) and the form (R3), respectively.

Case 4. A run starts at 1, 4 in Mk, . . . ,Mk︸ ︷︷ ︸
l times

. Since we have 1 + 4 = 5 < 6, the run

must contain 1, 4 and proceed further. Using similar arguments as in Case 1, we

can prove that if the run ends at 3, 1, 1, then it gives that the run belongs to the

form (R4).

Case 5. A run starts at 4 or 3, 1, 4 or 3, 1, 1 in Mk, . . . ,Mk︸ ︷︷ ︸
l times

, 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸
l times

.

Using similar arguments as in Case 1, we can prove that no run gives a sum that

is congruent to 6 (mod 4). If we consider any run from any other block, then it

is one of the above cases. Thus, we have considered all the possible cases, which

completes the proof of the lemma.

Lemma 3. Let k, l, and t be positive integers. Let A be

(0 | 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸, . . . , 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸︸ ︷︷ ︸
t times

, 1, 1, 2, 1).

Then (A−A)+ contains exactly lt+ t elements of the form 6 + 4m.

Proof. By Lemma 2, we know all the possible runs that can generate (6 + 4m)-type

elements of (A−A)+. Therefore, runs (R1) and (R3) generate the set

S1 = {6 + (4kl + 4l)j + 4(j − 1) | 1 ≤ j ≤ t}.

Run (R2) generates the set

S2 = {6 + (4kl + 4l + 4)(j − 1) + 4ki+ 4(i− 1) | 1 ≤ i ≤ l, 1 ≤ j ≤ t},

and (R4) generates the set

S3 = {6 + (4kl + 4l)j + 4(j − 2) | 1 ≤ j ≤ t}.

We claim that S1∩S2 = φ. If this claim is not true, then there exist j1, j2 ∈ [1, t]

and i1 ∈ [1, l] such that

6 + (4kl + 4l)j1 + 4(j1 − 1) = 6 + (4kl + 4l + 4)(j2 − 1) + 4ki1 + 4(i1 − 1).
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This gives (kl + l + 1)(j1 − j2 + 1) = i1(k + 1). It follows that (k + 1)l + 1 divides

i1(k + 1), but we know that i1(k + 1) ≤ l(k + 1). This contradiction shows that

S1 ∩ S2 = φ.

Next, we claim that S1 ∩ S3 = φ. If this claim is not true, then there exist

j1, j2 ∈ [1, t] such that

6 + (4kl + 4l)j1 + 4(j1 − 1) = 6 + (4kl + 4l)j2 + 4(j2 − 2).

This gives (j1 − j2)(kl + l + 1) = −1. However, we already have (kl + l) + 1 > 1.

This contradiction shows that S1 ∩ S3 = φ.

Finally, we claim that |S2 ∩ S3| = t. To see that this claim is true, it can be

easily seen that for i = l and j ∈ [1, t], we have

6 + (4kl + 4l + 4)(j − 1) + 4kl + 4(l − 1) = 6 + (4kl + 4l)j + 4(j − 2).

Therefore |S2 ∩ S3| ≥ t. If there exist j1, j2 ∈ [1, t] and i1 ∈ [1, l − 1] such that

6 + (4k + 4l + 4)(j1 − 1) + 4ki1 + 4(i1 − 1) = 6 + (4kl + 4l)j2 + 4(j2 − 2),

then (kl + l + 1)(j2 − j1 + 1) = i1(k + 1) + 1. It follows that kl + l + 1 divides

i1(k + 1) + 1, but we know that i1(k + 1) + 1 < l(k + 1) + 1. This contradiction

shows that |S2 ∩ S3| = t. Hence,

|S1 ∪ S2 ∪ S3| = t+ lt+ t− t = t+ tl.

This completes the proof of the lemma.

Theorem 6. Let k, l, and t ∈ N be positive integers. Let A be

(0 | 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸, . . . , 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸︸ ︷︷ ︸
t times

, 1, 1, 2, 1).

Then |A−A| = 11 + 6klt+ 8lt+ 8t.

Proof. It is easy to check that 1, 2 ∈ (A − A)+. Combining Lemma 1 and Lemma

3, we get

|A−A| = 6klt+ 8lt+ 8t+ 11.

3.2. Sum Set

Lemma 4. Let k, l, and t be positive integers. Let A be

(0 | 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸, . . . , 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸︸ ︷︷ ︸
t times

, 1, 1, 2, 1).

Then the following hold:
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(1) 1 + 4i ∈ A, where i ∈ [0, 1 + t(kl + l + 1)],

(2) 2 + 4t(kl + l + 1) ∈ A,

(3) 4 + 4t(kl + l + 1) ∈ A.

Proof. Observe that the set of partial sums of the run

0, 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸, . . . , 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸︸ ︷︷ ︸
t times

, 1, 1, 2, 1

contains all elements from 1 through 5+4t(kl+l+1) that are congruent to 1 modulo

4 . This proves Item (1) of the lemma. Similarly, we obtain Item (2) and Item (3)

of the lemma by considering the runs

0, 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸, . . . , 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸︸ ︷︷ ︸
t times

, 1, 1

and

0, 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸, . . . , 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸︸ ︷︷ ︸
t times

, 1, 1, 2,

respectively. This completes the proof of the lemma.

Lemma 5. Let k, l, and t be positive integers. Let A be

(0 | 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸, . . . , 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸︸ ︷︷ ︸
t times

, 1, 1, 2, 1).

Then the following hold:

(1) 1 + 4i ∈ A+A, where i ∈ [0, 2 + 2t(kl + l + 1)],

(2) 2 + 4i ∈ A+A, where i ∈ [0, 2 + 2t(kl + l + 1)],

(3) 3 + 4i ∈ A+A, where i ∈ [0, 1 + 2t(kl + l + 1)].

Proof. By Lemma 4, we have 1 + 4i ∈ A, for i ∈ [0, 1 + (kl + l + 1)t]. Therefore

1 + 4i = 0 + (1 + 4i) ∈ A+A,

2 + 4i = 1 + (1 + 4i) ∈ A+A,

and

3 + 4i = 2 + (1 + 4i) ∈ A+A
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for i ∈ [0, 1 + t(kl+ l+ 1)]. Also, for j ∈ [1 + t(kl+ l+ 1), 2 + 2t(kl+ l+ 1)], we have

1 + 4j = (1 + 4j − (4 + 4t(kl + l + 1)) + (4 + 4t(kl + l + 1)) ∈ A+A,

2 + 4j = (2 + 4j − (5 + 4t(kl + l + 1)) + (5 + 4t(kl + l + 1)) ∈ A+A,

and for j ∈ [1 + t(kl + l + 1), 1 + 2t(kl + l + 1)], we have

3 + 4j = (3 + 4j − (2 + 4t(kl + l + 1)) + (2 + 4t(kl + l + 1)) ∈ A+A.

This completes the proof of the lemma.

Now we consider elements divisible by 4 in A+A.

Lemma 6. Let k, l, and t be positive integers. Let A be

(0 | 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸, . . . , 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸︸ ︷︷ ︸
t times

, 1, 1, 2, 1).

Then for i ∈ [0, l] and j ∈ [0, t− 1],

4 + (4k + 4)i+ (4kl + 4l + 4)j ∈ A.

Proof. It is easy to see that the run

0, 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸, . . . , 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸︸ ︷︷ ︸
j times

, 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸
i times

,

gives

4 + (4k + 4)i+ (4kl + 4l + 4)j ∈ A,

where j ∈ [0, t− 1] and i ∈ [0, l]. This completes the proof of the lemma.

Lemma 7. Let k, l, and t be positive integers. Let A be

(0 | 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸, . . . , 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸︸ ︷︷ ︸
t times

, 1, 1, 2, 1).

Then

{0, 4, 8} ∪X1 ∪X2 ∪X3 ∪X4 ∪X5 ∪X6 ⊂ A+A,

where

X1 = {xi,j : i ∈ [1, l], j ∈ [0, t− 1]} with xi,j = (8kl + 8l + 8)j + (4k + 4)i+ 4,

X2 = {yi,j : i ∈ [1, l], j ∈ [0, t− 1]} with yi,j = (8kl + 8l + 8)j + (4k + 4)i+ 8,
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X3 = {zj : j ∈ [0, t− 1]} with zj = (8kl + 8l + 8)j + (4kl + 4l) + 12,

X4 = {pi,j : i ∈ [1, l], j ∈ [0, t−1]} with pi,j = (8kl+8l+8)j+(4kl+4l)+(4k+4)i+8,

X5 = {qi,j : i ∈ [1, l], j ∈ [0, t−1]} with qi,j = (8kl+8l+8)j+(4kl+4l)+(4k+4)i+12,

and

X6 = {rj : j ∈ [0, t− 1]} with rj = (8kl + 8l + 8)j + (8kl + 8l) + 16.

Also, we have Xi ∩Xj = φ for 1 ≤ i < j ≤ 6.

Proof. Using Lemma 4 and Lemma 6, we have

{ai,j : i ∈ [0, l], j ∈ [0, t− 1]} ∪ {a0,t} ⊂ A,

where

ai,j = 4 + (4k + 4)i+ (4kl + 4l + 4)j,

and

a0,t = 4(1 + t(kl + l + 1)).

We have the following:

1. Since 0, 4 ∈ A, {0, 4, 8} ⊂ A+A.

2. For j = 0, xi,0 = 4 + (4k + 4)i = 0 + ai,0 ∈ A + A, and for j ≥ 1, xi,j =

ai,j−1 + al,j ∈ A+A.

3. For j = 0, yi,0 = a0,0 + ai,0 ∈ A + A, and for j ≥ 1, yi,j = ai,j−1 + a0,j+1 ∈
A+A.

4. For j ≥ 0, zj = a0,j + a0,j+1 ∈ A+A.

5. For j ≥ 0, pi,j = ai,j + al,j ∈ A+A.

6. For j ≥ 0, qi,j = ai,j + a0,j+1 ∈ A+A.

7. For j ≥ 0, rj = a0,j+1 + a0,j+1 ∈ A+A.

Note that for j ∈ [0, t− 1],

x1,j < y1,j < x2,j < · · · < xl,j < yl,j < zj < p1,j < q1,j < p2,j < · · · < pl,j < ql,j < rj ,

and for t ≥ 2 and j ∈ [0, t− 2],

rj < x1,j+1.

Therefore, all these elements in Xi’s and {0, 4, 8} are distinct. This completes the

proof of the lemma.
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Theorem 7. Let k, l, and t be positive integers. Let A be

(0 | 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸, . . . , 1, 1, 2,Mk, . . . ,Mk︸ ︷︷ ︸︸ ︷︷ ︸
t times

, 1, 1, 2, 1).

Then

|A+A| ≥ 11 + 6klt+ 10lt+ 8t.

Proof. By Lemma 4, Lemma 5, and Lemma 7, we get

|A+A| ≥ 11 + 6klt+ 10lt+ 8t.
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