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Abstract

We present results concerning when the average of the first n terms of any sequence
satisfying a certain second-order linear recurrence is an integer. These results sub-
stantially generalize results of Fatehizadeh and Yaqubi concerning the Fibonacci se-
quence. For particular second-order linear recurrences we also explicitly determine
all positive integers n for which the period of this second-order linear recurrence
modulo n divides n.

1. Introduction

Let {Gn} denote the generalized Fibonacci sequence defined by

Gn+2 = Gn+1 +Gn, (1.1)

with initial terms G0 and G1, where G0 and G1 are integers. In particular, if G0 = 0

and G1 = 1 we get the classical Fibonacci sequence and denote it by {Fn}.
We will consider the question of when the average of the first n terms of {Gn}

starting with n = 1 is an integer for all possible values of G0 and G1. By induction,

it is easily determined that

n∑
i=1

Gi = Gn+2 −G2. (1.2)

Let m be a positive integer. Since there are only m2 possible initial ordered

pairs (G0, G1) modulo m, it follows that the sequence {Gi} is eventually periodic
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modulo m starting from some term Gn0
. Noting that Gi−1 is uniquely determined

by Gi−1 = Gi+1 − Gi, it is easily seen that {Gi} is purely periodic modulo m for

all possible initial terms G0 and G1. By the recursion relation (1.1) and induction,

one sees that

Gn = G0Fn−1 +G1Fn. (1.3)

Let πG(m) denote the period of {Gn} modulo m, that is, πG(m) is the least

positive integer k such that

Gn+k ≡ Gn (mod m)

for all n ≥ 0. It is easily seen that r is a general period of {Gn} modulo m if and

only if

πG(m) | r.

It follows from (1.3) that

πF (m) is a general period of {Gi} modulo m,

where πF (m) is the period of {Fn} modulo m.

We observe by (1.2) that

1

n

n∑
i=1

Gi =
1

n
(Gn+2 −G2)

is an integer for any initial values G0 and G1 if n is equal to a general period of

{Gi} modulo n, which occurs if

πF (n) | n.

Example 1.1. We observe that F24 = 46368 ≡ 0 (mod 24) and F25 = 75025 ≡
1 (mod 24). Thus, 24 is equal to a general period of {Fn}modulo 24. By inspection,

one sees that πF (24) = 24. We note by (1.2) that

24∑
i=1

Fi = F26 − F2 = 121393− 1 ≡ 0 (mod 24).

Thus, by our observations above,

24∑
i=1

Gi = G26 −G2 ≡ 0 (mod 24)

for all generalized Fibonacci sequences {Gn} and hence

1

24

24∑
i=1

Gi is an integer.
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In the remainder of this paper, we will investigate when the average of the first n

terms of more general second-order linear recurrences is an integer. We will further

explore when these second-order linear recurrences are purely periodic modulo m

and when the period modulo m of these recurrences is divisible by m. Let W (a, b)

denote the sequence satisfying the second-order linear recursion relation

Wn+2 = aWn+1 + bWn (1.4)

with discriminant D = a2 + 4b, where a, b, and the initial terms W0 and W1 are

all integers. We distinguish two recurrences satisfying (1.4), the Lucas sequence

U(a, b) with initial terms U0 = 0 and U1 = 1, and the Lucas sequence V (a, b) with

initial terms V0 = 2 and V1 = a.

Associated with the recurrence W (a, b) is the characteristic polynomial

f(x) = x2 − ax− b

with characteristic roots α and β and discriminant

D = a2 + 4b = (α− β)2.

By the Binet formulas,

Un = αn−βn

α−β , Vn = αn+βn, if D 6= 0,

Un = nαn−1, Vn = 2αn, if D = 0.

}
(1.5)

More generally,

Wn = cαα
n + cββ

n if D 6= 0, (1.6)

where

cα =
W1 − βW0

α− β
, cβ =

αW0 −W1

α− β
, (1.7)

(see [5, p. 174]), while

Wn = (c1n+ c2)αn if D = 0, (1.8)

where

c1 =
W1 −W0α

α
, c2 = W0, (1.9)

see [8, pp. 33–35]. Throughout this article, p will denote a prime, m will denote a

positive integer, and n will denote a nonnegative integer. If n is not explicitly given

to be a nonnegative integer, we will assume that n is a positive integer.

Lemma 1.1 below follows from the Binet formulas (1.5).

Lemma 1.1. Consider the Lucas sequences U(a, b) and V (a, b). Then we have:

(i) U2n = UnVn.
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(ii) U2n+1 = bU2
n + U2

n+1.

(iii) If m | n, then Um | Un.

By our argument above, the sequence W (a, b) is purely periodic modulo m if

gcd(m, b) = 1 (see also [3, pp. 344–345]). Clearly, if W (a, b) is purely periodic

modulo m, then W (a, b) is purely periodic modulo p for each prime divisor p of m.

Consider the recurrence W (a, b) and assume that m is a positive integer such

that gcd(m, b) = 1. The (least) period of W (a, b) modulo m, denoted by πW (m), is

the least positive integer r such that

Wn+r ≡Wn (mod m)

for all n ≥ n0 for some nonnegative integer n0. We will primarily be interested in

the case in which n0 = 0, in which case W (a, b) is purely periodic modulo m. We

will usually deal with the period πU (m) of the Lucas sequence U(a, b) modulo m.

Since we desire U(a, b) and also W (a, b), in general, to be purely periodic modulo

m for all m, we will frequently only consider recurrences W (a, b) for which b = ±1.

The (least) restricted period of the purely periodic recurrence W (a, b) modulo m,

denoted by ρW (m), is the least positive integer s such that

Ws+n ≡MWn (mod m) (1.10)

for all n ≥ n0 and some integer M = MW (m) such that gcd(M,m) = 1. Here

M = MW (m) is called the multiplier of W (a, b) modulo m. Since U(a, b) is purely

periodic modulo m and has initial terms U0 = 0, U1 = 1, it is easily seen that

πU (m) is the least positive integer r such that

Ur ≡ 0 (mod m), Ur+1 ≡ 1 (mod m), (1.11)

while ρU (m) is the smallest positive integer s such that

Us ≡ 0 (mod m), Us+1 ≡MU1 ≡M (mod m), (1.12)

where M = MU (m) is the multiplier of U(a, b) modulo m.

Remark 1.1. We now consider the Lucas sequence U(a, b) with b 6= 0. Assume that

gcd(m, b) > 1. Let p be a prime dividing m such that gcd(p, b) > 1. If p - a, then

it follows by induction that p - Un for all n ≥ 1. If p | a, then one sees by induction

that p | Un for n ≥ 2. Noting that U0 = 0 and U1 = 1, we see that U(a, b) is not

purely periodic modulo p. It now follows that U(a, b) is purely periodic modulo m

if and only if gcd(m, b) = 1.

Given the recurrence W (a, b) and the integer m, where gcd(m, b) = 1, it is proved

in [3, pp. 354–355] that ρW (m) | πW (m). Let

EW (m) =
πW (m)

ρW (m)
. (1.13)
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Then by [3, pp. 354–355], EW (m) is the multiplicative order of the multiplier M =

MW (m) modulo m. By repeated application of (1.13), we see that if ρ = ρW (m),

then

Wn+ρi ≡M iWn (mod m)

for all n ≥ 0 and i ≥ 1.

Remark 1.2. Consider the recurrence W (a, b) and suppose that gcd(m, b) = 1. It

is clear that r is a general period of W (a, b) modulo m and s is a general restricted

period of W (a, b) modulo m if and only if

πW (m) | r and ρW (m) | s. (1.14)

Remark 1.3. Consider the recurrence W (a, b). Suppose that gcd(m, b) = 1. It

is evident that if m | n, then πW (n) is a general period of W (a, b) modulo m and

ρW (n) is a general restricted period of W (a, b) modulo m.

Given the recurrences W (a, b) and U(a, b) and the positive integer m, where

gcd(m, b) = 1, the following theorem gives a relation between the period of W (a, b)

modulo m and the period of U(a, b) modulo m.

Theorem 1.1. Consider the recurrence W (a, b) and the Lucas sequence U(a, b),

where b 6= 0. Let m be a positive integer m such that gcd(m, b) = 1. Then W (a, b)

and U(a, b) are both purely periodic modulo m. Moreover,

πW (m) | πU (m) and ρW (m) | ρU (m). (1.15)

In particular, πU (m) is a general period of W (a, b) modulo m and ρU (m) is a general

restricted period of W (a, b) modulo m.

Proof. Since gcd(m, b) = 1, we see by our earlier observations that W (a, b) and

U(a, b) are both purely periodic modulo m. It follows by induction that

Wn = bW0Un−1 +W1Un. (1.16)

We now see that (1.15) holds. The last assertion in Theorem 1.1 follows from

Remark 1.2. �

Given the positive integer m, we define πiU (m) iteratively as follows for i ≥ 0. We

let π0
U (m) = m and πi+1

U (m) = πU (πiU (m)). We define ρiU (m) similarly for i ≥ 0.

See [11] for a study of the properties of πiU (m)) and ρiU (m).

Theorem 1.2. Consider the Lucas sequence U(a, b), where b 6= 0. Let m and n be

positive integers such that gcd(mn, b) = 1. Then

πU (lcm(m,n)) = lcm(πU (m), πU (n)) and ρU (lcm(m,n)) = lcm(ρU (m), ρU (n)),

(1.17)
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where lcm(m,n) denotes the least common multiple of m and n. Furthermore,

πiU (lcm(m,n)) = lcm(πiU (m), πiU (n)) and ρiU (lcm(m,n)) = lcm(ρiU (m), ρiU (n))

(1.18)

for i ≥ 1.

Proof. Assertion (1.17) follows from (1.14) and Remark 1.3. Then (1.18) follows by

induction from (1.14), Remark 1.3, and (1.17). �

The recurrence W (a, b) with discriminant D and characteristic roots α and β is

called degenerate if ab = 0 or α/β is a root of unity. Note that W (a, b) is degenerate

if D = 0. We observe by the Binet formulas (1.5) that Un = 0 for some n ≥ 1 only if

U(a, b) is degenerate. Theorem 1.3 characterizes the degenerate recurrences W (a, b)

when b = ±1 or (a, b) = (±1, 0).

Theorem 1.3. Consider the recurrences W (a, b), where b = ±1 or (a, b) = (±1, 0).

Then we have:

(i) W (a, b) is degenerate if and only if (a, b) = (0, 1), (0,−1), (1,−1), (−1,−1),

(2,−1), (−2,−1), (1, 0), or (−1, 0).

(ii) If (a, b) = (0, 1), then W2n = W0, W2n+1 = W1 for n ≥ 0.

(iii) If (a, b) = (0,−1), then W4n = W0, W4n+1 = W1, W4n+2 = −W0, W4n+3 =

−W1 for n ≥ 0.

(iv) If (a, b) = (1,−1), then W6n = W0, W6n+1 = W1, W6n+2 = W1 − W0,

W6n+3 = −W0, W6n+4 = −W1, W6n+5 = W0 −W1 for n ≥ 0.

(v) If (a, b) = (−1,−1), then W3n = W0, W3n+1 = W1, W3n+2 = −W1 −W0 for

n ≥ 0.

(vi) If (a, b) = (2,−1), then α = β = 1, D = 0, and Wn = nW1 − (n − 1)W0 for

n ≥ 0.

(vii) If (a, b) = (−2,−1), then α = β = −1, D = 0, and Wn = (−1)n+1(nW1 +

(n− 1)W0) for n ≥ 0.

(viii) If (a, b) = (1, 0), then Wn = W1 for n ≥ 1.

(ix) If (a, b) = (−1, 0), then Wn = (−1)n+1W1 for n ≥ 1.

Proof. Part (i) follows from [13, p. 613]. Parts (ii)–(v) and (viii)–(ix) follow by

induction. Parts (vi) and (vii) follow from (1.8) and (1.9). �

The following theorem gives results about the restricted period and period of the

nondegenerate Lucas sequence U(a, b) modulo n. Given the nonzero integer r, we

let P (r) denote the largest prime dividing r with the convention that P (±1) = 1.
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Theorem 1.4. Consider the nondegenerate Lucas sequence U(a, b) with discrimi-

nant D. Then the following hold.

(i) If p - 2bD, then ρU (p) > 1 and ρ(p) | p− (D/p), where (D/p) is the Legendre

symbol. Moreover, if p ≥ 2, then πU (p) = ρU (p)EU (p), where EU (p) | p − 1.

Furthermore, if p = 2 and p - bD, then πU (p) = 3.

(ii) If p - 2bD, then ρU (p) | (p− (D/p))/2 if and only if (−b/p) = 1.

(iii) If p - b and p | D, then ρU (p) = p and πU (p) | p(p− 1).

(iv) If p - 2b and (D/p) = 1, then πU (p) | p− 1.

(v) If p - 2b and (D/p) = −1, then πU (p) | p2 − 1 and P (πU (p)) ≤ (p+ 1)/2.

(vi) If p - b and p | D, then P (πU (p)) = p.

(vii) Suppose that p - b. Let c ≥ 1 be the largest integer such that ρU (pc) = ρ(p).

Then c exists. If pc 6= 2, then

ρU (pi) = pmax(i−c,0)ρU (p)

for i ≥ 1. If pc = 2, let d be the largest integer such that ρU (4) = ρU (2d).

Then

ρU (2i) = 2max(i+1−d,1)ρU (2)

for i ≥ 2.

(viii) Suppose that p - b. Let e ≥ 1 be the largest integer such that πU (pe) = π(p).

Then e exists. If pe 6= 2, then

πU (pi) = pmax(i−e,0)πU (p)

for i ≥ 1. Let pe = 2 and let g be the largest integer such that πU (4) = πU (2g).

Then

πU (2i) = 2max(i+1−g,1)πU (2)

for i ≥ 2.

(ix) ρU (1) = πU (1) = 1.

Proof. Parts (i)–(iii) are proved in [6, pp. 423 and 441]. Part (iv) is proved in [2,

pp. 44–45].

(v) By part (i) and (1.13), ρU (p) | p+1 and πU (p) = ρU (p)·EU (p). Since EU (p) is

the multiplicative order modulo p of the multiplier MW (p), we see that EU (p) | p−1.

Thus, πU (p) | (p+ 1)(p− 1) = p2 − 1. Let q be an odd prime dividing πU (p). Then

q | (p + 1)/2 or q | (p − 1)/2, since q is odd. Hence, P (πU (p)) ≤ (p + 1)/2, since

(p+ 1)/2 ≥ 2.
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(vi) By part (iii) and the proof of part (v), p | πU (p), so p | p(p − 1). It now

follows that P (π(p)) = p.

(vii) and (viii) Since U(a, b) is nondegenerate, Un 6= 0 for n > 0. It now follows

from (1.11) and (1.12) that c, d, e and g all exist. The rest of part (vii) follows from

Theorem X of [2], while the remainder of part (viii) follows from [12, pp. 619–620,

627–628].

(ix) It is evident that ρU (1) = πU (1) = 1. �

Theorem 1.5. Let U(a, b) be a nondegenerate Lucas sequence with discriminant

D. Suppose that gcd(p, b) = 1, p | D and p - gcd(a, b). Let νp(m) denote the largest

nonnegative integer r such that pr | m. Then the following hold.

(i) ρU (p) = p and U(a, b) is uniformly distributed modulo p with each residue

(mod p) appearing exactly EU (p) times in a least period of U(a, b) modulo p.

(ii) Suppose that p ≥ 5 and i ≥ 1. Then ρU (pi) = pi, πU (pi) = piEU (p), and

U(a, b) is uniformly distributed modulo pi with each residue (mod pi) appearing

exactly EU (p) times in the least period of U(a, b) modulo pi.

(iii) Suppose that p = 2. Then U2 = a ≡ 0 (mod 2). Moreover, if a ≡ 2 (mod 4)

and i ≥ 1, then ρ(2i) = 2i. Furthermore, if a ≡ 2 (mod 4), i ≥ 1, and b ≡ −1

(mod 4), then U(a, b) is uniformly distributed modulo 2i with each residue

(mod 2i) appearing exactly once in the least period of U(a, b) modulo 2i.

(iv) Suppose that p = 3. Then U3 = a2 + b ≡ 0 (mod 3). Further, if a2 + b 6≡ 0

(mod 9) and i ≥ 1, then ρ(3i) = 3i and U(a, b) is uniformly distributed modulo

3i with each residue (mod pi) appearing exactly EU (3) times in the least

period of U(a, b) modulo 3i.

(v) Suppose that p = 2 and ν2(a) = c ≥ 2. Then ρU (2i) = 2max(i+1−c,1) for i ≥ 1.

(vi) Suppose that p = 3 and ν3(a2 + b) = d ≥ 2. Then ρU (3i) = 3max(i+1−d,1) for

i ≥ 1.

Proof. Parts (i)–(vi) follow from results in [1] and [14]. �

2. The Main Results

From here on, given the recurrence W (a, b), we let BW (n) =
∑n
i=1Wi and AW (n) =

1
nBW (n). In Theorem 2.1 below, given the degenerate Lucas sequence U(a, b), where

b = ±1 or 0, we will find positive integers n for which AW (n) is an integer for all

possible recurrences W (a, b).
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Theorem 2.1. Consider the degenerate Lucas sequence U(a, b) and the degenerate

recurrence W (a, b), where b = ±1 or (a, b) = (±1, 0). Let n be an arbitrary positive

integer.

(i) If (a, b) = (0, 1), then BU (n) = dn/2e. Moreover, AW (n) is an integer for all

recurrences W (a, b) if and only if n = 1.

(ii) If (a, b) = (0,−1), then BW (4n) = 0 for all recurrences W (a, b). Moreover,

AW (4n) = 0 and is an integer for all recurrences W (a, b).

(iii) If (a, b) = (1,−1), then BW (6n) = 0 for all recurrences W (a, b). Moreover,

AW (6n) = 0 and is an integer for all recurrences W (a, b).

(iv) If (a, b) = (−1,−1), then BW (3n) = 0 for all recurrences W (a, b). Moreover,

AW (3n) = 0 and is an integer for all recurrences W (a, b).

(v) If (a, b) = (2,−1), then BW (n) = 1
2 (W1 −W0)n(n + 1) + W0n. Moreover,

AW (n) is an integer for all recurrences W (a, b) if and only if n ≡ 1 (mod 2).

In particular, AW (2n− 1) = n(W1 −W0) +W0 for n ≥ 1.

(vi) If (a, b) = (−2,−1), then BU (n) = (−1)n+1dn/2e. Moreover, AW (n) is an

integer for all recurrences W (a, b) if and only if n = 1.

(vii) If (a, b) = (1, 0), then BW (n) = nW1. Moreover, AW (n) = W1 and is an

integer for n ≥ 1 for all recurrences W (a, b).

(viii) If (a, b) = (−1, 0), then BW (2n) = 0 for all recurrences W (a, b). Moreover,

AW (2n) = 0 and is an integer for all recurrences W (a, b).

Proof. Parts (i)–(viii) follow from Theorem 1.3 and induction. �

Theorem 2.2. Consider the recurrence W (a, b) and the Lucas sequence U(a, b)

with characteristic roots α and β, where bD 6= 0.

(i) If a+ b− 1 6= 0, then

BW (n) =
1

a+ b− 1
(Wn+1 −W1 + b(Wn −W0)) =

J(n)

a+ b− 1
, (2.1)

where J(n) = Wn+1 − W1 + b(Wn − W0). Moreover, if gcd(n, b) = 1 and

πU (n) | r, then J(r) ≡ 0 (mod n).

(ii) If a+ b− 1 = 0, then

BW (n) =
1

−b− 1
((W1−W0)Un+1−n(W1+bW0)+W0−W1 =

K(n)

−b− 1
, (2.2)

where K(n) = (W1 −W0)Un+1 − n(W1 + bW0) + W0 −W1. Furthermore, if

gcd(n, b) = 1 and πU (n) | s, then K(s) ≡ 0 (mod n).
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Proof. Equations (2.1) and (2.2) follow from (1.6)–(1.9), and [5, pp. 176–177]. If

a+b−1 6= 0, gcd(n, b) = 1, and πU (n) | r, then r is a general period of U(a, b) modulo

n, and consequently, r is also a general period of W (a, b) modulo n by Remark 1.2

and Theorem 1.1. Hence, Wr+1 ≡ W1 and Wr ≡ W0 (mod n). It follows from

(2.1) that J(r) ≡ 0 (mod n). Now suppose that a + b − 1 = 0, gcd(n, b) = 1, and

πU (n) | s. Then s is a general period of U(a, b) modulo n. Hence, Us+1 ≡ U1 ≡ 1

(mod n). It now follows from (2.2) that K(s) ≡ 0 (mod n). �

Remark 2.1. The formulas given in [5, pp. 176–177] evaluate
∑n
i=0Wi. We obtain

(2.1) and (2.2) by subtracting W0 from
∑n
i=0Wi. We observe that if a+ b− 1 = 0,

then either α = 1 or β = 1, where α and β are the characteristic roots of W (a, b)

(see [5, p. 176]).

We have the following two corollaries to Theorem 2.2. The first of these corollaries

follows immediately from Theorem 2.2.

Corollary 2.1. Consider the Lucas sequence U(a, b), where b 6= 0.

(i) If a+ b− 1 6= 0, then

BU (n) =
1

a+ b− 1
(Un+1 − 1 + bUn).

(ii) If a+ b− 1 = 0, then

BU (n) =
1

−b− 1
(Un+1 − 1− n).

Corollary 2.2. Consider the Lucas sequence U(a, b).

(i) Let a+b−1 6= 0 and let n be a positive integer such that gcd(n, b(a+b−1)) = 1.

Then U(a, b) is purely periodic modulo n. Suppose that πU (n) | r. Then

BW (r) ≡ 0 (mod n)

for all recurrences W (a, b).

(ii) Let a+b−1 = 0 and let n be a positive integer such that gcd(n, b(−b−1)) = 1.

Then U(a, b) is purely periodic modulo n. Suppose that πU (n) | s. Then

BW (s) ≡ 0 (mod n)

for all recurrences W (a, b).

Proof. (i) Since gcd(b, n) = 1, W (a, b) is purely periodic modulo n for all recurrences

W (a, b). We note that r is a general period of U(a, b) modulo n. Then according to

Theorem 1.1, r is also a general period of any recurrence W (a, b) modulo n. Since
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gcd(n, a+ b− 1) = 1, it follows from Theorem 2.2 (i) that BW (r) ≡ 0 (mod n) for

all recurrences W (a, b).

(ii) We find by the observations in the proof of part (i) that W (a, b) is purely

periodic modulo n for all recurrences W (a, b) and that s is a general period of

U(a, b) modulo n. Since gcd(n,−b − 1) = 1, it follows from Theorem 2.2 (ii) that

BW (s) ≡ 0 (mod n) for all recurrences W (a, b). �

Remark 2.2. Given the Lucas sequence U(a, b), where b 6= 0, we let S(U) denote

the set of all positive integers n such that gcd(n, b) = 1 and πU (n) | n. By our

discussion above, U(a, b) is purely periodic modulo n if n ∈ S(U), which implies

that all recurrences W (a, b) are then purely periodic modulo n. In Theorems 4.2 and

4.3, we explicitly find all members of S(U) for the nondegenerate Lucas sequences

U(a,±1), U(−b + 1, b), and U(b − 1, b). We further let S′(U) denote the set of all

positive integers n such that n ∈ S(U) and BU (n) ≡ 0 (mod n), or equivalently,

such that n ∈ S(U) and AU (n) is an integer. We note that 1 ∈ S(U) and 1 ∈ S′(U)

for any Lucas sequence U(a, b). Given the positive integer n such that gcd(n, b) = 1,

we define C(n) to be the least positive integer m, if it exists, such that n | m and

m ∈ S(U). We also define C ′(n) to be the least positive integer m, if it exists,

such that n | m and m ∈ S′(U). We let T (U) denote the set of positive integers

n coprime to b such that n | Un, or equivalently, ρU (n) | n. Clearly if n ∈ S(U),

then n ∈ T (U). Theorems 2.3, 2.4, and 2.5 and Corollary 2.3 below present results

about elements in S(U) and S′(U) and results concerning C(n) and C ′(n).

Theorem 2.3. Consider the Lucas sequence U(a, b), where b 6= 0. Suppose that

n ∈ S(U) and that p | n. Then pn ∈ SU . Moreover, pn is also a member of

S′(U) and AW (pn) is an integer for all recurrences W (a, b) if it is the case that

a + b − 1 6= 0 and gcd(a + b − 1, n) = 1, or it is the case that a + b − 1 = 0 and

gcd(−b− 1, n) = 1.

Proof. Since gcd(n, b) = 1, we have that gcd(pn, b) = 1, and U(a, b) is purely

periodic modulo pn. Let n = pir, where i ≥ 1 and gcd(p, r) = 1. By assumption,

πU (n) | n. (2.3)

By Theorem 1.2,

πU (pir) = lcm(πU (pi), πU (r)). (2.4)

By Theorem 1.4 (viii),

πU (pi) | πU (pi+1), so πU (pi) | pπU (pi). (2.5)

It now follows from (2.3), (2.4), and (2.5) that

πU (pn) | pn.
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Hence, pn ∈ S(U).

Furthermore, suppose that a + b − 1 6= 0 and gcd(a + b − 1, n) = 1. Then

gcd(a + b − 1, pn) = 1. It now follows from Theorem 1.2, Theorem 1.4 (viii),

and Corollary 2.2 that np ∈ S′(U) and AW (np) is an integer for all recurrences

W (a, b). Finally, suppose that a + b − 1 = 0 and gcd(−b − 1, n) = 1. Then

gcd(−b− 1, pn) = 1. It again follows that np ∈ S′(U) and AW (np) is an integer for

all recurrences W (a, b). �

We have the following immediate corollary of Theorem 2.3, which is proved by

repeatedly applying Theorem 2.3.

Corollary 2.3. Consider the Lucas sequence U(a, b), where b 6= 0. Suppose that

n ∈ S(U) and that each prime divisor of m divides n. Then mn ∈ S(U). Moreover,

if it is the case that a + b − 1 6= 0 and gcd(a + b − 1, n) = 1 or it is the case that

a+ b− 1 = 0 and gcd(−b− 1, n) = 1, then mn ∈ S′(U) and AW (mn) is an integer

for all recurrences W (a, b).

Theorem 2.4. Consider the Lucas sequence U(a, b), where b 6= 0. Suppose that m

and n ∈ S(U). Then lcm(m,n) and mn ∈ S(U). Suppose further that it is the case

that a+ b− 1 6= 0 and gcd(a+ b− 1,mn) = 1 or it is the case that a+ b− 1 = 0 and

gcd(−b − 1,mn) = 1. Then m, n, lcm(m,n), and mn are all members of S′(U).

Moreover, AW (m), AW (n), AW (lcm(m,n)), and AW (mn) are all integers for all

recurrences W (a, b). In particular, if r is a positive integer such that C(r) exists

and either it is the case that a+ b− 1 6= 0 and gcd(a+ b− 1, C(r)) = 1 or it is the

case that a+b−1 = 0 and gcd(−b−1, C(r)) = 1, then C(r) = C ′(r) and AW (C(r))

is an integer for all recurrences W (a, b).

Proof. We first show that lcm(m,n) ∈ S(U). We observe that gcd(lcm(m,n), b) = 1,

because gcd(m, b) = gcd(n, b) = 1. Since πU (m) | m and πU (n) | n, it follows from

Theorem 1.2 that

πU (lcm(m,n)) = lcm(πU (m), πU (n)) | lcm(m,n).

Thus, lcm(m,n) ∈ S(U).

We now demonstrate that mn ∈ S(U). Let n = n1n2, where n2 is the largest

factor of n that is relatively prime to m. Then mn1 ∈ S(U) by Corollary 2.3. Since

gcd(mn1, n2) = 1, it follows by our argument above that mn = mn1n2 ∈ S(U).

Finally, suppose that it is the case that a+ b− 1 6= 0 and gcd(a+ b− 1,mn) = 1

or it is the case that a + b − 1 = 0 and gcd(−b − 1,mn) = 1. It then follows from

Corollary 2.2 that m, n, lcm(m,n), and mn are all members of S′(U), and that each

of AW (m), AW (n), AW (lcm(m,n)), and AW (mn) is an integer for all recurrences

W (a, b). The last assertion follows, since C(r) ∈ S(U) and C ′(r) ∈ S′(U) by

definition. �
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Theorem 2.5. Consider the Lucas sequence U(a, b), where b 6= 0. Suppose that

m and n ∈ S′(U) and m | r. Then BU (r) ≡ 0 (mod m). Moreover, lcm(m,n) ∈
S′(U). Furthermore, AW (m), AW (n), and AW (lcm(m,n)) are all integers for all

recurrences W (a, b). Additionally, BW (r) ≡ 0 (mod m) for all recurrences W (a, b).

Proof. It follows from the definition of S′(U) that gcd(m, b) = 1, πU (m) | m, and

BU (m) ≡ 0 (mod m). Suppose that m | r. Then m and r are both general periods

of U(a, b) modulo m. It now follows that

BU (r) ≡ (r/m)BU (m) ≡ (r/m) · 0 ≡ 0 (mod m).

Since m ∈ S′(U), n ∈ S′(U), m | lcm(m,n), and n | lcm(m,n), we see by our

argument above that

BU (lcm(m,n)) ≡ 0 (mod m) and BU (lcm(m,n)) ≡ 0 (mod n).

Hence,

BU (lcm(m,n)) ≡ 0 (mod lcm(m,n)).

Since lcm(m,n) ∈ S(U) by Theorem 2.4, we have that lcm(m,n) ∈ S′(U).

Now suppose that m ∈ S′(U) and W (a, b) is an arbitrary recurrence. Next we

show that AW (m) is an integer. Noting that m is also in S(U), we have that U(a, b)

is purely periodic modulo m and m is equal to a general period of U(a, b) modulo

m. Then Um ≡ U0 ≡ 0 (mod m). Let W (a, b) be an arbitrary recurrence. Then,

by (1.16),

Wm = bW0Um−1 +W1Um. (2.6)

Noting that Um ≡ U0 ≡ 0 (mod m) and BU (m) ≡ 0 (mod m), we find that

m∑
i=1

Ui ≡
m∑
i=1

Ui−1 ≡ 0 (mod m). (2.7)

Hence, by (2.6) and (2.7),

m∑
i=1

Wi ≡ bW0

m∑
i=1

Ui−1 +W1

m∑
i=1

Ui ≡ bW0 · 0 +W1 · 0 ≡ 0 (mod m). (2.8)

It now follows from (2.8) that AW (m) is an integer. Since m and r are both general

periods of W (a, b) modulo m and W (a, b) is purely periodic modulo m by Theorem

1.1, we see by (2.8) and our above argument that BW (r) ≡ 0 (mod m). �

Remark 2.3. By Theorem 2.5, given the ordered pair of integers (a, b) such that

b 6= 0, if n ∈ S(U) and one wishes to demonstrate that AW (n) is an integer for all

recurrences W (a, b), it suffices to show that BU (n) ≡ 0 (mod n), which implies that

AU (n) is an integer for the Lucas sequence U(a, b). In particular, if C ′(n) exists,

then AW (C ′(n)) is an integer for all recurrences W (a, b). We also note that in

Theorem 2.5, we do not necessarily assume that gcd(a+b−1, n) = 1 if a+b−1 6= 0

or that gcd(−b− 1, n) = 1 if a+ b− 1 = 0 as in Theorem 2.4.
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Theorem 2.6. Consider the Lucas sequence U(a, b) = U(1, b), where b 6= 0. If

gcd(n, b) = 1, then BU (n) ≡ 0 (mod n) if and only if Un+2 ≡ 1 (mod n).

Proof. We observe that U(1, b) is purely periodic modulo n, since gcd(n, b) = 1.

Noting that a = 1, we see that a+ b− 1 = b 6= 0. It now follows from Corollary 2.1

(i) that

BU (n) =
1

a+ b− 1
(Un+1 + bUn − 1) =

1

b
(Un+2 − 1) ≡ 0 (mod n)

⇐⇒ Un+2 ≡ 1 (mod n).

This ends the proof. �

Theorem 2.6 was proved for the case of the Fibonacci sequence U(1, 1) in Theorem

7 of [4].

Example 2.1. In contradistinction to Theorem 2.5, we show by two examples that

there are instances of Lucas sequences U(a, b) for which n 6∈ S(U) and AU (n) is an

integer, but AW (n) is not an integer for infinitely many recurrences W (a, b). First

consider the Fibonacci sequence U(1, 1) and let n = 319 = 11 · 29. By inspection,

πU (11) = 10 and πU (29) = 14. We confirm that BU (319) ≡ 0 (mod 319), which

implies that AU (319) is an integer. Since πU (11) = 10 | 320, we see that U321 ≡
U1 ≡ 1 (mod 11). Since πU (29) = 14 | 322, we find that U321 ≡ U323 − U322 ≡
1− 0 ≡ 1 (mod 29). Thus, by Theorem 2.6, 11 | BU (319) and 29 | BU (319), which

yields that 319 | BU (319).

Now we evaluateBW (319) for an arbitrary generalized Fibonacci sequenceW (1, 1).

Notice that by (1.2), BW (319) = W321−W2. We observe that 10 is equal to a general

period of W (1, 1) (mod 11) and 14 is equal to a general period of W (1, 1) (mod 29).

Then

W321 −W2 ≡W1 −W2 ≡ −W0 (mod 11), (2.9)

while

W321 −W2 ≡W323 −W322 −W2 ≡W1 −W0 −W2

≡ −(W2 −W1)−W0 ≡ −2W0 (mod 29). (2.10)

Suppose that 11 · 29 = 319 | BW (319). Then by (2.9) and (2.10), BW (319) ≡
−W0 ≡ 0 (mod 11) and BW (319) ≡ −2W0 ≡ 0 (mod 29), which implies that

W0 ≡ 0 (mod 319). Hence, AW (319) is not an integer if W0 6≡ 0 (mod 319). We

note that for the Fibonacci sequence U(1, 1), Sequences A331976, A331870, and

A111035 in the On-Line Encyclopedia of Integer Sequences [7] give further examples

of integers n for which AU (n) is an integer, but n 6∈ S(U).

As a second example, we consider the Lucas sequence U(1,−2) and let n = 21 =

3 · 7. We will show that BU (21) ≡ 0 (mod 21), which implies that AU (21) is an
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integer. By the proof of Theorem 2.6 and inspection,

BU (21) =
1

−2
(U23 − U2) = −1

2
(967− 1) = −483 ≡ 0 (mod 21).

We now evaluate BW (21) for an arbitrary recurrence generalized Fibonacci se-

quence W (1,−2). By examination, πU (3) = 8 and πU (7) = 21. Hence, πW (3) | 8,

so πW (3) | 24 and πW (7) | 21. Suppose that BW (21) ≡ 0 (mod 21). Then by

Theorem 2.2 (i),

BW (21) =
1

−2
(W23 −W2) ≡W23 −W2 ≡ 0 (mod 3). (2.11)

Since 24 is equal to a general period of U(1,−2) modulo 3, we see that

W23 ≡ (−2)−1(W25 −W24) ≡W1 −W0 (mod 3). (2.12)

Thus, by (2.11) and (2.12),

BW (21) ≡W23 −W2 ≡W1 −W0 −W2 ≡W0 ≡ 0 (mod 3). (2.13)

Hence, by (2.13), W0 ≡ 0 (mod 3). Therefore, AW (21) is not an integer if W0 6≡ 0

(mod 3).

Theorem 2.7. Consider the Lucas sequence U(a, b). Suppose that W (a, b) is purely

periodic modulo n starting from the term W1 for all recurrences W (a, b) and that

the period of W (a, b) modulo n divides n. Suppose further that AW (n) is an integer

for all recurrences W (a, b). Let m ∈ S′(U). Then AW (lcm(m,n)) is an integer for

all recurrences W (a, b).

Proof. Let W (a, b) be an arbitrary recurrence. It follows from the hypotheses

that BW (r) ≡ 0 (mod n) if n | r. Thus, BW (lcm(m,n)) ≡ 0 (mod n). By The-

orem 2.5, BW (lcm(m,n)) ≡ 0 (mod m). It now follows that BW (lcm(m,n)) ≡
0 (mod (lcm(m,n))), and thus, AW (lcm(m,n)) is an integer. �

Remark 2.4. Suppose that we are given the Lucas sequence U(a, b) and positive

integer n such that gcd(n, b) = 1. We define ω(n) = ω to be the least nonnegative

integer k, if it exists, such that both πk+1
U (n) = πjU (n) for some j for which 0 ≤ j ≤ k

and gcd(πiU (n), b) = 1 for all i such that 0 ≤ i ≤ k. We define the radical of the

nonzero integer r, denoted by rad(r) as follows: let rad(±1) = 1 and let rad(r) be

the product of all the distinct primes dividing r when |r| > 1.

Theorem 2.8. Consider the Lucas sequence U(a, b), where b 6= 0. Suppose that

gcd(n, b) = 1 and ω(n) = ω exists. Then C(n) exists. Moreover,

C(n) = L(n) := lcm(π0
U (n), π1

U (n), . . . , πωU (n)). (2.14)

Further, if C(n) exists and either it is the case that a+ b−1 6= 0 and gcd(C(n), a+

b− 1) = 1 or it is the case that both a+ b− 1 = 0 and gcd(C(n),−b− 1) = 1, then

C ′(n) = C(n) and AW (C(n)) is an integer for all recurrences W (a, b).
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Proof. Suppose that n | m and m ∈ S(U). Then gcd(m, b) = 1 and πU (m) | m. It

follows by Remark 1.2 that πU (n) | πU (m), so πU (n) | m. Similarly, π2
U (n) | πU (m),

so π2
U (n) | m. It follows that π0

U (n) = n | m and πiU (n) | πU (m), so πiU (n) | m for

all i such that 1 ≤ i ≤ ω(n). Thus,

L = L(n) = lcm(π0
U (n), π1

U (n), . . . , πωU (n)) | m.

Let k = ω(n). Since πk+1
U (n) = πjU (n) for some j such that 0 ≤ j ≤ k, we find by

Theorem 1.2 that

πU (L) | L | m.

It now follows that L = C(n).

Now suppose that it is the case that a + b − 1 6= 0 and gcd(n, a + b − 1) = 1,

or it is the case that a + b − 1 = 0 and gcd(n,−b − 1) = 1. Since gcd(n, b) = 1,

it follows from our above observations that W (a, b) is purely periodic modulo n

and that πU (n) is a general period of W (a, b) modulo n for all recurrences W (a, b).

Noting that C(n) ∈ S(U), it now follows from Theorem 2.4 that AW (C(n)) is an

integer for all recurrences W (a, b) and that C ′(n) = C(n). �

Remark 2.5. By Theorem 2.11 below, if b = ±1, then both ω(n) and L(n) exist

for all n. By Theorem 2.8, C(n) then exists for all n and C(n) = L(n).

Corollary 2.4. Consider the Lucas sequence U(a, b), where b 6= 0. Suppose that

gcd(n, b) = 1 and ω(n) exists. Then the following hold.

(i) Suppose that m | n. Then L(m) and L(n) both exist and L(m) | L(n), where

L(m) and L(n) are defined as in Theorem 2.8.

(ii) Suppose that g | πiU (n) for some i ≥ 0. Then L(g) | L(n).

(iii) Suppose that gcd(r, b) = gcd(s, b) = gcd(r, s) = 1 and both ω(r) and ω(s)

exist. Then L(r) and L(s) both exist and L(rs) = lcm(L(r), L(s)).

(iv) Suppose that gcd(p, b) = 1 and ω(p) exists. Let i ≥ 1. Then L(pi) exists and

L(pi) = lcm(pi, L(p)).

Proof. (i) We observe by Theorem 1.2 that if m | n and gcd(n, b) = 1, then

πU (m) | πU (n). It follows that

πiU (m) | πiU (n) (2.15)

for i ≥ 0. Since ω(n) exists, we see that there exists a nonnegative integer i ≤ ω(n)

such that πjU (n) = πiU (n) for infinitely many integers j. Since πiU (n) has only

finitely many divisors, it follows from (2.15) that ω(m) exists. It now follows from

the definition of L(m) and L(n) that L(m) | L(n).
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(ii) This follows from the construction of L(n).

(iii) By Theorem 2.8, L(r) = C(r) and L(s) = C(s). By definition, C(r) and

C(s) ∈ S(U). It now follows from Theorem 1.2 that L(rs) = lcm(L(r), L(s)).

(iv) This follows from Theorem 1.4 (viii) and the definition of L(pi). �

Remark 2.6. If L(n) exists, it follows from the construction of L(n) that both n

and πU (n) divide L(n). We will make use of this observation later in some of our

proofs to prove that C ′(n) exists. Moreover, we see from the definition of L(n) that

L(n) = lcm(n,L(πU (n))).

For some of our future work, we will need to make use of results in Theorem 2.9

involving the evaluation of L(2) and L(3) if they exist.

Theorem 2.9. Consider the Lucas sequence U(a, b). Then the following hold.

(i) If a ≡ b ≡ 1 (mod 2), then L(2) exists if and only if gcd(b, 3) = 1.

(ii) If a ≡ 0 (mod 2), then L(2) exists if and only if b ≡ 1 (mod 2).

(iii) If L(3) exists, then either L(3) = 3 or 6 | L(3).

(iv) L(3) = 3 if and and only if a ≡ b ≡ −1 (mod 3).

(v) 6 | L(3) if and only if gcd(b, 6) = 1 and it is not the case that a ≡ −1 (mod 3)

and b ≡ −1 (mod 6).

(vi) If a ≡ 0 (mod 2) and b ≡ 1 (mod 2), then L(2) = 2.

(vii) If a ≡ ±1 (mod 6) and b ≡ 1 (mod 6), then L(2) = L(3) = 24.

(viii) If a ≡ 1 (mod 6) and b ≡ −1 (mod 6) or it is the case that a ≡ 3 (mod 6)

and b ≡ 1 (mod 6), then L(2) = L(3) = 6.

(ix) If a ≡ b ≡ −1 (mod 6), then L(2) = 6 and L(3) = 3.

(x) If a ≡ 0 (mod 6) and b ≡ 1 (mod 6), then L(3) = 6, while if a ≡ 0 (mod 6)

and b ≡ −1 (mod 6), then L(3) = 12.

(xi) If a ≡ 3 (mod 6) and b ≡ −1 (mod 6), then L(2) = L(3) = 12.

(xii) If a ≡ ±2 (mod 6) and b ≡ 1 (mod 6), then L(3) = 24, whereas if a ≡ ±2

(mod 6) and b ≡ −1 (mod 6), then L(3) = 6.

(xiii) Suppose that rad(n) | 6. If L(n) exists, then rad(L(n)) | 6.

Proof. Parts (i)–(xii) follow by inspection. Part (xiii) follows from parts (i)–(xii),

Theorem 2.8, and Corollary 2.4 (iii) and (iv). �

Theorem 2.10 refines Theorem 2.1 (vii) and (viii).
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Theorem 2.10. Consider the Lucas sequence U(a, b) and arbitrary recurrence

W (a, b), where b 6= 0. Let n > 1. Suppose that m ∈ S′(U), where m ≥ 1.

(i) If n | b and a ≡ 1 (mod n), then AW (n) and AW (mn) are both integers.

(ii) If n is even, n | b, and a ≡ −1 (mod n), then AW (n) and AW (mn) are both

integers.

Proof. We observe that gcd(m,n) = 1, since n | b and gcd(m, b) = 1. We treat

the parameters a and b and the terms W0 and W1 as residues modulo n when

considering W (a, b) modulo n and as rational integers when considering W (a, b)

modulo m. The theorem now follows from Theorems 1.3 (viii) and (ix), 2.1 (vii)

and (viii), 2.4, 2.5, and 2.7. �

Remark 2.7. Given the nonzero integer r, we let Q(r) denote the least prime

dividing r with the convention that Q(±1) =∞.

Theorem 2.11. Consider the nondegenerate Lucas sequence U(a, b) with discrim-

inant D. Suppose that Q(b) ≥ 5. Then C(1) = 1 and C(n) exists for all n such

that n ≥ 2 and P (n) < Q(b). Specifically, if b = ±1, then C(n) exists for all n.

Moreover, if P (n) < Q(b) and gcd(C(n), a+b−1) = 1, then AW (C(n)) is an integer

for all recurrences W (a, b). In particular, if a + b − 1 6= 0, Q(a + b − 1) ≥ 5, and

P (n) < Q(b(a + b − 1)), then AW (C(n)) is an integer for all recurrences W (a, b).

Specifically, if (a, b) = (1, 1), (−1, 1), or (3,−1), then |a + b − 1| = |b| = 1 and

AW (C(n)) is an integer for all n and for all recurrences W (a, b).

Proof. Let n ≥ 2 be an integer such that P (n) < Q(b). Then gcd(n, b) = 1. We

first prove that L(n) exists. Then L(n) = C(n) by (2.14). Let

n =

r∏
i=1

pkii (2.16)

be the prime power factorization of n, where p1 < p2 < · · · < pr. By Corollary 2.4

(iv), if p | n and L(p) exists, then L(pi) also exists and

L(pi) = lcm(pi, L(p)).

It follows by (2.16), by Theorem 1.4 (i), (iii), (iv), and (viii), and by repeated

applications of Theorem 1.4 (v) and (vi) that if p1 = 2, then

P (πjU (pk11 )) ≤ 3 < Q(b),

while if 1 ≤ i ≤ r and pi > 2, then

P (πjU (pkii )) ≤ pi ≤ pr < Q(b). (2.17)
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By Theorem 1.2,

πjU (n) = lcm(πjU (pk11 ), πjU (pk22 ), . . . , πjU (pkrr ))

if j ≥ 1. If L(pi) exists for i = 1, 2, . . . , r, we further see by Corollary 2.4 (iii) and

(iv) that

L(n) = lcm(pk11 L(p1), pk22 L(p2), . . . , pkrr L(pr)). (2.18)

It follows by (2.18) that if we can show that L(p) exists for any prime p dividing n,

then L(n) exists. By Theorem 2.9, if p = 2 or p = 3, then L(p) exists and L(p) | 24.

Now suppose that p ≥ 5 and p | n. Then by (2.17), πiU (p) ≤ p ≤ P (n) < Q(b), and

consequently, gcd(πiU (p), b) = 1 for all i ≥ 0. We show that L(p) exists in this case.

By Theorem 1.4 (iii)–(v),

πU (p) | p(p+ 1)(p− 1). (2.19)

Suppose that q is an odd prime and qj ‖ πU (p) for some j ≥ 1, where qi ‖ m for

i ≥ 0 means that qi | m, but qi+1 - m. Since q ≥ 3 and both p + 1 and p − 1 are

even, we see that qj | p, or qj | (p + 1)/2, or qj | (p − 1)/2. Thus, if q = p, then

qj = p, which occurs if and only if p | D by Theorem 1.4 (iii)–(vi). If q 6= p, then

qj ≤ (p+1)/2 < p. Now suppose that 2k ‖ πU (p). Then by (2.19), 2k | (p+1)(p−1).

We note that gcd(p + 1, p − 1) = 2. If p ≡ 1 (mod 4), then 2 ‖ p + 1 and

4 | p − 1. If p ≡ 3 (mod 4) then 2 ‖ p − 1 and 4 | p + 1. It now follows that

2k ≤ 2(p+ 1) = 2p+ 2. Hence, by our discussion above, we can write πU (p) as the

prime power factorization given by

πU (p) = 2kpεqj11 q
j2
2 · · · qjss , (2.20)

where 1 ≤ 2k ≤ 2p + 2, ε = 1 if p | D, ε = 0 if p - D, and both qi - 2p and

qjii ≤ (p+ 1)/2 for 1 ≤ i ≤ s.
We now consider π2

U (p). Then by Theorem 1.2 and (2.20),

π2
U (p) = πU (πU (p)) = lcm(πU (2k), πU (pε), πU (qj11 ), πU (qj22 ), . . . , πU (qjss )), (2.21)

Let 2γ ‖ π2
U (p). Then by (2.21), 2γ ‖ πU (2k), or 2γ ‖ πU (pε), or 2γ ‖ πU (qjii ) for

some i such that 1 ≤ i ≤ s. If 2γ ‖ πU (2k), then by Theorem 1.4 (i), (iii) and (viii),

2γ | 3 · 2k. Hence by (2.20), 2γ ≤ 2k ≤ 2p + 2. Suppose that 2γ ‖ πU (pε). Then

2γ ≤ p− 1 if p | D and ε = 1, since πU (p) | p(p− 1) by Theorem 1.4 (iii). If ε = 0,

then 2γ = 1. If 2γ ‖ πU (qjii ) for some i such that 1 ≤ i ≤ s, then by Theorem

1.4 (iii)–(v) and (viii), 2γ | qjii (qi + 1)(qi − 1). In this case, we see by our above

discussion that

2γ ≤ 2qi + 2 ≤ 2
p+ 1

2
+ 2 = p+ 3 < 2p+ 2.

Hence, by examining all cases, we find that 2γ ≤ 2p+ 2.
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We now suppose that pδ ‖ π2
U (p). Let us point out that πU (2k) | 3 · 2k and

πU (qjii ) | qjii (qi + 1)(qi − 1) for 1 ≤ i ≤ s. Thus, p - πU (2k) and p - πU (qjii ) for

any i such that 1 ≤ i ≤ s, since p ≥ 5 and qjii ≤ (p + 1)/2. Hence, by (2.19),

pδ | p(p+ 1)(p− 1). Then δ = 0 if p - D and δ = 1 if p | D.

Finally, suppose that qλ ‖ π2
U (p), where λ ≥ 1 and q is a prime such that q - 2p.

If qλ ‖ πU (2k), then qλ | 3 · 2k, and qλ = 3 ≤ (p + 1)/2. If qλ ‖ πU (pε), then

qλ | p(p + 1)(p − 1) and qλ ≤ (p + 1)/2. If qλ ‖ πU (qjii ) for some i such that

1 ≤ i ≤ s, then

qλ | qjii (qi + 1)(qi − 1), (2.22)

where qjii ≤
p+1
2 . Then by (2.22), qλ | qjii ≤

p+1
2 , or

qλ
∣∣∣ qi + 1

2
≤ p+ 3

4
<
p+ 1

2
,

or qλ | qi−12 < p+1
2 . Thus, in all cases, qλ ≤ (p+ 1)/2.

We note that p ≥ 5 and π0
U (p) = p. The following observations follow by our

above arguments and by induction. Let i ≥ 0. If 2k ‖ πiU (p), then 2k ≤ 2p + 2.

If pδ ‖ πiU (p), then pδ = 1 if p - D and pδ = p if p | D. If qλ ‖ πiU (p), where

λ ≥ 1 and q is a prime such that q - 2p, then qλ ≤ p+1
2 . Hence, there are at most

J = π(p+1
2 ) − 1 odd primes q 6= p such that q | πiU (p) for any i ≥ 0, where π(x) is

the number of primes less than or equal to the real number x. We thus find that

πiU (p) ≤ (2p+ 2)p
(p+ 1

2

)J
for all i ≥ 0. Therefore, by the pigeonhole principle, there exists a nonnegative

integer ω = ω(p) such that πω+1
U (p) = πjU (p) for some j for which 0 ≤ j ≤ ω, which

implies that L(p) exists. Hence, L(n) exists and C(n) = L(n) by Theorem 2.8.

Now suppose that a+ b− 1 6= 0 and gcd(a+ b− 1, C(n)) = 1. By Theorem 2.8,

C(n) = C ′(n) and AW (C(n)) is an integer for all recurrences W (a, b).

Finally, suppose that a+ b−1 6= 0, Q(a+ b−1) ≥ 5, and P (n) < Q(b(a+ b−1)).

It follows from our arguments above that L(n) = C(n) exists, P (L(n)) < Q(b), and

P (L(n)) < Q(a + b − 1). It again follows from Theorem 2.8 that AW (C(n)) is an

integer for all recurrences W (a, b). �

Remark 2.8. We found in Theorem 2.11 that for the nondegenerate Lucas se-

quences U(a, b), where (a, b) = (1, 1), (−1, 1), or (3,−1), given any positive integer

n, C(n) exists and AW (C(n)) is an integer for all recurrences W (a, b). We will see

later in Theorems 2.24 and 2.25 that this property holds for the more general Lucas

sequences U(a, 1) and U(a,−1) when a is an odd integer.

In Theorem 2.12, we apply Theorems 2.11 and 2.8 to a large class of Lucas

sequences U(a, b) so that for each given Lucas sequence U(a, b), we will find infinitely

many positive integers n ∈ S(U) for which rad(n) | 6 and AW (n) is an integer for
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all recurrences W (a, b). Before presenting Theorem 2.12, we will need to make use

of Lemma 2.1 given below.

Lemma 2.1. Consider the nondegenerate Lucas sequence U(a, b), where ab 6= 0

and a+ b− 1 6= 0. Suppose that p is odd and pe ‖ a, where e ≥ 1. Suppose further

that b ≡ 1 (mod pe+1). Then pe ‖ a+ b− 1. Moreover, if m ≥ 1, then

BU (2mpi) ≡ 0 (mod pi)

for all i ≥ 1.

Proof. Let p be an odd prime such that pe ‖ a and b ≡ 1 (mod pe+1). Then it is

easily seen that pe ‖ a + b − 1. Then U2 = a ≡ 0 (mod pe) and U3 = a2 + b ≡
1 (mod pe). Since pe+1 - a, it follows that πU (pe) = 2 and πU (pe+1) > 2. By

Theorem 1.4 (viii), we now see that

πU (pe+i) = 2pi

for i ≥ 1. Hence, 2mpi is a general period of U(a, b) modulo pe+i for m ≥ 1. We

note by Theorem 2.2 (i) and Corollary 2.1 (i) that

BU (2mpi) =
J(2mpi)

a+ b− 1
, (2.23)

where J(2mpi) = U2mpi+1 − 1 + bU2mpi and J(2mpi) ≡ 0 (mod pi+e). Since pe ‖
a+ b− 1, we find from (2.23) that

BU (2mpi) ≡ 0 (mod pi)

for all i ≥ 1. �

Theorem 2.12. Consider the nondegenerate Lucas sequence U(a, b), where b(a +

b− 1) 6= 0. Then n ∈ S(U) and AW (n) is an integer for all recurrences W (a, b) in

the following cases, where rad(n) | 6, i and j are nonnegative integers, and e ≥ 1:

(i) a ≡ ±1 (mod 6), b ≡ 1 (mod 6), and n = 1 or n = 2i+33j+1.

(ii) a ≡ 1 (mod 6), b ≡ −1 (mod 6), and n = 1 or n = 2i+13j+1.

(iii) a ≡ 3 (mod 6), b ≡ −1 (mod 6), and n = 1 or n = 2i+23j+1.

(iv) a ≡ 3 (mod 6), 3e ‖ a, b ≡ 1 (mod 2 · 3e+1), and n = 1 or n = 2i+13j+1.

Proof. Clearly, we can assume that n > 1. For each of parts (i)–(iv), it follows

from Theorem 2.8, Corollaries 2.3 and 2.4, and Theorems 2.9 and 2.11 that L(n) =

n = C(n), which then implies that n ∈ S(U). In each of the cases of (i)–(iii), we

observe that b(a + b − 1) ≡ ±1 (mod 6). It then follows that Q(b(a + b − 1)) ≥ 5
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and P (n) = 3. Hence, P (n) < Q(b(a+ b− 1)). By Corollary 2.4, Theorem 2.9, and

Theorem 2.11, it then follows that C ′(n) exists, C ′(n) = C(n) = L(n) = n, and

AW (C(n)) is an integer for all recurrences W (a, b) in the cases of parts (i)–(iii).

We now prove part (iv). We note that a + b − 1 ≡ 3 + 1 − 1 ≡ 3 (mod 6).

Thus, gcd(2i+1, (b(a + b − 1)) = 1. Since L(n) = n, we see that n is a gen-

eral period of U(a, b) modulo 2i+1. It now follows from Theorem 2.2 (i) that

BU (n) ≡ 0 (mod 2i+1). Since 3 | a, it follows from Lemma 2.1 that BU (2 · 3j+1) ≡
0 (mod 3j+1).

Since 2·3j+1 | n, we see that BU (n) ≡ 0 (mod 3j+1). Thus, BU (n) ≡ 0 (mod n).

It now follows that C ′(n) = C(n) = L(n) = n, and AW (C(n)) is an integer for all

recurrences W (a, b). �

Theorem 2.13. Consider the nondegenerate Lucas sequence U(a, b), where d =

gcd(a, b) > 1. Suppose that gcd(n, d) = e > 1. Then AU (n) is not an integer.

Proof. By inspection, U1 = 1 and Ui ≡ 0 (mod e) for i ≥ 2. Thus, BU (n) ≡ 1

(mod e). Since e | n, we see that AU (n) is not an integer. �

Theorem 2.14. Consider the nondegenerate Lucas sequence U(a, b), where a ≡ 0

(mod 2) and b ≡ 1 (mod 2). If n ≡ 2 (mod 4), then BU (n) ≡ 1 (mod 2) and

AU (n) is not an integer. Moreover, C(2k) = 2k for k ≥ 0.

Proof. Suppose that a ≡ 0 (mod 2) and b ≡ 1 (mod 2). We see by induction that

U2i−1 ≡ 1 (mod 2) and U2i ≡ 0 (mod 2) for i ≥ 1. We now observe that if n ≡ 2

(mod 4), then BU (n) ≡ n/2 ≡ 1 (mod 2) and AU (n) is not an integer.

We now determine C(2k) for k ≥ 0. Clearly, C(1) = 1. Since U2 = a ≡ 0

(mod 2) and U3 = aU2 + bU1 ≡ 0 + 1 ≡ 1 (mod 2), we find that πU (2) = L(2) = 2.

By Corollary 2.4 (iv), it follows that L(2k) = C(2k) = 2k if k ≥ 1. �

Theorem 2.15. Consider the nondegenerate Lucas sequence U(a, b), where a ≡ 2

(mod 4) and b ≡ 1 (mod 4). Then 2i ∈ S(U) for i ≥ 1. Suppose that 2k ‖ n,

where k ≥ 2. Then BU (n) ≡ 0 (mod 2k). In particular, C ′(2) = 4 = 2C(2) and

C ′(2k) = 2k = C(2k) for k ≥ 2. Moreover, if k ≥ 2, then AW (2k) is an integer for

all recurrences W (a, b).

Proof. Consider the Lucas sequence V (a, b). By inspection, Vi ≡ 2 (mod 4) for i ≥
0. By examination and Lemma 1.1 (i), U0 = 0, U1 = 1, U2 = a ≡ 2 (mod 4), U3 =

a2+b ≡ 1 (mod 4), U4 = U2V2 ≡ 4 (mod 8). By Lemma 1.1 (ii), U5 ≡ bU2
2 +U2

3 ≡ 5

(mod 8). Consequently, πU (2) = 2, πU (4) = 4, and πU (8) 6= πU (4). By Theorem

1.4 (viii), πU (2k) = 2k for k ≥ 1. We claim that U2k+1 ≡ 2k + 1 (mod 2k+1) for

k ≥ 2. We proceed by induction.

The result is true for k = 2. Assume that the result is true up to k, where k ≥ 2.

Then 2k ‖ U2k and U2k+1 ≡ 2k + 1 (mod 2k+1). By Lemma 1.1 (ii),

U2k+1+1 = bU2
2k + U2

2k+1 ≡ 0 + 2k+1 + 1 ≡ 2k+1 + 1 (mod 2k+2),
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as desired. Noting that 2 ‖ V2k for k ≥ 1, 2 ‖ U2, and U2k+1 = U2kV2k , we see by

induction that 2k ‖ U2k for k ≥ 1.

We now show that BU (2k) ≡ 0 (mod 2k) for k ≥ 2. We observe that a+ b− 1 ≡
2 + 1− 1 ≡ 2 (mod 4), and thus a+ b− 1 6= 0. By Corollary 2.1 (i),

BU (2k) =
1

a+ b− 1
(U2k+1 − 1 + bU2k).

We note that

U2k+1 − 1 + bU2k ≡ 2k + 2k ≡ 0 (mod 2k+1).

Since 2 ‖ a+b−1, we see that BU (2k) ≡ 0 (mod 2k) and C ′(2k) = C(2k) for k ≥ 2.

Noting that C ′(2) 6= 2 by Theorem 2.14, we observe that C ′(2) = 4 = 2C(2). By

Remark 2.3, if k ≥ 2, then AW (2k) is an integer for all recurrences W (a, b). �

Theorem 2.16. Consider the nondegenerate Lucas sequence U(a, b), where a ≡ 0

(mod 4) and b ≡ 1 (mod 4). Suppose that 2k ‖ n, where k ≥ 1. Then BU (n) 6≡
0 (mod 2k), and C ′(n) does not exist if n is even. In particular, AU (m) is an

integer only if m is odd.

Proof. Consider the Lucas sequence V (a, b). By inspection, Vi ≡ 0 (mod 2) for

i ≥ 0. By examination and Lemma 1.1 (ii), U0 = 0, U1 = 1, U2 = a ≡ 0 (mod 4),

and U3 = a2 + b ≡ 1 (mod 4). Thus, πU (4) = 2. It follows from Theorem 1.4 (viii)

that 2k−1 is a general period of U(a, b) modulo 2k for k ≥ 2. Then

BU (4) = U1 + U2 + U3 + U4 ≡ 1 + 0 + 1 + 0 ≡ 2 (mod 4).

We claim that BU (2k) ≡ 2k−1 (mod 2k) for k ≥ 2. We proceed by induction.

The result is true for k = 2. Assume the result is true up to k, where k ≥ 2.

By our earlier observation, 2k is a general period of U(a, b) modulo 2k+1. By

assumption, BU (2k) ≡ 2k−1` (mod 2k+1), where ` = 1 or 3. Since 2k is a general

period of U(a, b) modulo 2k+1, we find that

BU (2k+1) ≡ 2 · 2k−1` ≡ 2k` ≡ 2k (mod 2k+1),

as desired. Since n = 2ki for some odd integer i and 2k is a general period of U(a, b)

modulo 2k+1, we see that

BU (n) ≡ 2k−1i ≡ 2k−1 (mod 2k). (2.24)

and BU (n) 6≡ 0 (mod n). It now follows from (2.24) and Theorem 2.14 that C ′(m)

does not exist for any even integer m. �

Theorem 2.17. Consider the nondegenerate Lucas sequence U(a, b), where a ≡ 0

(mod 4) and b ≡ −1 (mod 4). Then 2i ∈ S(U) for i ≥ 1. Suppose that 2k ‖ n,

where k ≥ 2. Then BU (n) ≡ 0 (mod 2k). In particular, C ′(2) = 4 = 2C(2) and

C ′(2k) = 2k = C(2k) for k ≥ 2. Moreover, if k ≥ 2, then AW (2k) is an integer for

all recurrences W (a, b).
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Proof. By Theorem 2.14, BU (2) ≡ 1 (mod 2). Consider the Lucas sequence V (a, b).

By induction, Vi ≡ 0 (mod 2) and V2i ≡ 2 (mod 4) for i ≥ 0. By examination and

Lemma 1.1 (i) and (ii), we observe that U0 = 0, U1 = 1, U2 = a ≡ 0 (mod 4),

U3 = a2+b ≡ −1 (mod 4), U4 = U2V2 ≡ 0 (mod 8), and U5 = bU2
2 +U2

3 ≡ 0+1 ≡ 1

(mod 8). Hence, πU (4) = πU (8) = 4. It follows from Theorem 1.4 (viii) that 2k is a

general period of U(a, b) modulo 2k+1 for k ≥ 2 and 2k is a general period of U(a, b)

modulo 2k for k = 1 or 2. Thus, U2k ≡ 0 (mod 2k+1) and U2k+1 ≡ 1 (mod 2k+1)

for k ≥ 2. We observe that a + b − 1 ≡ 0 − 1 − 1 ≡ 2 (mod 4). It now follows by

Corollary 2.1 (i) and our previous observations that,

BU (2k) =
1

a+ b− 1
(U2k+1 − 1 + bU2k) ≡ 0 (mod 2k). (2.25)

Since BU (2) ≡ 1 (mod 2) by Theorem 2.14, it follows from (2.25) that C ′(2) = 4 =

2C(2) and C ′(2k) = 2k = C(2k) for k ≥ 2. We now see by Remark 2.3 that AW (2k)

is an integer for all recurrences W (a, b). �

Theorem 2.18. Consider the nondegenerate Lucas sequence U(a, b), where a ≡ 2

(mod 4) and b ≡ −1 (mod 4). Suppose that 2k ‖ n, where k ≥ 1. Then BU (n) 6≡
0 (mod 2k). In particular, C ′(n) does not exist if n is even, and AU (n) is an integer

only if n is odd.

Proof. By Theorem 1.5 (iii), 2 | D if i ≥ 1, and U(a, b) is uniformly distributed

modulo 2k with each residue appearing exactly once in a least period of U(a, b)

modulo 2k. Moreover, πU (2k) = 2k for k ≥ 1. It now follows that

BU (2k) ≡ 1 + 2 + · · ·+ 2k ≡ 2k(2k + 1)

2
≡ 2k−1 (mod 2k).

By the induction argument given in the proof of Theorem 2.16, it follows that

BU (n) ≡ 2k−1 (mod 2k)

for k ≥ 1. This yields that BU (n) 6≡ 0 (mod 2k) and AU (n) is an integer only if n

is odd. �

Theorems 2.19–2.23 sharpen Theorem 2.1.

Theorem 2.19. Consider the nondegenerate Lucas sequence U(a, b) with discrimi-

nant D such that a+b−1 6= 0. Let n be an odd integer such that a ≡ 2 (mod rad(n)),

b ≡ −1 (mod rad(n)). Then rad(n) | D. Moreover, C ′(n) = C(n) = n and AW (n)

is an integer for all recurrences W (a, b).

Proof. Clearly, gcd(n, b) = 1. Since D = a2 + 4b ≡ 22 + 4(−1) ≡ 0 (mod rad(n)),

it follows that rad(n) | D. Suppose that pe(p) ‖ n, where e(p) ≥ 1. Let e = e(p).

By Theorem 1.3 (vi), Up ≡ p ≡ 0 (mod p) and Up+1 ≡ p+ 1 ≡ 1 (mod p). Hence,
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πU (p) = p and EU (p) = 1. By Theorem 1.4 (viii), pi is equal to a general period of

U(a, b) modulo pi for i ≥ 1. Thus, n is a general period of U(a, b) modulo pe.

Suppose now that it is not the case that p = 3, e ≥ 2, and U3 ≡ 0 (mod 9).

It follows from Theorem 1.5 (i), (ii), and (iv) that U(a, b) is uniformly distributed

modulo pe with each residue appearing exactly once in a least period of U(a, b)

modulo pe. Then

BU (n) ≡ BU (pe) ≡ 1 + 2 + · · ·+ pe ≡ pe(pe + 1)

2
≡ 0 (mod pe). (2.26)

Next suppose that p = 3, e ≥ 2, and U3 = a2 + b ≡ 0 (mod 9). Then b ≡ −a2
(mod 9). Furthermore,

U4 = aU3 + bU2 ≡ a · 0 + ba ≡ −a3 (mod 9). (2.27)

Since a ≡ −1 (mod 3), we have that a = −1 + 3j for some integer j. By the

binomial theorem, a3 = (−1 + 3j)3 ≡ −1 (mod 9). Hence, by (2.27), U4 ≡ 1

(mod 9). It follows that πU (9) = 3. Therefore, by Theorem 1.4 (viii), 3i is equal

to a general period of U(a, b) modulo 3i+1 for i ≥ 1. We prove by induction that

BU (3i) ≡ 0 (mod 3i) for i ≥ 1. This is true for i = 1 by (2.26). Assume that this

is true up to i, where i ≥ 1. Then BU (3i) = 3im for some integer m. Since 3i is a

general period of U(a, b) modulo 3i+1, we have that

BU (3i+1) ≡ 3(3im) ≡ 0 (mod 3i+1).

It thus follows that

BU (n) ≡ BU (3e) ≡ 0 (mod 3e). (2.28)

We now see by (2.26) and (2.28) that BU (n) ≡ 0 (mod n), and thus, C ′(n) = C(n)

and AW (n) is an integer for all recurrences W (a, b). �

Theorem 2.20. Consider the nondegenerate Lucas sequence U(a, b) with discrimi-

nant D such that a+b−1 6= 0. Suppose that n = 2kn1 is an integer such that k ≥ 1,

n1 > 1, n1 is odd, a is even, and a ≡ −2 (mod rad(n1)), b ≡ −1 (mod 4 rad(n1)).

Then rad(n1) | D and C(n) = n. Moreover, the following hold.

(i) Suppose that a ≡ 2 (mod 4). Then C ′(n) does not exist.

(ii) Suppose that a ≡ 0 (mod 4). If n ≡ 2 (mod 4), then C ′(n) = 2C(n) = 2n,

and AW (2n) is an integer for all recurrences W (a,−1). If n ≡ 0 (mod 4),

then C ′(n) = C(n) = n, and AW (n) is an integer for all recurrences W (a,−1).

Proof. It is evident that gcd(n, b) = 1. Since D = a2 + 4b ≡ (−2)2 + 4(−1) ≡
0 (mod rad(n1)), it follows that rad(n1) | D. Suppose that pe(p) ‖ n1, where

e(p) ≥ 1. Let e = e(p). By Theorem 1.3 (vii),

Up ≡ p ≡ 0 (mod p), Up+1 ≡ (−1)p+2(p+ 1) ≡ −1 (mod p),

U2p ≡ −2p ≡ 0 (mod p), U2p+1 ≡ (−1)2p+2(2p+ 1) ≡ 1 (mod p). (2.29)
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Hence, πU (p) = 2p and EU (p) = 2. Furthermore, since a ≡ 0 (mod 2), we see that

πU (2) = 2. It now follows from Theorem 1.4 (viii) that 2pe is equal to a general

period of U(a, b) modulo pe and 2k is equal to a general period of U(a, b) modulo

2k. We see by the definition of L(n), by Theorem 2.8, and by Corollary 2.4 that

L(n1) = 2n1, L(2k) = 2k, and hence,

L(n) = lcm(L(2k), L(n1)) = lcm(2k, 2n1) = 2kn1 = n.

Furthermore, if C ′(n1) exists, then C(n1) = 2n1 | C ′(n). Noting that 2n1 ≡ 2

(mod 4), it follows from Theorem 2.14 that BU (2n1) ≡ 1 (mod 2), which implies

that C ′(n1) 6= 2n1. Hence, if C ′(n1) exists, then C ′(n1) ≥ 4n1.

Now suppose that a ≡ 2 (mod 4). Suppose that C ′(n) exists. Then n | C ′(n)

and C ′(n) is even. Suppose that 2` ‖ C ′(n), where ` ≥ k ≥ 1. We now see from

Theorem 2.18 that BU (C ′(n)) 6≡ 0 (mod 2`). Hence, C ′(n) does not exist, and part

(i) is established.

Next suppose that a ≡ 0 (mod 4). Suppose it is not the case that p = 3 and

U3 ≡ 0 (mod 9). Recall that p | D and pe ‖ n1 | n. It then follows from Theorem 1.5

(i), (ii), and (iv) that U(a, b) is uniformly distributed modulo pe with each residue

appearing exactly twice in a least period of U(a, b) modulo pe. Then πUp
e) = 2pe

and n is a general period of U(a, b) modulo pe. Hence,

BU (n) ≡ BU (2pe) ≡ 2(1 + 2 + · · ·+ pe) ≡ 2pe(pe + 1)

2
≡ 0 (mod pe). (2.30)

Now suppose that p = 3, e ≥ 2, and U3 = a2 + b ≡ 0 (mod 9). Then b ≡ −a2
(mod 9). Moreover,

U4 = aU3 + bU2 ≡ a · 0 + ba ≡ −a3 (mod 9). (2.31)

Since a ≡ −2 ≡ 1 (mod 3), we have that a = 1 + 3j for some integer j. By the

binomial theorem, a3 = (1+3j)3 ≡ 1 (mod 9). Hence, by (2.31), U4 ≡ −1 (mod 9).

It follows from Lemma 1.1 (i) and (ii) that

U6 = U3V3 ≡ V3·0 ≡ 0 (mod 9) and U7 = U2
4 +bU2

3 ≡ (−1)2+b·02 ≡ 1 (mod 9).

Thus, πU (9) = 6. Therefore, by Theorem 1.4 (viii), 2 ·3i is equal to a general period

of U(a, b) modulo 3i+1 for i ≥ 1. By a similar induction argument as that given in

the proof of Theorem 2.19, we find that BU (2 · 3i) ≡ 0 (mod 3i) for i ≥ 1. Noting

that n is a general period of U(a, b) modulo 3e, we see that

BU (n) ≡ BU (3e) ≡ 0 (mod 3e). (2.32)

It follows from Theorems 2.14 and 2.17 that

BU (n) ≡ BU (2k) ≡ 1 (mod 2) if k = 1 (2.33)
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and

BU (n) ≡ BU (2k) ≡ 0 (mod 2k) if k ≥ 2. (2.34)

Now from (2.30), (2.32), (2.33), and (2.34) we get that C ′(n) = 2C(n) = 2n if n ≡ 2

(mod 4), while C ′(n) = C(n) = n if n ≡ 0 (mod 4). Assertion (ii) now follows. �

Theorem 2.21. Consider the nondegenerate Lucas sequence U(a, b). Let n be an

integer such that 6 | n and a ≡ 1 (mod rad(n)), b ≡ −1 (mod rad(n)). Then

C ′(n) = C(n) = n and AW (n) is an integer for all recurrences W (a, b).

Proof. We first note that a + b − 1 ≡ 1 − 1 − 1 ≡ −1 (mod rad(n)). Hence,

gcd(b(a+ b− 1), n) = 1. Suppose that pe(p) ‖ n, where e(p) ≥ 1. Let e = e(p). By

Theorem 1.3 (iv),

U4 ≡ −1 (mod rad(n)), U3 ≡ U6 ≡ 0 (mod rad(n)), U7 ≡ 1 (mod rad(n)).

Thus, πU (p) = 6 if p is odd and πU (2) = 3. Hence, by Theorem 1.4 (viii), lcm(6, pe)

is a general period of U(a, b) modulo pe. We note that lcm(6, pe) | n. Therefore, n

is also equal to a general period of U(a, b) modulo pe for each prime p dividing n.

Then by Theorem 1.2, n is equal to a general period of U(a, b) modulo n. We now

see by Theorem 2.2 (i) that

BU (n) =
1

a+ b− 1
J(n),

where J(n) ≡ 0 (mod n). Since gcd(a + b − 1, n) = 1, we find that BU (n) ≡
0 (mod n). Consequently, C ′(n) = C(n) = n and AW (n) is an integer for all

recurrences W (a, b). �

Theorem 2.22. Consider the nondegenerate Lucas sequence U(a, b) with discrim-

inant D. Let n be an integer such that 3 | n and a ≡ −1 (mod rad(n)), b ≡
−1 (mod rad(n)). Then C ′(n) = C(n) = n and AW (n) is an integer for all recur-

rences W (a, b).

Proof. We observe that a+ b− 1 ≡ −1− 1− 1 ≡ −3 (mod rad(n)). Suppose that

pe(p) ‖ n. Let e = e(p). Then gcd(b(a + b − 1), pe) = 1 if p 6= 3. By Theorem 1.3

(v),

U2 = a ≡ −1 (mod rad(n)), U3 ≡ 0 (mod rad(n)), U4 ≡ 1 (mod rad(n)).

Thus, πU (p) = 3. Therefore, by Theorem 1.4 (viii), lcm(3, pe) is a general period

of U(a, b) modulo pe. We note that lcm(3, pe) | n. Therefore, n is also equal to a

general period of U(a, b) modulo pe for each prime p dividing n. Then by Theorem

1.2, n is equal to a general period of U(a, b) modulo n. First suppose that p 6= 3.

It now follows from Corollary 2.2 (i) that

BU (n) =
1

a+ b− 1
J(n),
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where J(n) ≡ 0 (mod pe). Since gcd(a+ b− 1, pe) = 1, we see that

BU (n) ≡ 0 (mod pe).

Now suppose that p = 3. Since U3 ≡ 0 (mod 3), we see from Theorem 1.5 that

3 | D. Moreover, a ≡ 2 (mod 3), b ≡ −1 (mod 3). It now follows from (2.28) in

the the proof of Theorem 2.19 that

BU (n) ≡ 0 (mod 3e).

Consequently, C ′(n) = C(n) = n and AW (n) is an integer for all recurrences

W (a, b). �

Theorem 2.23. Consider the nondegenerate Lucas sequence U(a, b) with discrim-

inant D. Suppose that n = 2kn1 is an integer such that k ≥ 2, n1 is odd, and

a ≡ 0 (mod 4 rad(n1)), b ≡ −1 (mod 4 rad(n1)). Then C ′(n) = C(n) = n and

AW (n) is an integer for all recurrences W (a, b).

Proof. We observe that a+ b− 1 ≡ 0− 1− 1 ≡ −2 (mod rad(n1)). Then gcd(b(a+

b− 1), n1) = 1. Suppose that pe(p) ‖ n1, where e(p) ≥ 1. Let e = e(p). By Theorem

1.3 (iii),

U3 ≡ −1 (mod rad(n1)), U2 = a ≡ U4 ≡ 0 (mod rad(n1)),

U5 ≡ 1 (mod rad(n1)).

Thus, πU (p) = 4. Therefore, by Theorem 1.4 (viii), 4pe is a general period of U(a, b)

modulo pe. We note that 4pe | n. Therefore, n is also equal to a general period of

U(a, b) modulo pe for each prime p dividing n1. Then by Theorem 1.2, n is equal

to a general period of U(a, b) modulo n1. Then by Theorem 2.2 (i), we see that

BU (n) =
1

a+ b− 1
J(n1),

where J(n1) ≡ 0 (mod n1). Since gcd(a+ b− 1, n1) = 1, we see that

BU (n) ≡ 0 (mod n1). (2.35)

By Theorem 2.17, we observe that

BU (n) ≡ 0 (mod 2k). (2.36)

Consequently, by (2.35) and (2.36), C ′(n) = C(n) = n and AW (n) is an integer for

all recurrences W (a, b). �

Consider the nondegenerate Lucas sequence U(a, b) with characteristic roots α

and β, where bD 6= 0 and |α| ≥ |β|. Suppose that b = ±1 or β = ±1. In

Theorems 2.24, 2.25, 2.26, and 2.27 below, as well as Corollaries 2.5 and 2.6, we
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present comprehensive results for these specific Lucas sequences concerning the

determination of those positive integers n for which AW (n) is an integer for all

recurrences W (a, b). The proofs of these results are given in Section 5. In Section

4, we explicitly find all elements of S(U) for these particular Lucas sequences.

Theorem 2.24. Consider the nondegenerate Lucas sequence U(a, 1), where a 6= 0.

Then the following hold.

(i) C(n) = L(n) exists for all n ≥ 1. If n > 1, then C(n) is even and L(2) | C(n).

If n ≥ 3, then πU (n) is even. Moreover, if a is even, then πU (2) is also even.

(ii) Suppose that a is odd. If n ≥ 1, then C ′(n) = C(n) and AW (C(n)) is an

integer for all recurrences W (a, 1). Moreover, if a ≡ ±1 (mod 6), then L(2) =

24. Further, if a ≡ 3 (mod 6), then L(2) = 6.

(iii) Suppose that a ≡ 2 (mod 4). If n is odd or 4 | n, then C ′(n) = C(n) and

AW (C(n)) is an integer for all recurrences W (a, 1). If n ≡ 2 (mod 4), then

C ′(n) = 2C(n) and AW (2C(n)) is an integer for all recurrences W (a, 1). In

particular, C ′(n) exists for all n ≥ 1. Moreover, L(2) = 2.

(iv) Suppose that a ≡ 0 (mod 4). If n ≥ 2, then n 6∈ S′(U) and C ′(n) does not

exist for n ≥ 2. Furthermore, if n is even, then BU (n) 6≡ 0 (mod n). In

particular, AU (n) is an integer only if n is odd.

Below, given the Lucas sequence U(a, 1) with discriminant D, we present explicit

instances of positive integers n for which rad(n) | 6D, n ∈ S′(U) and AW (n) is an

integer for all recurrences W (a, 1).

Corollary 2.5. Consider the Lucas sequence U(a, 1) with discriminant D = a2+4.

Let q ≥ 1 be an arbitrary positive integer such that Q(q) ≥ 5, and rad(q) | D. Then

n ∈ S′(U) and AW (n) is an integer for all recurrences W (a, 1) in the following

cases, where n > 1, rad(n) | 6D, and i and j are nonnegative integers:

(i) a ≡ ±1 (mod 6) and n = 2i+33j+1q.

(ii) a ≡ 3 (mod 6) and we have n = 2i+13j+1 or n = 2i+23j+1q.

(iii) a ≡ ±2 (mod 12) and we have n = 2i+2q or n = 2i+33j+1q.

(iv) a ≡ ±6 (mod 12) and n = 2i+23jq.

Yaqubi and Fatehizadeh prove Corollary 2.5 (i) for the specific cases of the Fi-

bonacci sequence U(1, 1) and Lucas sequence V (1, 1) in Theorems 3.5 and 3.6 of

[16].

Theorem 2.25. Consider the nondegenerate Lucas sequence U(a,−1) with dis-

criminant D = a2 − 4 = (a − 2)(a + 2). Let n = 2kn1n2, where k ≥ 0, n1 and n2
are both odd, rad(n1) | a− 2, and gcd(n2, a− 2) = 1. Then the following hold.
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(i) C(n)exists for all n ≥ 1. If n > 1, then C(n) > 1 and gcd(rad(6D), C(n)) > 1.

(ii) Suppose that a 6= 0, ±1, or ±2. Then C(n1) = n1 = C ′(n1) and AW (n1) is

an integer for all recurrences W (a,−1). Moreover, if C(n) is odd, then n is

odd, C ′(n) = C(n), and AW (C(n)) is an integer for all recurrences W (a,−1).

(iii) Suppose that a is odd. If n ≥ 1, then C ′(n) = C(n) and AW (C(n)) is an

integer for all recurrences W (a,−1).

(iv) Suppose that a ≡ 0 (mod 4). If C(n) ≡ 2 (mod 4), then C ′(n) = 2C(n) and

AW (2C(n)) is an integer for all recurrences W (a,−1). Moreover, if C(n) ≡ 0

(mod 4), then C ′(n) = C(n) and AW (C(n)) is an integer for all recurrences

W (a,−1). In particular, C ′(n) exists for all n ≥ 1.

(v) Suppose that a ≡ 2 (mod 4). If C(n) is even, then C ′(n) does not exist. In

particular, if n is even or gcd(n, a+ 2) > 1, then C ′(n) does not exist.

Corollary 2.6. Consider the nondegenerate Lucas sequence U(a,−1) with discrim-

inant D = a2 − 4 = (a+ 2)(a− 2). Let q1 be an arbitrary positive odd integer such

that rad(q1) | a− 2. Let q2 be an arbitrary positive odd integer such that Q(q2) ≥ 5

and rad(q2) | D. Let q3 be an arbitrary positive odd integer such that rad(q3) | D.

Then n ∈ S′(U) and AW (n) is an integer for all recurrences W (a, 1) in the following

cases given in parts (i)–(v), where n > 1, rad(n) | 6D, and i and j are nonnegative

integers:

(i) n = q1, where a is an arbitrary integer such that a 6= 0,±1, or ±2.

(ii) a ≡ ±1 (mod 6) and n = 2i+13j+1q2.

(iii) a ≡ 3 (mod 6) and n = 2i+23j+1q2.

(iv) a ≡ 0 (mod 4) and n = 2i+2q3.

(v) a ≡ 0 (mod 12) and n = 2i+23j+1q2.

Theorem 2.26. Consider the nondegenerate Lucas sequence U(a, b) = U(a,−a+1)

with discriminant D = (a− 2)2 = (−b− 1)2 and characteristic roots α = a− 1 and

β = 1, where a 6= 0, 1, or 2. Let n be a positive integer. Then the following hold.

(i) If gcd(n, b) = gcd(n,−a+ 1) = 1, then EU (n) = 1.

(ii) If n | b = −a+1 and m ∈ S′(U), then AW (mn) is an integer for all recurrences

W (a,−a+ 1).

(iii) n ∈ S(U) if and only if n ∈ T (U), where T (U) is as defined in Remark 2.2.
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(iv) Suppose that a is odd. Then n ∈ S′(U) if and only if n ∈ S(U), which occurs if

and only if n ∈ T (U). In particular, if n ∈ S(U), then AW (n) is an integer for

all recurrences W (a,−a + 1). Moreover, if a = 3, then D = 1 and n ∈ S(U)

if and only if n = 1. Furthermore, if n | b, then it also occurs that AW (n) is

an integer for all recurrences W (a,−a+ 1).

(v) Suppose that a is even. Then n ∈ S′(U) if and only if n is odd and n ∈ S(U).

In particular, if a = 2 + 2k for some k ≥ 1, then n 6∈ S′(U) for n > 1. If n is

odd and n ∈ S(U), then AW (n) is an integer for all recurrences W (a,−a+1).

Theorem 2.27. Consider the nondegenerate Lucas sequence U(a, b) = U(b− 1, b)

with discriminant D = (b + 1)2 = (a + 2)2 and characteristic roots α = b and

β = −1, where a 6= 0,−1, or −2. If n > 1 and gcd(n, b) = 1, then πU (n) is even.

Moreover, the following hold.

(i) If b is even, n | b, and n is even, then AW (n) is an integer for all recurrences

W (b− 1, b).

(ii) If n > 1, a is even, and n ∈ S(U), then AU (n) is not an integer. In particular,

S′(U) = {1} if a is even. Moreover, S(U) = {1} if a is odd.

(iii) Suppose that a is odd. Then b is even. Let m be an even integer such that

m | b and let t be an integer such that t ∈ T (U). Then t is odd and AW (mt)

is an integer for all recurrences W (b− 1, b).

The following example illustrates Theorem 2.27.

Example 2.2. Consider the Lucas sequence U(7, 8) with discriminant D = 81 = 34

and characteristic roots α = 8 and β = −1. We observe that U3 = 72 + 8 = 57 =

3 ·19. It follows from Theorem 4.1 below that 3 ·19 = 57 ∈ T (U). Then by Theorem

2.27 (iii),

BU (8 · 3 · 19) = BU (456) ≡ 0 (mod 456),

and AW (456) is an integer for all recurrences W (7, 8).

3. Auxiliary Results

In this section, we provide results that will be needed for the proofs of Theorems

2.24–2.27 as well as Corollaries 2.5 and 2.6. We let ordm(n) denote the multiplicative

order of n modulo m.

Theorem 3.1. Let U(a, b) be a nondegenerate Lucas sequence and let m ≥ 2 be an

integer such that gcd(m, b) = 1. Let h = ordm(−b) = 2ch′ and ρ = ρU (m) = 2dρ′,

where h′ and ρ′ are odd integers. Let π = πU (m) and H = lcm(h, ρ).
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(i) Either π = H or π = 2H.

(ii) Suppose that m = pi, where p is an odd prime and i ≥ 1. If c 6= d, then

π = 2H. If c = d > 0, then π = H.

This is proved in Theorems 3 and 4 of Wyler [15].

We have the following corollaries of Theorem 3.1 corresponding to the cases in

which b = ±1.

Corollary 3.1. Consider the nondegenerate Lucas sequence U(a, 1) and let m ≥ 2.

Let π = πU (m) and ρ = ρU (m). Let E = EU (m) = π/ρ. Then the following hold.

(i) E = 1, 2, or 4.

(ii) Suppose that m = pi, where p is an odd prime and i ≥ 1.

(a) If ρ ≡ 2 (mod 4), then E = 1.

(b) If ρ ≡ 0 (mod 4), then E = 2.

(c) If ρ ≡ 1 (mod 2), then E = 4.

(iii) πU (m) is even if it is not the case that m = 1 or both m = 2 and a ≡ 1

(mod 2).

(iv) L(m) is even if m ≥ 2.

Proof. Parts (i) and (ii) are direct consequences of Theorem 3.1 upon noting that

h = ordm(−1) = 2 for m ≥ 3 and h = 1 for m = 2.

We now prove part (iii). Suppose that m > 1 and it is not the case that m = 2

and a is odd. Suppose first that m is not a power of 2. Then m has an odd prime

divisor p. Since π(p) = ρ(p)EU (p), it follows from part (ii) that πU (p) is even.

Thus, πU (m) is even by Theorem 1.2.

Now suppose that m is a power of 2. If a ≡ 0 (mod 2), then πU (2) = 2, which

implies that πU (m) is even. If a ≡ 1 (mod 2), then U3 = a2 + 1 ≡ 2 (mod 4), and

πU (2) = 3 < πU (4). We now see by Theorem 1.4 (viii) that πU (4) = 6. It again

follows that πU (m) is even if m > 2, and part (iii) is established. Since 2 | L(2) and

πU (m) | L(m), it follows from part (iii) that part (iv) holds. �

Corollary 3.2. Consider the nondegenerate Lucas sequence U(a,−1) and assume

that m ≥ 2. Let π = πU (m) and ρ = ρU (m). Let E = EU (m) = π/ρ. Then the

following hold.

(i) E = 1 or 2.

(ii) Suppose that m = pi, where p is an odd prime and i ≥ 1.

(a) If ρ ≡ 0 (mod 2), then E = 2.
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(b) If ρ ≡ 1 (mod 2), then E = 1 or 2.

Proof. This follows immediately from Theorem 3.1 upon noting that ordm(−b) =

ordm(1) = 1. �

Remark 3.1. We show that both possibilities for E can occur in part (ii) (b) of

Corollary 3.2. Consider the Lucas sequence U(3,−1). Then ρU (13) = ρU (29) = 7,

while πU (29) = 7, whereas πU (13) = 14. Hence, EU (29) = 1, whereas EU (13) = 2.

Theorem 3.2. Let U(a, b) be a Lucas sequence with discriminant D, where b = ±1.

Suppose that p | D. Then the following hold.

(i) If b = 1, then p = 2 or p ≡ 1 (mod 4).

(ii) Suppose that b = −1. Then a ≡ ±2 (mod p). If a ≡ 2 (mod p), then

EU (pi) = 1 for i ≥ 1. If a ≡ −2 (mod p) and p > 2, then EU (pi) = 2

for i ≥ 1.

Proof. (i) Since D = a2 + 4 ≡ 0 (mod p), we see that p = 2 or (−4/p) = 1 for

p > 2. Then p = 2 or p ≡ 1 (mod 4) by the law of quadratic reciprocity.

(ii) We note that D = a2 − 4 = (a − 2)(a + 2) ≡ 0 (mod p). Thus, a ≡ ±2

(mod p). First, suppose that a ≡ 2 (mod p). Then by the proof of Theorem 2.19,

EU (p) = 1. It now follows from Theorem 1.4 (vii) and (viii) and Theorem 1.5

(i), (ii), and (iv) that EU (pi) = 1 for i ≥ 1. Now suppose that a ≡ −2 (mod p)

and p > 2. Then by the proof of Theorem 2.20, EU (p) = 2. It then follows from

Theorem 1.4 (vii) and (viii) and Theorem 1.5 (i), (ii), and (iv) that EU (pi) = 2 for

i ≥ 1. �

Theorems 3.3 and 3.4 treat particular cases in which exactly one of the charac-

teristic roots of U(a, b) = ±1.

Theorem 3.3. Consider the nondegenerate Lucas sequence U(a, b) = U(−b+ 1, b),

where b 6= 0 and b 6= ±1, with characteristic roots α and β, where |α| ≥ |β|. Then

α = −b, β = 1, and D = (−b − 1)2 = (a − 2)2. Suppose that gcd(n, b) = 1. Then

Un+1 = (−b)Un + 1. Furthermore, EU (n) = 1 and πU (n) = ρU (n). Moreover,

Ui ≡ 1 (mod b) for i ≥ 1.

Proof. It is easily seen that α = −b, β = 1, and D = (a− 2)2. Since gcd(n, b) = 1,

ρ(n) exists. By the Binet formula (1.5),

Un =
(−b)n − 1n

−b− 1
= (−b)n−1 + (−b)n−2 + · · ·+ (−b) + 1.

Thus,

Un+1 = (−b)Un + 1. (3.1)

Let ρ = ρU (n). Then Uρ ≡ 0 (mod n) and Uρ+1 ≡ 1 (mod n) by (3.1). Hence,

EU (n) = 1. �
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Theorem 3.4. Consider the nondegenerate Lucas sequence U(a, b) = U(b − 1, b),

where b 6= 0 and b 6= ±1, with characteristic roots α and β, where |α| ≥ |β|. Then

α = b, β = −1, and D = (b + 1)2 = (a + 2)2. Suppose that gcd(n, b) = 1. Then

Un+1 = bUn + (−1)n. Moreover, EU (n) = 1 if ρU (n) is even and EU (n) = 2 if

ρU (n) is odd. Additionally, MU (n) ≡ 1 (mod n) if ρ(n) is even and MU (n) ≡ −1

(mod n) if ρU (n) is odd, where MU (n) is the multiplier of U(b− 1, b) modulo n and

is defined in (1.10). Furthermore, πU (n) is even if n > 1.

Proof. It is easy to see that α = b, β = −1, and D = (b + 1)2 = (a + 2)2. Since

gcd(n, b) = 1, ρ(n) exists. We observe that b is odd if n is even. Thus, if n = 2,

then U2 = b− 1 ≡ 0 (mod 2), and ρ(2) is even. By the Binet formula (1.5),

Un =
bn − (−1)n

b+ 1
= bn−1 − bn−2 + · · ·+ (−1)nb+ (−1)n+1.

Hence,

Un+1 = bUn + (−1)n. (3.2)

Let ρ = ρU (n). Then Uρ ≡ 0 (mod n) and Uρ+1 ≡ MU (n) ≡ (−1)n (mod n) by

(3.2). Therefore, EU (n) = 1 if ρU (n) is even and EU (n) = 2 if ρU (n) is odd. Since

πU (n) = ρU (n)EU (n), we find that πU (n) is always even for n > 1. �

4. Necessary and Sufficient Conditions for πU(n) to Divide n

Suppose that we are given the Lucas sequence U(a, b), where gcd(a, b) = 1. Theorem

4.1 due to Smyth [9] gives a necessary and sufficient condition for Un to be divisible

by n when gcd(n, b) = 1. By (1.12) and (1.10), n | Un if and only if ρU (n) | n.

We let T (U) denote the set of positive integers n coprime to b such that n | Un, or

equivalently, ρU (n) | n.

Theorem 4.1. Consider the nondegenerate Lucas sequence U(a, b) with discrimi-

nant D, where gcd(a, b) = 1. Let q0 = 1 or 6 if a ≡ 3 (mod 6) and b ≡ ±1 (mod 6).

Let q0 = 1 or 12 if a ≡ ±1 mod 6 and b ≡ 1 (mod 6). In all other cases, let q0 = 1

only. Then q0 ∈ T (U).

Moreover, n ∈ T (U) if and only if n can be written in the form

q0q1 · · · qr (4.1)

for some r ≥ 0, where for i = 1, 2, . . . , r, qi is a prime such that qi | DUq0q1···qi−1
.

We allow the possibility that qi = qj for 1 ≤ i < j. Moreover, if n has the form

given in (4.1), then q0q1 · · · qi ∈ T (U) for i = 0, 1, . . . , r. Furthermore, if D = 1,

then n ∈ T (U) if and only if n = 1.

This follows from results in Theorem 1 of [9] and Theorem 8 (iii) of [10].
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Theorem 4.2. Consider the nondegenerate Lucas sequence U(a, b) with discrimi-

nant D, where a = −b+ 1. Then n ∈ S(U) if and only if n ∈ T (U).

Proof. By Theorem 3.3, E(n) = 1 and πU (n) = ρU (n) for all n ≥ 1. The result now

follows immediately. �

Given the Lucas sequence U(−b+1, b), we can now use Theorem 4.1 to explicitly

find all integers n ∈ S(U). Theorem 4.3 below makes further use of Theorem 4.1 to

give necessary and sufficient conditions for n to be a member of S(U) for particular

Lucas sequences U(a, b) for which b = ±1 or a = b − 1. We let νp(m) denote the

largest nonnegative integer i such that pi | m.

Theorem 4.3. Consider the nondegenerate Lucas sequence U(a, b) with discrimi-

nant D, where b = ±1 or b is odd and a = b− 1. Let p be an arbitrary prime. Then

E(p) | 4 if b = 1 and E(p) | 2 if b = −1 or it is the case that b is odd and a = b− 1.

Let s0 = 1 or 6 if a ≡ 3 (mod 6) and b = 1 or it is the case that a ≡ ±1 (mod 6)

and b = −1. Let s0 = 1 or 24 if a ≡ ±1 (mod 6) and b = 1. Let s0 = 1 or 12

if a ≡ 3 (mod 6) and b = −1. Let s0 = 1 or 2 if b is odd and a = b − 1. In all

other cases, let s0 = 1 only. Then s0 ∈ S(U). Furthermore, n ∈ S(U) if and only

if n = 1 or n can be written in the form

s02ε(s0)s12ε(s1) · · · sr2ε(sr), (4.2)

where ε(s0) = 0, and si and ε(si) are defined as follows for i = 1, 2, . . . , r. Let

ni−1 = s02ε(s0)s12ε(s1) · · · si−12ε(si−1).

for i = 1, 2, . . . , r. Let si be a prime such that si | DUni−1
and define

ε(si) = max(ν2(π(si))− ν2(ni−1), 0).

In addition to nr being a member of S(U), ni ∈ S(U) for i = 0, 1, . . . , r − 1.

Proof. We observe that if n ∈ S(U), then n ∈ T (U). Moreover, πU (p) = ρU (p)EU (p)

for all primes p. The assertions regarding EU (p) are proved in Corollaries 3.1 and

3.2 and in Theorem 3.4. Moreover, by Corollary 3.1 (iii) and Theorem 3.4, if b = 1,

then πU (n) is even for n > 2, while it is the case that if b is odd, a = b− 1, n > 1,

and gcd(n, b) = 1, then πU (n) is even. Let L(n) be defined as in Theorem 2.8.

Then by Theorem 2.8, L(n) = C(n) and L(n) ∈ S(U). We note that if n ∈ S(U),

then n = L(n). Since n ∈ T (U), it follows by Theorem 4.1 that gcd((L(n), 6D) > 1

if n > 1. By Theorem 2.9 (vii), L(2) = L(3) = 24 if a ≡ ±1 (mod 6) and b ≡ 1

(mod 6). Moreover, by Theorem 2.9 (xi), L(2) = L(3) = 12 if a ≡ 3 (mod 6)

and b ≡ −1 (mod 6). Further, by Theorem 2.9 (viii), L(2) = L(3) = 6 if a ≡ 3

(mod 6) and b ≡ 1 (mod 6). In all other cases, D = 1 or gcd(L(2), D) > 1 or

gcd(L(3), D) > 1. The rest of the proof of Theorem 4.3 follows from Smyth’s proof

of Theorem 1 in [9]. �
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Remark 4.1. We note that in formula (4.2) of the statement of Theorem 4.3, we

have that 0 ≤ ε(si) ≤ 2 if b = 1, while 0 ≤ ε(si) ≤ 1 if b = −1 or a = b− 1, where

1 ≤ i ≤ r. This follows from the fact that E(p) | 4 if b = 1, whereas E(p) | 2 if

b = −1 or a = b− 1.

5. Proofs of the Main Results

We are now ready for the proofs of Theorems 2.24–2.27 and also of Corollaries 2.5

and 2.6.

Proof of Theorem 2.24. Part (i) follows from Corollary 3.1 (iii) and (iv), Theorem

2.11, Theorem 2.8, and Corollary 2.4 (i).

We now prove parts (ii)–(iv) together. The assertions in parts (ii) and (iii)

concerning L(2) follow from Theorem 2.9. By Remark 2.3, in order to show that

AW (C ′(n)) is an integer for all recurrences W (a, 1), it suffices to show that C ′(n)

exists which implies by definition that BU (C ′(n)) ≡ 0 (mod C ′(n)). Since b = 1,

we see from Theorem 2.2 (i) and Corollary 2.1 (i) that if n ≥ 1, then

BU (n) =
1

a
J(n), (5.1)

where J(n) = Un+1 − 1 + Un. Then

J(C(n)) ≡ 0 (mod C(n)) (5.2)

by Theorem 2.2 (i), since C(n) ∈ S(U) by the definition of C(n). Suppose that

gcd(p, a) = 1 and pe(p) ‖ C(n), where e(p) ≥ 1. Let e = e(p). Then by (5.1) and

(5.2),

BU (C(n)) ≡ 0 (mod pe) if gcd(p, a) = 1. (5.3)

We note that C(n) is even by part (i). Thus, if 2i ‖ C(n), where i ≥ 1, then

BU (C(n)) ≡ 0 (mod 2i)

when a is odd.

Now suppose that p is odd, p | a, where a is not necessarily odd, and pj(p) ‖ C(n),

where j(p) ≥ 1. Let j = j(p). By Lemma 2.1,

BU (2mpj) ≡ 0 (mod pj) (5.4)

for all m ≥ 1. Since C(n) is even, we see that 2pj | C(n). It now follows from (5.4)

that

BU (C(n)) ≡ 0 (mod pj) if p is odd and p | a. (5.5)
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By (5.3) and (5.5), it follows that if a is odd, then

BU (C(n)) ≡ 0 (mod C(n)),

which implies that C ′(n) = C(n) for all n ≥ 1.

Next suppose that a ≡ 2 (mod 4). Suppose that 2k ‖ C(n), where k ≥ 1. By

Theorems 2.14 and 2.15, if m is a positive odd integer, then

BU (2km) 6≡ 0 (mod 2k) if k = 1, (5.6)

while

BU (2km) ≡ 0 (mod 2k) if k ≥ 2. (5.7)

It now follows from (5.3), (5.5), (5.6), and (5.7) that if a ≡ 2 (mod 4), then C ′(n)

exists for all n ≥ 1. Moreover, C ′(n) = 2C(n) if n ≡ 2 (mod 4), while C ′(n) = C(n)

in all other cases.

Finally, suppose that a ≡ 0 (mod 4). Suppose further that n is even and 2` ‖ n.

Then by Theorem 2.16,

BU (n) 6≡ 0 (mod 2`).

Since C(n) is always even for n ≥ 2, we see that C ′(n) does not exist if n ≥ 2. �

Proof of Corollary 2.5. This follows from Theorems 2.24, 2.9, 2.11, 2.12 (i) and (iv),

3.2 (i) and 4.3, and from Corollaries 2.3 and 3.1. �

Proof of Theorem 2.25. (i) By Theorem 2.11, C(n) exists for all n. By Theorem

2.8 and Remark 2.6, if n > 1, then n | C(n). As C(n) ∈ S(U), it follows from

the fact that ρ(n) | π(n) that C(n) ∈ T (U). We now see from Theorem 4.1 that

C(n) ∈ T (U) implies that gcd(rad(6D), C(n)) > 1.

We now prove parts (ii)–(v) together. Noting that b = −1, we see from Theorem

2.2 (i) and Corollary 2.1 (i) that

BU (C(n)) =
1

a− 2
J(C(n)), (5.8)

where J(C(n)) = UC(n)+1 − 1− UC(n). Then by Theorem 2.2 (i),

J(C(n)) ≡ 0 (mod C(n)), (5.9)

since πU (C(n)) | C(n) by Remark 2.6. Hence,

J(C(n)) ≡ 0 (mod n2), (5.10)

Since gcd(n2, a− 2) = 1, it follows from (5.8) and (5.10) that

BU (C(n)) ≡ 0 (mod n2). (5.11)
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We now note that it follows from Theorem 2.19 that C ′(n1) = C(n1) = n1.

Hence,

BU (n1) ≡ 0 (mod n1). (5.12)

Since n1 | C(n), we see that

BU (C(n)) ≡ 0 (mod n1). (5.13)

Noting that gcd(n1, n2) = 1, it now follows from (5.11) and (5.13) that

BU (C(n)) ≡ 0 (mod n1n2). (5.14)

We now find from (5.14) that

BU (C(n)) ≡ 0 (mod C(n)) if C(n) is odd, (5.15)

which yields that C ′(n) = C(n) in this case. Since n | L(n) = C(n), we also see

that if C(n) is odd, then n is odd.

We next suppose that a is odd. Then a−2 is odd. It follows from (5.8) and (5.9)

that

BU (C(n)) ≡ 0 (mod 2kn2), (5.16)

because J(C(n)) ≡ 0 (mod C(n)), 2kn2 | C(n), and gcd(2kn2, a− 2) = 1. We now

see by (5.13) and (5.16) that

BU (C(n)) ≡ 0 (mod n) for n ≥ 1 if a is odd, (5.17)

which implies that C ′(n) = C(n) for all n if a is odd. Parts (ii) and (iii) are now

established.

We now suppose that a and C(n) are both even. First suppose that a ≡ 2

(mod 4). Then by Theorem 2.18, if m is even, then BU (m) 6≡ 0 (mod m). Suppose

that C ′(n) exists. Since C(n) is even and C(n) | C ′(n), this would imply that C ′(n)

is even and BU (C ′(n)) ≡ 0 (mod C ′(n)), which is a contradiction. Hence, C ′(n)

does not exist if n ≡ 2 (mod 4) and C(n) is even. Since n | C(n) by definition, we

see that C(n) is even if n is even. Now suppose that p is odd and p | gcd(n, a+ 2).

It follows from (2.29) in the proof of Theorem 2.20 that πU (p) = 2p. Since πU (p) |
πU (n), so πU (p) | L(n) = C(n), we see that C(n) is also even in this case. Part (v)

is now proven.

We next suppose that a ≡ 0 (mod 4). Then by Theorems 2.14 and 2.17, if m is

even and 2k ‖ m, then BU (m) 6≡ 0 (mod 2k) if k = 1, while BU (m) ≡ 0 (mod 2k)

if k ≥ 2. Since 2k | C(n), we then have that

BU (C(n)) ≡ 1 (mod 2k) if k = 1, (5.18)

while

BU (C(n)) ≡ 0 (mod 2k) if k ≥ 2. (5.19)
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Noting that lcm(2k, n1, n2) = 2kn1n2 = n, it now follows from (5.14), (5.18), and

(5.19) that

BU (C(n)) 6≡ 0 (mod n) if k = 1, (5.20)

while

BU (C(n)) ≡ 0 (mod n) if k ≥ 2. (5.21)

By (5.20) and (5.21), we see that C ′(n) = 2C(n) if k = 1, whereas C ′(n) = C(n) if

k ≥ 2. Part (iv) now follows. �

Proof of Corollary 2.6. This follows from Theorems 2.25, 2.9, 2.11, 2.12 (ii) and

(iii), 3.2 (ii) and 4.3, and from Corollaries 2.3 and 3.2. �

Proof of Theorem 2.26. We observe that a+ b− 1 = 0. By Theorem 3.3, α = a− 1

and β = 1, D = (a − 2)2, and EU (n) = 1 if gcd(n, b) = 1. Hence, part (i) holds.

Part (ii) follows from Theorem 2.10 (i). Part (iii) follows from Theorems 4.1 and

4.2.

We now prove parts (iv) and (v) together. Suppose that n ∈ S(U). Then

gcd(n, b) = 1. We observe that it follows from Theorem 4.1 that if D = 1, then

S(U) = {1}. Let n = n1n2, where n2 is the largest divisor of n that is relatively

prime to a− 2 = −b− 1. Since n ∈ S(U), it follows by definition that n is equal to

a general period of U(a, b) modulo n. Noting that gcd(n2, b(−b− 1)) = 1, it follows

by Corollary 2.2 (ii) that

BU (n) ≡ 0 (mod n2). (5.22)

Now suppose that pe(p) ‖ n1, where p is odd. Let e = e(p). Then p | a− 2, which

implies that p | D. We claim that if p = 3 and e ≥ 2, then U3 6≡ 0 (mod 9). We

note that U3 = a2 + b = a2 − a + 1. By inspection, one sees that U3 6≡ 0 (mod 9)

for a = 0, 1, . . . , 8. Thus, U3 6≡ 0 (mod 9) for any integer a. It now follows from

Theorem 1.5 (i), (ii), and (iv) that U(a, b) is uniformly distributed modulo pe with

each residue appearing exactly E(p) = 1 time in a least period of U(a, b) modulo

pe. Since n is a general period of U(a, b) modulo pe, we find that

BU (n) ≡ BU (pe) ≡ 1 + 2 + · · ·+ pe =
pe(pe + 1)

2
≡ 0 (mod pe). (5.23)

If n is odd or it is the case that both a is odd and n is even, it follows from (5.22)

and (5.23) that BU (n) ≡ 0 (mod n), which implies that n ∈ S′(U) and AW (n) is

an integer for all recurrences W (a,−a+ 1).

Now suppose that a is even and n is even. If a ≡ 2 (mod 4), then b = −a+1 ≡ −1

(mod 4), while if a ≡ 0 (mod 4), then b = −a + 1 ≡ 1 (mod 4). In both cases, it

follows from Theorems 2.16 and 2.18 that

BU (r) 6≡ 0 (mod r) if a is even and r is even. (5.24)

By definition, n ∈ S′(U) only if n ∈ S(U). It now follows by (5.24) that if n ∈ S(U),

n is even, and a is even, then n /∈ S′(U). Finally, suppose that a = 2 + 2k for some
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k ≥ 1. Then D = (a − 2)2 = 22k. It follows from Theorems 4.1 and 4.2 that

n ∈ S(U) only if n = 1 or n is even. Thus in this case, S′(U) = {1}. Parts (iv) and

(v) now follow. �

Proof of Theorem 2.27. By Theorem 3.4, α = b and β = −1, D = (b+1)2 = (a+2)2,

and πU (n) is even if n > 1 and gcd(n, b) = 1. Part (i) follows from Theorem 2.10

(ii) upon noting that a ≡ −1 (mod b).

(ii) Suppose that n > 1 and n ∈ S(U). Then gcd(n, b) = 1 and πU (n) | n. Since

πU (n) is even, this implies that n is even.

Now suppose that a is odd. Then b is even, which is a contradiction. Hence,

S(U) = {1} in this case. Next suppose that a is even. If a ≡ 2 (mod 4), then

b = a + 1 ≡ −1 (mod 4). If a ≡ 0 (mod 4), then b = a + 1 ≡ 1 (mod 4). In both

cases, we see by Theorems 2.16 and 2.18 that if r is even, then BU (r) 6≡ 0 (mod r).

Since n is even if n ∈ S(U), this implies that S′(U) = {1}.
(iii) Let W (b − 1, b) be an arbitrary recurrence. We observe that t is odd and

gcd(m, t) = 1, since gcd(t, b) = 1 and m | b. By Theorem 2.10 (ii) and the proof of

Theorem 2.7,

BW (mt) ≡ 0 (mod m). (5.25)

By the definition of T (U), ρU (t) | t. Thus, ρU (t) is odd. It follows from Theorem

3.4 that πU (t) = 2ρU (t) and MU (t) ≡ −1 (mod t). Let ρ = ρU (t). Then by (1.10),

Uρ+i ≡ −Ui (mod t) (5.26)

for 1 ≤ i ≤ ρ. It now follows from (5.26) and (1.16) that

Wρ+i ≡ −Wi (mod t) (5.27)

for 1 ≤ i ≤ ρ. Thus,

BW (2ρ) ≡ 0 (mod t). (5.28)

Since πW (t) | πU (t), πU (t) = 2ρU (t), ρU (t) | t, and 2 | m, we see that mt is a general

period of W (b− 1, b) modulo t. Thus, by (5.28),

BW (mt) ≡ 0 (mod t). (5.29)

It now follows from (5.25) and (5.29) that BW (mt) ≡ 0 (mod mt), and thus

AW (mt) is an integer for all recurrences W (b− 1, b). �
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