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Abstract

We use generating functions to enumerate Arndt compositions, integer composi-
tions where there is a descent between every second pair of parts, starting with
the first and second part, and so on. In 2013, Jörg Arndt noted that this family of
compositions is counted by the Fibonacci sequence. We provide an approach that is
purely based on generating functions to prove this observation. We also enumerate
these compositions with respect to the number of parts and the last part. From this
approach, we can generalize some recent results given by Hopkins and Tangboon-
duangjit in 2023. Finally, we study some possible generalizations of this counting
problem.

1. Introduction and Notation

A composition of a positive integer n is a sequence of positive integers

σ = (σ1, σ2, . . . , σ`) such that σ1 + σ2 + · · · + σ` = n. The summands σi are

called parts of the composition and the number of parts of σ is denoted by parts(σ).

The integer n is referred to as the weight of σ and is denoted by |σ|. For example,

the compositions of 4 are

(4), (3, 1), (1, 3), (2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 1, 1).

Recently, Hopkins and Tangboonduangjit [6, 7] have begun a combinatorial study

of an interesting family of compositions with a restriction over pairwise descending
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parts. Specifically, an Arndt composition of n is a composition σ = (σ1, σ2, . . . , σ`)

of weight n such that σ2i−1 > σ2i for each positive integer i, 2i ≤ `. Let A(n) denote

the set of Arndt compositions of weight n and A =
⋃
n≥0A(n). By definition we set

A0 = {ε}, where ε is the empty composition. For example, the Arndt compositions

of 6 are

(6), (5, 1), (4, 2), (4, 1, 1), (3, 2, 1), (3, 1, 2), (2, 1, 3), (2, 1, 2, 1).

This name is in honor of Jörg Arndt, who observed that the cardinality of A(n)

is given by the n-th Fibonacci number Fn (see [6]). Recall that Fibonacci numbers

are defined by the recurrence relation Fn = Fn−1 +Fn−2 for n ≥ 2, with the initial

conditions F0 = 0 and F1 = 1.

The goal of this paper is to enumerate Arndt compositions and some generaliza-

tions by means of generating functions. We use (ordinary) generating functions to

obtain explicit combinatorial formulae for the counting sequences. We generalize

many of the results given by Hopkins and Tangboonduangjit in [6, 7]. Additionally,

we provide an asymptotic approximation for the expected number of parts and the

last part. We also establish a connection between the number of Arndt compositions

and the reduced anti-palindromic compositions with a fixed number of parts. This

last family of compositions was introduced in 2022 by Andrews, Just, and Simay

[1]. In the last two sections, we study two generalizations of Arndt compositions.

2. Enumeration of Arndt Compositions

A polyomino is a finite collection of connected squares, each of size 1×1, which must

be joined at an edge and not just at a vertex. A polyomino is called column-convex

if each column within it is connected (see [5]). A bargraph is a column-convex

polyomino with its lower edge lying on the x-axis.

A composition (σ1, σ2, . . . , σ`) of weight n can be represented as a bargraph of

` columns, such that the i-th column contains σi squares for 1 ≤ i ≤ `. For

example, in Figure 1 we show the Arndt compositions of n = 6 with their bargraph

representations.

We now introduce a bivariate generating function to count the number of Arndt

compositions with respect to the weight and number of parts:

A(x, y) :=
∑
σ∈A

x|σ|yparts(σ).

Note that the coefficient xnym of A(x, y) is equal to the number of Arndt compo-

sitions of n with m parts. In Theorem 1 we give a rational generating function for

A(x, y).
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(6) (5, 1) (4, 1, 1) (3, 2, 1)(4, 2)

(3, 1, 2) (2, 1, 3) (2, 1, 2, 1)

Figure 1: Arndt compositions of n = 6.

Theorem 1. The generating function for Arndt compositions with respect to the

number of parts and weight is given by

A(x, y) =
1− x− x2 + x3 + xy − x3y

1− x− x2 + x3 − x3y2
.

Proof. Let σ = (σ1, σ2) be an Arndt composition with two parts. From the defini-

tion we have the condition σ1 > σ2 ≥ 1; see Figure 2 for a graphical representation

of this case.

σ1 σ2

j

Figure 2: Decomposition of an Arndt composition with two parts.

If σ1 = j ≥ 2, then the bivariate generating function for this case is the bivariate

polynomial xjy2
(
x+ x2 + · · ·+ xj−1

)
. Summing over j ≥ 2 we have

∑
j≥2

xjy2
(
x+ x2 + · · ·+ xj−1

)
= y2

∑
j≥2

xj
x− xj

1− x
=

x3y2

(1− x)2(1 + x)
.

Arndt compositions (bargraphs) with an even number of parts are the concatenation

of pairs of parts (columns) as in Figure 2. Therefore the generating function for
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Arndt compositions with an even number of parts (see Figure 3) is given by

∑
m≥0

(
x3

(1− x)2(1 + x)

)m
y2m =

(1− x)2(1 + x)

1− x− x2 + x3 − x3y2
.

σ1 σ2 σ3 σ4 σ2m−1 σ2m

· · ·

Figure 3: Decomposition of an Arndt composition with an even number of parts.

Analogously, if the number of parts is odd, then the generating function is given

by ∑
m≥0

(
x3

(1− x)2(1 + x)

)m
y2m

xy

1− x
=

x(1− x2)y

1− x− x2 + x3 − x3y2
.

Notice that the generating function xy/(1 − x) corresponds to the last part (last

column). Adding the last two equations, we obtain the desired result.

As a series expansion, the generating function A(x, y) begins with

A(x, y) = 1 + xy + x2y + x3
(
y2 + y

)
+ x4

(
y3 + y2 + y

)
+ x5

(
2y3 + 2y2 + y

)
+ x6

(
y4 + 4y3 + 2y2 + y

)
+O

(
x7
)
.

Figure 1 shows the Arndt compositions corresponding to the bold coefficient in the

above series.

Let a(n) and a(n,m) denote the number of Arndt compositions of n and the

number of Arndt compositions of n with exactly m parts, respectively. It is clear

that a(n) =
∑
m≥1 a(n,m). In Table 1 we show the first values of the sequence

a(n,m). Note that we take the initial values as a(0) = 0 and a(0, 0) = 1. This

array corresponds to the entry A354787 in the OIES [12]. This array also counts

the number of reduced anti-palindromic compositions and we prove this relation in

Theorem 7.

In Theorems 2 and 3 we give combinatorial sums and recurrence relations to

calculate the sequence a(n,m).

http://oeis.org/A354787
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n\m 0 1 2 3 4 5 6 7
0 1
1 0 1
2 0 1
3 0 1 1
4 0 1 1 1
5 0 1 2 2
6 0 1 2 4 1
7 0 1 3 6 2 1
8 0 1 3 9 5 3
9 0 1 4 12 8 8 1
10 0 1 4 16 14 16 3 1

Table 1: Values of a(n,m), for 0 ≤ n ≤ 10 and 0 ≤ m ≤ 7.

Theorem 2. For all n,m ≥ 0 we have

a(n,m) =

n−m−bm2 c∑
`=0

(
m+ `− 1

`

)(
n−m− `− 1

n−m− bm2 c − `

)
(−1)n−m−b

m
2 c−`.

Moreover, for all n ≥ 3 and m ≥ 2,

a(n,m) = a(n− 1,m) + a(n− 2,m)− a(n− 3,m) + a(n− 3,m− 2).

Proof. From the proof of Theorem 1 and the well-known identity (cf. [4])

1

(1− x)n
=
∑
`≥0

(
n+ `− 1

`

)
xn,

we have

a(n, 2m) = [xn]
x3m

(1− x)2m(1 + x)m

= [xn−3m]
∑
i≥0

(
2m+ i− 1

i

)
xi
∑
i≥0

(
m+ i− 1

i

)
(−1)ixi

= [xn−3m]
∑
i≥0

i∑
`=0

(
2m+ `− 1

`

)(
m+ i− `− 1

i− `

)
(−1)i−`xi

=

n−3m∑
`=0

(
2m+ `− 1

`

)(
n− 2m− `− 1

n− 3m− `

)
(−1)n−m−`.

A combinatorial formula for a(n, 2m+ 1) is obtained in a similar manner:

a(n, 2m+ 1) =

n−3m−1∑
`=0

(
2m+ `

`

)(
n− 2m− `− 2

n− 3m− `− 1

)
(−1)n−m−`−1.
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From these two identities we obtain the desired result. Finally, the recurrence

relation follows from the equality

(1− x− x2 + x3 − x3y2)A(x, y) = 1− x− x2 + x3 + xy − x3y.

Theorem 3. For all n,m ≥ 0 we have

a(n,m) =

b(n−m−bm2 c)/2c∑
`=0

(
bm2 c+ `− 1

`

)(
n− 2bm2 c − 2`− 1

bm−12 c

)
.

Proof. We argue similarly as in the proof of Theorem 2. We have

a(n, 2m) = [xn]
x3m

(1− x)2m(1 + x)m
= [xn−3m]

1

(1− x2)m(1− x)m

= [xn−3m]
∑
i≥0

(
m+ i− 1

i

)
x2i
∑
i≥0

(
m+ i− 1

i

)
xi

= [xn−3m]
∑
`≥0

∑
i≥0

(
m+ `− 1

`

)(
m+ i− 1

i

)
xi+2`.

This with t = i+ 2` implies

a(n, 2m) = [xn−3m]
∑
`≥0

∑
t≥2`

(
m+ `− 1

`

)(
m+ t− 2`− 1

t− 2`

)
xt.

Therefore,

a(n, 2m) =

bn−3m
2 c∑
`=0

(
m+ `− 1

`

)(
n− 2m− 2`− 1

m− 1

)
.

Similarly, we have

a(n, 2m+ 1) =

bn−3m−1
2 c∑
`=0

(
m+ `− 1

`

)(
n− 2m− 2`− 1

m

)
.

From these two identities we obtain the desired result.

Furthermore, we can use the Wilf-Zeilberger algorithm [9] to derive an additional

recurrence relation for the sequence a(n,m). The Wilf-Zeilberger algorithm, named

after mathematicians Herbert Wilf and Doron Zeilberger, is a powerful tool in com-

binatorics and symbolic computation. It is particularly useful for proving combi-

natorial identities by transforming them into hypergeometric summation problems,

which can then be solved algorithmically. Authors interested in this technique and

additional examples can refer, for instance, to the references [2, 8, 10].
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Theorem 4. For all n,m ≥ 0,

(m− n− 2 + bm/2c) a(n+ 2,m) + (m− bm/2c) a(n+ 1,m) + na(n,m) = 0

Proof. Let F (n, `) be the expression

F (n, `) :=

(
m+ `− 1

`

)(
n−m− `− 1

n−m− bm2 c − `

)
(−1)n−m−b

m
2 c−`.

By the Wilf-Zeilberger’s algorithm, we have that F (n, `) satisfies this relation(
m− n− 2 +

⌊m
2

⌋)
F (n+ 2, `) +

(
m−

⌊m
2

⌋)
F (n+ 1, `) + nF (n, `)

= G(n, `+ 1)−G(n, `),

with the certificate

R(n, `) =
`(−`−m+ n)(−1 +

⌊
m
2

⌋
)

(−2 + `+m− n+
⌊
m
2

⌋
)(−1 + `+m− n+

⌊
m
2

⌋
)
.

That is, R(n, `) = F (n, `)/G(n, `) is a rational function in both variables. Summing

over all `, the right-hand part cancels out, and we obtain the desired result.

In the following corollary we give an asymptotic expression for the number of

Arndt compositions with a fixed number of parts. It is a direct application of the

transfer theorem (see Theorem 5.5 of [11]).

Corollary 1. For a fixed positive integer m we have

a(n,m) ∼ nm−1

2bm/2c(m− 1)!
.

Proof. We know that

a(n, 2m) = [xn]
x3m

(1− x)2m(1 + x)m
= [xn]

f(x)

(1− x)2m
,

where f(x) = x3m/(1 + x)m. From Theorem 5.5 of [11], we conclude that

a(n, 2m) ∼ f(1)

(2m− 1)!
n2m−1 =

n2m−1

2m(2m− 1)!
.

If m = 2m+ 1, then a(n, 2m) ∼ n2m

2m(2m)! .

Setting y = 1 in Theorem 1 implies the following corollary. This is an alternative

approach to this counting problem. Note that Hopkins and Tangboonduangjit [6]

proved this result by using a bijective approach.
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Corollary 2. The generating function of the number of Arndt compositions is

A(x, 1) =
∑
n≥0

a(n)xn =
1− x2

1− x− x2
.

Moreover, a(n) = Fn for all n ≥ 1.

From Theorems 2 and 3 we obtain the following expressions (probably new) to

calculate the Fibonacci number Fn for n ≥ 1:

Fn =

n∑
m=0

n−m−bm2 c∑
`=0

(
m+ `− 1

`

)(
n−m− `− 1

n−m− bm2 c − `

)
(−1)n−m−b

m
2 c−`

=

n∑
m=0

b(n−m−bm2 c)/2c∑
`=0

(
bm2 c+ `− 1

`

)(
n− 2bm2 c − 2`− 1

bm−12 c

)
.

Let p(n) denote the total number of parts (columns) over all compositions in

A(n). The generating function for the sequence p(n) is given by

P (x) :=
∑
n≥0

p(n)xn =
∂A(x, y)

∂y

∣∣∣∣
y=1

=
x(1− x+ x3 − x4)

(1− x− x2)2
(1)

= x+ x2 + 3x3 + 6x4 + 11x5 + 21x6 + 38x7 +O(x8). (2)

For example, from Figure 1 we can verify that the number of parts (columns) of all

compositions in A(6) is 21.

We need the following for the asymptotics of linear recurrences relations (see

[11]). Assume that a rational generating function f(x)/g(x), with f(x) and g(x)

relatively prime and g(0) 6= 0, has a unique pole 1/β with the smallest modulus.

Then, if the multiplicity of 1/β is ν, we have

[xn]
f(x)

g(x)
∼ ν (−β)νf(1/β)

g(ν)(1/β)
βnnν−1. (3)

From (1) and (3) we obtain

p(n) ∼ 3−
√

5

5

(
1 +
√

5

2

)n
n. (4)

Theorem 5. The expected number of parts in A(n) is asymptotically(
3√
5
− 1

)
n.
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Proof. Let XAr(n) denote the number of parts in a random Arndt composition in

A(n). The expected value is given by

E[XAr(n)] =
1

a(n)

∑
σ∈A(n)

parts(σ) =
p(n)

Fn
. (5)

From Fn ∼ 1√
5

(
1+
√
5

2

)n
and (4) we conclude the desired result.

2.1. Anti-palindromic Compositions

A composition σ = (σ1, σ2, . . . , σ`) of a positive integer n is anti-palindromic if

σi 6= σ`+1−i for all i 6= (`+ 1)/2. This family of compositions was recently studied

by Andrews, Just, and Simay [1]. For example, (1, 2, 6, 3, 2) is an anti-palindromic

composition of 14. Let AP denote the set of all anti-palindromic compositions. For

each anti-palindromic composition of n with ` parts, it is possible to form 2b`/2c

flip-equivalent anti-palindromic compositions of n with ` parts by switching any

number of the pairs σi and σ`−i+1 (i 6= (`+ 1)/2). The sets of flip-equivalent anti-

palindromic compositions of n form a partition of the set AP and each equivalence

class is called a reduced anti-palindromic composition of n with ` parts. For example,

the following anti-palindromic compositions are flip-equivalent

(1, 2, 6, 3, 2), (2, 2, 6, 3, 1), (1, 3, 6, 2, 2), and (2, 3, 6, 2, 1).

Let RAP be the set of all reduced anti-palindromic compositions. We introduce

the following bivariate generating functions with respect to the number of parts and

weight over the sets AP and RAP, that is

Ap(x, y) :=
∑
σ∈AP

x|σ|yparts(σ) and Bp(x, y) :=
∑

σ∈RAP
x|σ|yparts(σ).

Theorem 6. The generating function for anti-palindromic compositions with re-

spect to the number of parts and weight is given by

Ap(x, y) =
1− x− x2 + x3 + xy − x3y

1− x− x2 + x3 − 2x3y2
.

Proof. Let σ = (σ1, σ2, . . . , σ2m) be an anti-palindromic composition of [n] with

2m parts. From the definition we have the condition σi 6= σ2m+1−i, for all i 6=
(2m + 1)/2. Notice that the columns i-th and (2m + 1 − i)-th contribute to the

generating function the term

y2
∑
i≥1

xi
∑

j≥1,j 6=i

xj = y2
∑
i≥1

xi
(

x

1− x
− xi

)
=

2x3

(1− x)2(1 + x)
. (6)
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Therefore the composition σ contributes to the generating function the term

∑
m≥0

(
2x3

(1− x)2(1 + x)

)m
y2m =

(1− x)2(1 + x)

1− x− x2 + x3 − 2x3y2
.

If the number of parts is odd, then from a similar argument the contribution to

the generating function is given by

x(1− x2)y

1− x− x2 + x3 − 2x3y2
.

Summing the above two generating functions, we obtain the desired result.

Notice that if we divide (6) by 2, then we obtain the generating function for the

reduced anti-palindromic compositions.

Corollary 3. The generating function for reduced anti-palindromic compositions

with respect to the number of parts and weight is given by

Bp(x, y) =
1− x− x2 + x3 + xy − x3y

1− x− x2 + x3 − x3y2
.

Since Bp(x, y) = A(x, y) (see Theorem 1) we obtain the following result.

Theorem 7. The number of Arndt compositions of n with m parts is equal to the

number of reduced anti-palindromic compositions n with m parts.

It is also possible to establish an explicit bijection between these sets. First, for

convenience, we will take as a representative of a reduced anti-palindromic com-

position one that satisfies the condition σi > σ`−i+1 for each pair of summands

with i < `+1
2 . For example, for the compositions given above, the representative is

(2, 3, 6, 2, 1). Once we impose this condition, the connection between Arndt compo-

sitions and reduced anti-palindromic compositions is immediate, as in both cases,

we are comparing pairs of summands, the first greater than the other. In the case

of Arndt compositions, the pairs of summands are ordered consecutively and in the

case of reduced anti-palindromic compositions they are ordered at each side of the

composition.

For example, the representation of (2, 3, 6, 2, 1) as an Arndt composition would

be (2, 1, 3, 2, 6). To go from one to the other, we take each pair of summands at the

sides and reorder them to be adjacent in an Arndt composition. When the length

of the reduced anti-palindromic composition is odd, the summand in the middle

(the one that does not need to be compared to another) becomes the last in the

Arndt composition. It is clear that this algorithm defines a bijection between both

families of compositions.
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3. The Last Part

We denote by last(σ) the weight of the last part in a composition σ. We introduce

the bivariate generating function to count the number of Arndt compositions with

respect to the weight and the last part:

B(x, y) :=
∑
σ∈A

x|σ|ylast(σ).

The coefficient xnym of B(x, y) is equal to the number of Arndt compositions of n

whose last part is equal to m. In Theorem 8 we give a rational generating function

for B(x, y).

Theorem 8. The generating function for Arndt compositions with respect to the

weight and the last part is given by

B(x, y) =
1− x− x2 − x2y + 2x3y + 2x4y − x5y − x4y2

(1− x− x2)(1− xy)(1− x2y)
.

Proof. Let σ = (σ1, σ2) be an Arndt composition with two parts. If σ1 = j ≥ 2,

then the bivariate generating function is xj
(
xy + (xy)2 + · · ·+ (xy)j−1

)
. Summing

over j ≥ 2 we have∑
j≥2

xj
(
xy + (xy)2 + · · ·+ (xy)j−1

)
=
∑
j≥2

xj
xy − (xy)j

1− xy
=

x3y2

(1− x)(1 + x2y)
.

Therefore the generating function for Arndt compositions with an even number of

parts with respect to the last part is given by

1 +
∑
m≥1

(
x3

(1− x)(1 + x2)

)m−1
x3y2

(1− x)(1 + x2y)
= 1 +

x3(1− x2)y

(1− x− x2)(1− x2y)
.

Analogously, if the number of parts is odd, then generating functions is∑
m≥0

(
x3

(1− x)(1 + x2)

)m
xy

1− xy
=

(1− x)2x(1 + x)y

(1− x− x2)(1− xy)
.

Adding the last two equations we obtain the desired result.

As a series expansion, the generating function B(x, y) begins with

B(x, y) = 1 + xy + x2y2 + x3
(
y3 + y

)
+ x4

(
y4 + 2y

)
+ x5

(
y5 + 2y2 + 2y

)
+ x6

(
y6 + y3 + 2y2 + 4y

)
+O

(
x7
)
.

Figure 4 shows the weights of the Arndt compositions corresponding to the bold

coefficient in the above series.
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x
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3

x
6
y

Figure 4: Weights for Arndt compositions (bar graphs) in A(3).

n\m 0 1 2 3 4 5 6 7 8 9 10
0 1
1 0 1
2 0 0 1
3 0 1 0 1
4 0 2 0 0 1
5 0 2 2 0 0 1
6 0 4 2 1 0 0 1
7 0 6 3 2 1 0 0 1
8 0 10 5 3 1 1 0 0 1
9 0 16 8 4 3 1 1 0 0 1
10 0 26 13 7 4 2 1 1 0 0 1

Table 2: Values of b(n,m), for 0 ≤ n ≤ 10 and 0 ≤ m ≤ 10.

Let b(n,m) denote the number of Arndt compositions of n, whose last part is

equal to m. Note that a(n) =
∑
m≥1 b(n,m). In Table 2 we show the first few

values of the sequence b(n,m).

Theorem 9. For all n ≥ 1 we have

b(n,m) =


t1(n−m), if m ≤ n < 2m;

t1(n−m) + t2(n− 2m), if 2m ≤ n;

0, otherwise;

where t1(0) = 1, t1(1) = 0, t1(n) = Fn−2 for n ≥ 2 and t2(0) = 0, t2(1) = 1,t2(n) =

Fn−1 for n ≥ 2.

Proof. The generating function B(x, y) can be rewritten as

B(x, y) = −F (x) + T1(x, y) + T2(x, y),

where F (x) is the generating function of the Fibonacci numbers, that is, F (x) =

x/(1− x− x2). Moreover,

T1(x, y) =
(1− x)2(1 + x)

(1− x− x2)(1− xy)
and T2(x, y) =

(1− x)x(1 + x)

(1− x− x2)(1− x2y)
.
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By standard methods, the generating functions of the sequences t1(n) and t2(n)

defined in the statement of this theorem, are given by

T1(x) =
∑
n≥0

t1(n)xn =
(1− x)2(1 + x)

(1− x− x2)
, T2(x) =

∑
n≥0

t2(n)xn =
(1− x)x(1 + x)

(1− x− x2)
.

By the Cauchy product we have

T1(x, y) = T1(x)
1

1− xy
=
∑
n≥0

n∑
m=0

t1(n−m)ymxn =
∑
m≥0

ym
∑
n≥0

t1(n)xn+m

T2(x, y) = T2(x)
1

1− x2y
=
∑
n≥0

n∑
m=0

t2(n−m)ymx2n =
∑
m≥0

ym
∑
n≥0

t2(n)xn+2m.

By comparing the coefficients we obtain the desired result.

Notice that for all n ≥ 2m+ 2, we have the equality

b(n,m) = Fn−m−2 + Fn−2m−1.

For example, the number of Arndt compositions whose last part is equal to 1 is

given by b(n, 1) = 2Fn−3 for all n ≥ 4. Our result generalizes the Corollary 2.2 of

[6].

Let b(≤m)(n) and b(≥m)(n) be the number of Arndt compositions whose last part

is at most m and at least m, respectively.

Corollary 4. For k ≥ 1 and n ≥ 2k + 2, we have

b(≤k)(n) = Fn − Fn−k−1 − Fn−2k−2 and b(≥k)(n) = Fn−k − Fn−2k.

Proof. From the definitions we have

b(≤k)(n) =

k∑
j=1

b(n, j) =

k∑
j=1

(Fn−j−2 + Fn−2j−1)

=

k∑
j=1

((Fn−j − Fn−j−1) + (Fn−2j − Fn−2j−2))

= Fn−1 − Fn−k−1 + Fn−2 − Fn−2k−2
= Fn − Fn−k−1 − Fn−2k−2.

The second identity can be obtained in a similar way.

From Corollary 4 there are Fn−2 + Fn−4 Arndt compositions whose last part is

greater than 1. This result generalizes the Corollary 2.2 of [6].

Finally, we also have an asymptotic formula for b(n,m).
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Theorem 10. For a fixed positive integer m we have

b(n,m) ∼ ϕn−m−2√
5

(
1 +

1

ϕm−1

)
,

where ϕ = 1+
√
5

2 is the golden ratio.

Proof. From Theorem 9 we know that for 2m ≤ n

b(n,m) = t1(n−m) + t2(n− 2m) = Fn−m−2 + Fn−2m−1.

From Fn ∼ 1√
5
ϕn, we directly obtain the asymptotic for b(n,m).

Let d(n) denote the sum of the weight of the last part over all compositions in

A(n). The generating function for the sequence d(n) is given by

D(x) :=
∑
n≥0

d(n)xn =
∂B(x, y)

∂y

∣∣∣∣
y=1

=
x(1 + x− x3)

1− x− 2x2 + x3 + x4

= x+ 2x2 + 4x3 + 6x4 + 11x5 + 17x6 + 29x7 +O(x8).

From Figure 1 we can verify that the sum of the last parts (last column) of all com-

positions in A(6) is 17. Notice that the sequence d(n) corresponds to the sequence

A014217, therefore

d(n) =

⌊(
1 +
√

5

2

)n⌋
, n ≥ 1.

Our results leave a new combinatorial interpretation for this sequence.

Corollary 5. The expected number of the weight of the last part in A(n) is asymp-

totically
√

5 ≈ 2.23607.

4. First Generalization of Arndt Compositions

Hopkins and Tangboonduangjit [6] generalized Arndt compositions by requiring a

greater decrease or increase. Specifically, given an integer k, let Ak(n) denote the

set of Arndt compositions of n such that σ2i−1 > σ2i + k for each positive integer i.

The elements in Ak(n) will be called k-Arndt compositions. Furthermore, we will

denote by ak(n,m) the number of such compositions of n that have exactly m parts

and ak(n) :=
∑
m≥1 ak(n,m). For example, a3(10) = 10, the relevant compositions

being

(10), (9, 1), (8, 2), (8, 1, 1), (7, 3), (7, 2, 1),

(7, 1, 2), (6, 1, 3), (6, 2, 2), (5, 1, 4).

http://oeis.org/A014217
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Let Ak denote the set of all k-Arndt compositions. We introduce a bivariate

generating function to count the number of k-Arndt compositions with respect to

the weight and number of parts:

Ak(x, y) :=
∑
σ∈Ak

x|σ|yparts(σ).

We have the following generating function formulae for the preceding sequences.

Theorem 11. The generating function for the k-Arndt compositions with respect

to the number of parts and weight is given by

Ak(x, y) =


(1− x2)(1− x(1− y))

1− x− x2 + x3 − x3+ky2
, if k ≥ 0;

(1− x2)(1− x(1− y))

1− x− x2(1 + y2) + x3(1− y2) + y2x2−k
, if k < 0.

Proof. If k ≥ 0, then the k-Arndt compositions with two parts (σ1, σ2) (j = σ1 >

σ2 + k) are enumerated by

∑
j≥2+k

xjy
(
x+ x2 + · · ·+ xj−1−k

)
y =

x3+ky2

(1− x)2(1 + x)
.

Therefore the generating function for the k-Arndt compositions with an even num-

ber of parts is

∑
m≥0

(
x3+k

(1− x)2(1 + x)

)m
y2m =

(1− x)2(1 + x)

1− x− x2 + x3 − x3+ky2
.

Analogously, if the number of parts is odd, then the generating function is

∑
m≥0

(
x3+k

(1− x)2(1 + x)

)m
y2m

xy

1− x
=

(1− x2)xy

1− x− x2 + x3 − x3+ky2
.

Adding the last two equations we obtain the desired result. The proof for case k < 0

follows from a similar argument.

As a series expansion, the generating functions A3(x, y) and A−3(x, y) begin with

A3(x, y) = 1 + yx+ yx2 + yx3 + yx4 + yx5 + (y + y2)x6 +O
(
x7
)
,

A−3(x, y) = 1 + yx+ (y + y2)x2 + (y + 2y2 + y3)x3 + (y + 3y2 + 3y3 + y4)x4

+ (y + 3y2 + 6y3 + 4y4 + y5)x5

+ (y + 4y2 + 9y3 + 10y4 + 5y5 + y6)x6 +O
(
x7
)
.

Setting y = 1 in Theorem 11 implies the following corollary.
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Corollary 6. The generating function of the number of k-Arndt compositions is

Ak(x) =


1− x2

1− x− x2 + x3 − xk+3
, if k ≥ 0

1− x2

1− x− 2x2 + x2−k
, if k < 0;

Note that if k = 0, we recover Corollary 2.

5. A Second Generalization of Arndt Compositions

The goal of this section is to introduce a second generalization of Arndt composi-

tions. Specifically, given a positive integer k, let A(k)(n) denote the set of compo-

sitions of n such that σki−(k−1) > σki−(k−2) > · · · > σki for each positive integer i.

The elements in A(k)(n) will be called k-block Arndt compositions. Furthermore, we

will denote by a(k)(n,m) the number of such compositions of n that have exactly

m parts and a(k)(n) :=
∑
m≥1 a

(k)(n,m). For example, a(3)(10) = 18, the relevant

compositions being

(10), (9, 1), (8, 2), (7, 3), (7, 2, 1), (6, 4), (6, 3, 1), (6, 2, 1, 1),

(5, 4, 1), (5, 3, 2), (5, 3, 1, 1), (5, 2, 1, 2), (4, 3, 2, 1), (4, 3, 1, 2),

(4, 2, 1, 3), (3, 2, 1, 4), (4, 2, 1, 2, 1), (3, 2, 1, 3, 1).

Let A(k) denote the set of all k-block Arndt compositions. Consider the bivariate

generating function

A(k)(x, y) :=
∑

σ∈A(k)

x|σ|yparts(σ).

Theorem 12. The generating function for the k-block Arndt compositions with

respect to the number of parts and weight is given by

A(k)(x, y) =
1

1− Jk(x, y)

k−1∑
j=0

Jj(x, y)

 ,

where Jj(x, y) = x(j+1
2 )yj

∏j
`=1

1
1−x` for j ≥ 1 and J0(x, y) = 1.

Proof. Let β = (β1, β2, . . . , βj) be a k-block Arndt composition with j parts (j ≤ k).

This kind of compositions are integer partitions with exactly j distinct parts. The

generating functions for this family of partitions is given by (cf. [3, pp. 105])

Jj(x, y) = yj
j∏
`=1

x`

1− x`
= x(j+1

2 )yj
j∏
`=1

1

1− x`
.
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The k-block Arndt compositions are the concatenation of blocks of k columns in

decreasing order and at most j ≤ k− 1 additional columns in decreasing order; see

Figure 5 for a pictorial description.

σ1

· · ·

σ2 σk σk+1

· · ·

σk+2 σ2k σ(i−1)k+1

· · ·

σik β1

· · ·

βj

Figure 5: Decomposition of a k-block Arndt composition.

Therefore, the generating function is given by

∑
i≥0

(Jk(x, y))i

k−1∑
j=0

Jj(x, y)

 =
1

1− Jk(x, y)

k−1∑
j=0

Jj(x, y)

 .

For example, for k = 3 and k = 4 we obtain the bivariate generating functions:

A(3)(x, y) =
(1 − x3)(1 − x− x2 + x3 + xy − x3y + x3y2)

1 − x− x2 + x4 + x5 − x6(1 + y3)
,

A(4)(x, y) =
(1 − x4)(1 − x− x2 + x4 + x5 − x6 + xy − x3y − x4y + x6y + x3y2 − x6y2 + x6y3)

1 − x− x2 + 2x5 − x8 − x9 + x10 − x10y4
.

Setting y = 1 in the above generating functions we obtain, respectively, the gener-
ating functions of the number of 3-block and 4-block Arndt compositions:

A(3)(x, 1) =
1− x2 + x5 − x6

1− x− x2 + x4 + x5 − 2x6

= 1 + x+ x2 + 2x3 + 2x4 + 3x5 + 4x6 + 6x7 + 8x8 + 13x9 +O(x10),

A(4)(x, 1) =
(1− x)(1 + x)(1 + x2)(1− x2 + x5)

1− x− x2 + 2x5 − x8 − x9
= 1 + x+ x2 + 2x3 + 2x4 + 3x5 + 4x6 + 5x7 + 6x8 + 8x9 +O(x10).

For example, these are some of the 3-block Arndt compositions of 14 with 6 parts

(5, 2, 1, 3, 2, 1), (3, 2, 1, 5, 2, 1), (4, 2, 1, 4, 2, 1), (4, 3, 1, 3, 2, 1), (3, 2, 1, 4, 3, 1).
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