

ON UNIT-WEIGHTED ZERO-SUM CONSTANTS OF \mathbb{Z}_n

Santanu Mondal

Department of Mathematics, Ramakrishna Mission Vivekananda Educational and Research Institute, Dist. Howrah, West Bengal, India santanu.mondal.math18@gm.rkmvu.ac.in

Krishnendu Paul

Department of Mathematics, Ramakrishna Mission Vivekananda Educational and Research Institute, Dist. Howrah, West Bengal, India krishnendu.p.math18@gm.rkmvu.ac.in

Shameek Paul

Department of Mathematics, Ramakrishna Mission Vivekananda Educational and Research Institute, Dist. Howrah, West Bengal, India
shameek.paul@rkmvu.ac.in

Received: 3/7/23, Revised: 8/20/23, Accepted: 3/22/24, Published: 4/8/24

Abstract

Given a subset $A \subseteq \mathbb{Z}_n$, the constant C_A is defined to be the smallest natural number k such that any sequence of k elements in \mathbb{Z}_n has an A-weighted zero-sum subsequence having consecutive terms. The value of $C_{U(n)}$ is known for every odd number n. We determine the value of $C_{U(n)}$ for every even number n. We define a C-extremal sequence for U(n) to be a sequence in \mathbb{Z}_n having length $C_{U(n)} - 1$ which does not have any U(n)-weighted zero-sum subsequence having consecutive terms. We characterize the C-extremal sequences for U(n) when n is a power of 2. We also determine the value of C_A when A is the set of all odd (or all even) elements of \mathbb{Z}_n , and when $A = \{1, 2, \ldots, r\}$ for some $r \leq n-1$.

1. Introduction

We denote the number of elements in a finite set S by |S|. For $a, b \in \mathbb{Z}$, we denote the set $\{k \in \mathbb{Z} : a \leq k \leq b\}$ by [a, b]. In this section, R will denote a ring with unity. The next three definitions are given in [9].

Definition 1.1. Let M be an R-module and $A \subseteq R$. Let $S = (x_1, x_2, \ldots, x_k)$ be a sequence in M. A subsequence T is called an A-weighted zero-sum subsequence if

DOI: 10.5281/zenodo.10944045

the set $J = \{i : x_i \in T\}$ is non-empty, and for each $i \in J$ there exist $a_i \in A$ such that $\sum_{i \in J} a_i x_i = 0$.

Definition 1.2. Let M be a finite R-module and $A \subseteq R$. The A-weighted Davenport constant D_A is the least positive integer k such that every sequence in M of length k has an A-weighted zero-sum subsequence.

Definition 1.3. Let M be a finite R-module and $A \subseteq R$. The A-weighted constant C_A is the least positive integer k such that every sequence S in M of length k has an A-weighted zero-sum subsequence whose terms are consecutive terms of S.

Definition 1.4. Let M be a finite R-module and $A \subseteq R$. The A-weighted Gao constant E_A is the least positive integer k such that every sequence in M of length k has an A-weighted zero-sum subsequence of length |M|.

Remark 1.5. We denote the above three constants by D(M), C(M), and E(M), respectively, when $A = \{1\}$. In [9] we show that for every finite R-module M we have $D_A \leq C_A \leq |M|$. Also, it is easy to see that $E_A \geq D_A + |M| - 1$.

We denote the ring $\mathbb{Z}/n\mathbb{Z}$ by \mathbb{Z}_n . When $A \subseteq \mathbb{Z}_n$, Yuan and Zeng show in [16] that $E_A = D_A + n - 1$. Some results for these constants when $M = R = \mathbb{Z}_n$ are given in [1], [3], [6], [8], [9], and [15].

Definition 1.6. Let $A \subseteq \mathbb{Z}_n$. A sequence in \mathbb{Z}_n of length $E_A - 1$ which does not have any A-weighted zero-sum subsequence of length n is called an E-extremal sequence for A. A sequence in \mathbb{Z}_n of length $C_A - 1$ which does not have any A-weighted zero-sum subsequence of consecutive terms is called a C-extremal sequence for A.

Let U(n) denote the group of units in \mathbb{Z}_n and $U(n)^k = \{x^k : x \in U(n)\}$. We let $\Omega(n) = r_1 + \cdots + r_s$ if $n = p_1^{r_1} \dots p_s^{r_s}$ where the p_i 's are distinct primes.

For a finite abelian group G we show that C(G) = |G|. This result is in contrast with the value of D(G) for a finite abelian group G, as in Corollary 1.1 of [14] we see that D(G) = |G| if and only if G is a finite cyclic group. As a consequence of the fact that $C(\mathbb{Z}_2^a) = 2^a$, in Theorem 3.6 we show that for every positive integer n we have that $C_{U(n)} = 2^{\Omega(n)}$. Thus, we obtain a new proof of Corollary 4 of [9] while also generalizing it.

The result that $D(\mathbb{Z}_2^a) = a+1$ for every positive integer a is a special case of the main result of Olson in [13]. As a consequence of this we rederive the result that $D_{U(n)} = \Omega(n) + 1$ for every positive integer n (without using the value of $E_{U(n)}$). This can also be arrived at by using the result of Yuan and Zeng in [16], as the values of $E_{U(n)}$ for every positive integer n are given in [6] and [8].

However, we feel that it is of interest to derive the value of $D_{U(n)}$ for every positive integer n without using the value of $E_{U(n)}$, since for other weight-sets $A \subseteq \mathbb{Z}_n$, the values of D_A have been determined without using the corresponding values of E_A .

2. Some General Results

Theorem 2.1. Let M be a finite R-module and N be a finite R'-module. Suppose $A \subseteq R$ and $B \subseteq R'$. Then we have that $D_{A \times B} \ge D_A + D_B - 1$ where we consider $M \times N$ as a module over $R \times R'$.

3

Proof. Let $k = D_A - 1$ and $l = D_B - 1$. Suppose $S_1 = (x_1, \ldots, x_k)$ is a sequence in M which does not have any A-weighted zero-sum subsequence, and $S_2 = (y_1, \ldots, y_l)$ is a sequence in N which does not have any B-weighted zero-sum subsequence. Let S be the sequence in $M \times N$ defined as

$$((x_1,0),(x_2,0),\ldots,(x_{k-1},0),(x_k,0),(0,y_1),(0,y_2),\ldots,(0,y_{l-1}),(0,y_l)).$$

Suppose S has an $A \times B$ -weighted zero-sum subsequence T. If no term of T is of the form $(0, y_j)$ for any $j \in [1, l]$, then we get the contradiction that S_1 has an A-weighted zero-sum subsequence. If T has a term of the form $(0, y_j)$ for some $j \in [1, l]$, then by taking the projection to the second coordinate, we get the contradiction that S_2 has a B-weighted zero-sum subsequence. Thus, we see that S does not have any $A \times B$ -weighted zero-sum subsequence. Hence, we get that $D_{A \times B} \ge k + l + 1$ and so $D_{A \times B} \ge D_A + D_B - 1$.

By a similar argument we get the next result. Here we mention the modules in the notation for the constant D_A as the set $A \subseteq R$ is used as a weight-set for the R-modules M, N, and $M \times N$.

Theorem 2.2. Let M and N be R-modules and $A \subseteq R$. Then $M \times N$ is an R-module and we have $D_A(M \times N) \ge D_A(M) + D_A(N) - 1$.

Theorem 2.3. Let M be a finite R-module and N be a finite R'-module. Suppose $A \subseteq R$ and $B \subseteq R'$. Then we have that $C_{A \times B} \ge C_A C_B$ where we consider $M \times N$ as a module over $R \times R'$.

Proof. Let $k = C_A - 1$ and $l = C_B - 1$. Suppose $S_1 = (x_1, \ldots, x_k)$ is a sequence in M which does not have any A-weighted zero-sum subsequence of consecutive terms and $S_2 = (y_1, \ldots, y_l)$ is a sequence in N which does not have any B-weighted zero-sum subsequence of consecutive terms. Consider the sequence S in $M \times N$ defined as

$$(S'_1, (0, y_1), S'_1, (0, y_2), S'_1, \dots, (0, y_l), S'_1)$$
 where S'_1 denotes $(x_1, 0), \dots, (x_k, 0)$.

Suppose S has an $A \times B$ -weighted zero-sum subsequence T having consecutive terms. If no term of T is of the form $(0, y_j)$ for any $j \in [1, l]$, then we get the contradiction that S_1 has an A-weighted zero-sum subsequence of consecutive terms. If T has a term of the form $(0, y_j)$ for some $j \in [1, l]$, then by taking the projection to

4

the second coordinate, we get the contradiction that S_2 has a B-weighted zerosum subsequence of consecutive terms. Thus, we see that S does not have any $A \times B$ -weighted zero-sum subsequence of consecutive terms. Hence, it follows that $C_{A \times B} \geq k(l+1) + l + 1$ and so $C_{A \times B} \geq C_A C_B$.

By a similar argument we get the next result. Here we mention the modules in the notation for the constant C_A as the set $A \subseteq R$ is used as a weight-set for the R-modules M, N, and $M \times N$.

Theorem 2.4. Let M and N be R-modules and $A \subseteq R$. Then $M \times N$ is an R-module, and we have $C_A(M \times N) \ge C_A(M) C_A(N)$.

3. The Determination of $C_{U(n)}$

For a positive integer n and for a prime p, we use the notation $v_p(n) = r$ to mean that $p^r \mid n$ and $p^{r+1} \nmid n$.

Theorem 3.1. For any finite abelian group G we have that C(G) = |G|.

Proof. By induction on the rank of G, Corollary 1 of [9], and Theorem 2.4, we can show that $C(G) \geq |G|$. Also, from Theorem 1 of [9] we get that $C(G) \leq |G|$. \square

Let $x = (x_1, \ldots, x_m), y = (y_1, \ldots, y_m) \in \mathbb{Z}_2^m$. We define the dot product of x and y to be $x \cdot y = x_1 y_1 + \cdots + x_m y_m$.

Lemma 3.2. Let a, m be positive integers such that $m \geq 2^a$ and let $v_1, \ldots, v_a \in \mathbb{Z}_2^m$. Then there exists a non-zero vector $w \in \mathbb{Z}_2^m$ such that for each $i \in [1, a]$ we have $w \cdot v_i = 0$ and the coordinates of w which are equal to one occur in consecutive positions.

Proof. Let P be the matrix of size $m \times a$ whose columns are the vectors v_i . If $w \in \mathbb{Z}_2^m$, then wP is the vector in \mathbb{Z}_2^a which is the sum of those rows of the matrix P which correspond to the coordinates of w which are 1. From Theorem 3.1 we see that $C(\mathbb{Z}_2^a) = 2^a$. As $m \geq 2^a$, the sum of some consecutive rows of P is zero. Thus, we can find a vector $w \in \mathbb{Z}_2^m$ as in the statement of the lemma. \square

Lemma 3.3. Let a and m be positive integers such that $m \ge 2^a$ and let X_1, \ldots, X_a be subsets of [1, m]. Then there exists $Y \subseteq \{1, \ldots, m\}$ such that the elements of Y are consecutive numbers, and for each $i \in [1, a]$ we have that $|Y \cap X_i|$ is even.

Proof. We identify a subset $A \subseteq [1, m]$ with the vector $x_A \in \mathbb{Z}_2^m$ whose j^{th} coordinate is one if and only if $j \in A$. For any two subsets A and B of [1, m] we observe that $x_A \cdot x_B = 0$ if and only if $|A \cap B|$ is even. So we see that Lemma 3.3 follows from Lemma 3.2.

For a divisor m of n, we define the natural map $f_{n,m}: \mathbb{Z}_n \to \mathbb{Z}_m$ to be the map given by $f_{n,m}(x+n\mathbb{Z}) = x+m\mathbb{Z}$. Let p be a prime divisor of n with $v_p(n) = r$. For a sequence S in \mathbb{Z}_n , we denote its image under f_{n,p^r} by $S^{(p)}$.

Observation 3.4 ([6]). Let n be a positive integer and let S be a sequence in \mathbb{Z}_n . Then S is a U(n)-weighted zero-sum sequence if and only if for every prime divisor p of n the sequence $S^{(p)}$ is a $U(p^r)$ -weighted zero-sum sequence in \mathbb{Z}_{p^r} where $r = v_p(n)$.

This is Observation 2.2 in [6]. The next result follows from Lemma 2.4 in [6] along with the remark which follows it.

Lemma 3.5 ([6]). Let p be a prime and let $n = p^r$ for some r. Suppose $S = (x_1, \ldots, x_m)$ is a sequence in \mathbb{Z}_n such that for each $i \in [1, r]$ the set X_i has an even number of elements where $X_i = \{j : x_j \not\equiv 0 \pmod{p^i}\}$. Then S is a U(n)-weighted zero-sum sequence.

Theorem 3.6. For every positive integer n we have that $C_{U(n)} = 2^{\Omega(n)}$.

Proof. By Corollary 2 of [9] we see that $C_{U(n)} \geq 2^{\Omega(n)}$ for every positive integer n. Let $S = (x_1, \ldots, x_m)$ be a sequence in \mathbb{Z}_n of length $m = 2^a$ where $a = \Omega(n)$. If we show that S has a U(n)-weighted zero-sum subsequence of consecutive terms, it will follow that $C_{U(n)} \leq 2^{\Omega(n)}$. For any prime divisor p of n and for each $i \in [1, v_p(n)]$, we let

$$X_i^{(p)} = \{ j : x_j \not\equiv 0 \pmod{p^i} \}.$$

We observe that we have a sets in the collection

$$\{X_i^{(p)}: p \text{ is a prime divisor of } n \text{ and } i \in [1, v_p(n)]\}.$$

By Lemma 3.3 we have a subset $Y \subseteq [1, m]$ such that all the elements of Y are consecutive numbers, and for every prime divisor p of n and for every $i \in [1, v_p(n)]$ we have $|Y \cap X_i^{(p)}|$ is even. Let T be the subsequence of S such that x_j is a term of T if and only if $j \in Y$.

Let q be a prime divisor of n and $v_q(n) = r$. By Lemma 3.5 the sequence $T^{(q)}$ is a $U(q^r)$ -weighted zero-sum sequence in \mathbb{Z}_{q^r} , as for each $i \in [1, r]$ the set

$$Y \cap X_i^{(q)} = \{ j \in Y : x_j \not\equiv 0 \pmod{q^i} \}$$

has even size. Thus, by Observation 3.4 it follows that the sequence T is a U(n)-weighted zero-sum sequence. Hence, we see that S has a U(n)-weighted zero-sum subsequence of consecutive terms.

6

4. The Determination of $D_{U(n)}$

The next result is a special case of the main result in [13] and follows easily by considering \mathbb{Z}_2^a as a \mathbb{Z}_2 -vector space.

Theorem 4.1. For every positive integer a we have that $D(\mathbb{Z}_2^a) = a + 1$.

We can also prove Theorem 4.1 by using Theorem 2.2 and the observation that $D(\mathbb{Z}_2) = 2$. Related results can be found in Chapter 5 of [5].

Lemma 4.2. Let a, m be positive integers such that $m \ge a+1$ and $v_1, \ldots, v_a \in \mathbb{Z}_2^m$. Then there exists a non-zero vector $w \in \mathbb{Z}_2^m$ such that for every $i \in [1, a]$ we have that $w \cdot v_i = 0$.

Proof. Let P be the matrix of size $m \times a$ whose columns are the vectors v_i . If $w \in \mathbb{Z}_2^m$, then wP is the vector in \mathbb{Z}_2^a which is the sum of those rows of the matrix P which correspond to the coordinates of w which are 1. From Theorem 4.1 we have $D(\mathbb{Z}_2^a) = a + 1$. As $m \geq a + 1$, the sum of some rows of P is zero. Thus, we can find a vector $w \in \mathbb{Z}_2^m$ as in the statement of the lemma. \square

The proof of the next result is similar to the proof of Lemma 3.3.

Lemma 4.3. Let a, m be positive integers such that $m \ge a+1$ and let X_1, \ldots, X_a be subsets of [1, m]. Then there exists a non-empty subset $Y \subseteq [1, m]$ such that for every $i \in [1, a]$ we have that $|Y \cap X_i|$ is even.

Theorem 4.4. For every positive integer n we have that $D_{U(n)} = \Omega(n) + 1$.

Proof. For every prime p, the argument in the proof of Theorem 2 of [9] shows that $D_{U(p)} = 2$. So from Lemma 1.8 of [11] we see that $D_{U(n)} \ge \Omega(n) + 1$ for every positive integer n.

Let $S=(x_1,\ldots,x_m)$ be a sequence in \mathbb{Z}_n of length $m=\Omega(n)+1$. If we show that S has a U(n)-weighted zero-sum subsequence, it will follow that $D_{U(n)} \leq \Omega(n)+1$. For every prime divisor p of n and for every $i \in [1,v_p(n)]$, let

$$X_i^{(p)} = \{ j : x_j \not\equiv 0 \pmod{p^i} \}.$$

The collection

$$\{\,X_i^{(p)}: p \text{ is a prime divisor of } n \text{ and } i \in [1, v_p(n)]\,\}$$

has $\Omega(n)$ sets. As $m = \Omega(n) + 1$, by Lemma 4.3 there exists a non-empty subset $Y \subseteq [1, m]$ such that for each prime divisor p of n and for each $i \in [1, v_p(n)]$, the set $Y \cap X_i^{(p)}$ has an even number of elements. Let T be the subsequence of S such that x_j is a term of T if and only if $j \in Y$.

Let p be a prime divisor of n and let $v_p(n) = r$. By Lemma 3.5 we see that the sequence $T^{(p)}$ is a $U(p^r)$ -weighted zero-sum sequence in \mathbb{Z}_{p^r} , since for each $i \in [1, r]$ the set

$$Y \cap X_i^{(p)} = \{ j \in Y : x_i \not\equiv 0 \pmod{p^i} \}$$

has even size. Thus, by Observation 3.4 the sequence T is a U(n)-weighted zero-sum sequence. Hence, it follows that S has a U(n)-weighted zero-sum subsequence. \square

5. Zero-Sum Subsequences of Length m in \mathbb{Z}_2^a

If T is a subsequence of a sequence S, then S-T denotes the sequence which is obtained by removing the terms of T from S.

Observation 5.1. Let (G, +) be a finite abelian group of order n and $x \in G$. Let S be a sequence of length n in G and S - x denote the sequence which is obtained by subtracting x from each term of S. If S - x is a zero-sum sequence, then S is a zero-sum sequence.

The next result is equivalent to Lemma 2.6 of [6]. This can be shown by a similar reasoning as in the remark which immediately follows Corollary 3.2 of [6].

Theorem 5.2. Let a, m be positive integers such that $m \geq 2^a$ and m is even. Suppose S is a sequence in \mathbb{Z}_2^a of length m+a. Then S has a zero-sum subsequence of length m.

Proof. Let $m \geq 2^a$ and $S = (x_1, \ldots, x_k)$ be a sequence in \mathbb{Z}_2^a of length k = m + a. Suppose each term of S occurs an even number of times in S. As x + x = 0 for any $x \in \mathbb{Z}_2^a$, it follows that S has a zero-sum subsequence of any even length, and hence also of length m. So we may assume that some term of S occurs an odd number of times. By Observation 5.1 we can assume that that term is 0.

Let S' be the unique subsequence of S whose terms are all distinct, and such that each term of S-S' occurs an even number of times in S-S'. Let the length of S' be k'. Suppose $k' \leq a$. It follows that k-k' = (m+a)-k' and so $m \leq k-k'$. As m is even, we see that S-S' (and hence S) has a zero-sum subsequence of length m.

So we may assume that $k' \geq a+1$. By Theorem 4.1 we see that $D(\mathbb{Z}_2^a) = a+1$ and hence it follows that S' has a zero-sum subsequence. Let T be a zero-sum subsequence of S' having the largest length. As 0 occurs an odd number of times in S, it is a term of S'. So we see that 0 is a term of S'. Let the length of S' be S' be S' be a constant of S' be S' be a constant of S' be a constant of

$$l \le m \le (k - k') + l. \tag{1}$$

As all terms of S' are distinct, it follows that $k' \leq 2^a$. So as $l \leq k'$ and $2^a \leq m$, we see that $l \leq m$. As $k' - l \leq a$ and m = k - a, we have that $m \leq (k - k') + l$. This proves (1).

Suppose l is even. From (1) we see that $m-l \le k-k'$. As m-l is even and each term of S-S' occurs an even number of times, it follows that S-S' has a zero-sum subsequence having length m-l. As T is a zero-sum subsequence of S' having length l, we get a zero-sum subsequence of S having length m.

Suppose l is odd. As both m and k-k' are even, from (1) it follows that $m \leq (k-k')+l-1$. As m-(l-1) is even and each term of S-S' occurs an even number of times, it follows that S-S' has a zero-sum subsequence having length m-(l-1). As 0 is a term of T which has length l, we get a zero-sum subsequence of l having length l. So we get a zero-sum subsequence of l having length l.

Lemma 5.3. Let a, m be positive integers such that $m \geq 2^a$ and m is even. Suppose $v_1, \ldots, v_a \in \mathbb{Z}_2^{m+a}$. Then there exists a non-zero vector $w \in \mathbb{Z}_2^{m+a}$ such that exactly m coordinates of w are one and for every $i \in [1, a]$ we have that $w \cdot v_i = 0$.

Proof. The proof of this lemma is similar to the proof of Lemma 4.2 where we use Theorem 5.2 in place of Theorem 4.1. \Box

The next result follows easily from Lemma 5.3. It is Lemma 2.5 of [6].

Lemma 5.4 ([6]). Let a, m be positive integers such that $m \geq 2^a$ and m is even. Suppose X_1, \ldots, X_a are subsets of [1, m+a]. Then there exists a non-empty subset Y of [1, m+a] such that |Y| = m, and for every $i \in [1, a]$ we have that $|Y \cap X_i|$ is even.

Theorem 5.5. Let n be a positive integer and m be an even integer which is at least $2^{\Omega(n)}$. Suppose S is a sequence in \mathbb{Z}_n having length $m + \Omega(n)$. Then S has a U(n)-weighted zero-sum subsequence of length m.

Proof. The proof of this theorem is similar to the proof of Theorem 4.4, where we use Lemma 5.4 in place of Lemma 4.3. \Box

Remark 5.6. The proof of Theorem 1.3 (ii) of [6] also goes through when n is odd. In this sense, we see that Theorem 5.5 is the same as Theorem 1.3 (ii) of [6].

Corollary 5.7. Let a be a positive integer and let m be an even integer which is at least 2^a . Then every m-dimensional subspace of \mathbb{Z}_2^{m+a} has a vector v such that exactly m coordinates of v are equal to one.

Proof. Let W be an m-dimensional subspace of \mathbb{Z}_2^{m+a} . Then the dimension of W^{\perp} is a. Let $\{v_1, \ldots, v_a\}$ be a basis of W^{\perp} and A be the $a \times (m+a)$ matrix whose rows are the basis vectors of W^{\perp} . Then A gives a map $\mathbb{Z}_2^{m+a} \to \mathbb{Z}_2^n$ whose kernel

is $(W^{\perp})^{\perp}$ which can be shown to be W. For each $j \in [1, m+a]$, let C_j denote the j^{th} column of A. By Theorem 5.2 we can find a subset $I \subseteq [1, m+a]$ such that |I| = m and $\sum_{i \in I} C_i = 0$. Let $v = (x_1, \ldots, x_{m+a}) \in \mathbb{Z}_2^{m+a}$ be such that $x_i = 1$ if and only if $i \in I$. As we have that $Av = \sum_{i \in I} C_i$, it follows that $v \in \ker A = W$. Hence, we see that W has a vector v such that exactly m coordinates of v are equal to one.

Definition 5.8. For every $v \in \mathbb{Z}_2^n$ we define the weight of v to be the number of coordinates of v which are equal to one. Let l(n,m) denote the largest possible dimension of a subspace of \mathbb{Z}_2^n which does not have any vector of weight m, i.e.,

 $l(n,m) = \max \{ \dim(W) : W \text{ a subspace of } \mathbb{Z}_2^n \text{ with } \operatorname{wt}(v) \neq m \text{ for every } v \in W \}.$

Corollary 5.9. Let a be a positive integer and let m be an even integer which is at least 2^a . Then we have that l(n,m) = m-1 where n = m+a.

Proof. Let $\{e_1, \ldots, e_n\}$ be the standard basis of \mathbb{Z}_2^n . The span of $\{e_1, \ldots, e_{m-1}\}$ does not have any vector of weight m, and hence it follows that $l(n,m) \geq m-1$. By Corollary 5.7 we see that if m is an even integer which is at least 2^a , then every m dimensional subspace of \mathbb{Z}_2^n has a vector of weight m. Hence, it follows that $l(n,m) \leq m-1$.

Corollary 5.9 is a weaker version of Theorem 1.1 of [4].

6. Extremal Sequences for U(n) where $n=2^k$

In [2], the *D*-extremal sequences for U(n) were characterized when n is odd and when n is a power of 2. In [10], the *C*-extremal sequences for U(n) have been characterized when n is odd. In [12], the *E*-extremal sequences for U(n) have been characterized when n is odd and when $n = 2^r p$ where p is an odd prime. In this section, we characterize the *C*-extremal and *E*-extremal sequences for U(n) when n is a power of 2.

Definition 6.1. Let A be a subgroup of U(n). Suppose $S = (x_1, \ldots, x_k)$ and $T = (y_1, \ldots, y_k)$ are sequences in \mathbb{Z}_n . We say that S and T are A-equivalent if there is a unit $c \in U(n)$, a permutation $\sigma \in S_k$, and $a_1, \ldots, a_k \in A$ such that for each $i \in [1, k]$ we have $c y_{\sigma(i)} = a_i x_i$.

Remark 6.2. Let A be a subgroup of U(n). If S is a D-extremal sequence for A, and if S and T are A-equivalent, then T is a D-extremal sequence for A. Also, if S is an E-extremal sequence for A, and if S and T are A-equivalent, then T is an E-extremal sequence for A.

When $n = p^r$ where p is an odd prime, in Theorem 3 of [2] it is shown that a sequence in \mathbb{Z}_n is an E-extremal sequence for U(n) if and only if it is U(n)-equivalent to the sequence

$$(\underbrace{0,0,\ldots,0}_{n-1 \text{ times}},1,p,p^2,\ldots,p^{r-1}).$$

In Theorem 4 of [2] it is shown that when $n = 2^r$, a sequence in \mathbb{Z}_n is a D-extremal sequence for U(n) if and only if it is U(n)-equivalent to the sequence $(1, 2, 2^2, \dots, 2^{r-1})$.

The next result is an immediate consequence of Theorem 5.5.

Theorem 6.3. For every even positive integer n we have that $E_{U(n)} = n + \Omega(n)$.

Griffiths and Luca show in [6] and [8] that $E_{U(n)} = n + \Omega(n)$ for every n.

Theorem 6.4. A sequence in \mathbb{Z}_{2^r} is an E-extremal sequence for $U(2^r)$ if it is $U(2^r)$ -equivalent to a sequence of length n+r-1 in which 2^i occurs exactly once for each $i \in [0, r-2]$, and there exists an odd number $m \in [1, 2^r-1]$, such that 2^{r-1} occurs exactly m times and the remaining terms are zero.

Proof. Let S be a sequence as in the statement of the theorem. Suppose T is a $U(2^r)$ -weighted zero-sum subsequence of S of length 2^r . Let $J = \{i \in [0, r-2] : 2^i \in T\}$. Suppose $J \neq \emptyset$. Then J has a least element i_0 . As T cannot have only one non-zero term, we see that 2^i is a term of T for some $i \in [i_0 + 1, r - 1]$. As 2^{i_0+1} divides all the terms of T except 2^{i_0} , and as T is a $U(2^r)$ -weighted zero-sum sequence, we get the contradiction that a unit is divisible by 2.

Thus, we see that $J=\emptyset$. It follows that T is a sequence of length 2^r in which there are an odd number of non-zero terms all of which are equal to 2^{r-1} . As T is a $U(2^r)$ -weighted zero-sum sequence, we see that an odd multiple of 2^{r-1} is zero. This gives the contradiction that $2^{r-1}=0$. Hence, we see that S is a sequence of length 2^r+r-1 which does not have any $U(2^r)$ -weighted zero-sum subsequence of length 2^r . From Theorem 6.3 we get that $E_{U(2^r)}=2^r+r$. So we see that S is an E-extremal sequence for $U(2^r)$. It follows that a sequence which is $U(2^r)$ -equivalent to S is also an E-extremal sequence for $U(2^r)$.

The next result is Lemma 1 (ii) of [8].

Lemma 6.5 ([8]). If a sequence in \mathbb{Z}_{2^r} has a non-zero even number of units, then it is a $U(2^r)$ -weighted zero-sum sequence.

Theorem 6.6. If a sequence in \mathbb{Z}_{2^r} is an E-extremal sequence for $U(2^r)$, then it is $U(2^r)$ -equivalent to a sequence in which 2^i occurs exactly once for each $i \in [0, r-2]$, and there is an odd number $m \in [1, 2^r - 1]$ such that 2^{r-1} occurs exactly m times, and the remaining terms are zero.

Proof. Let $n=2^r$ and S be a sequence in \mathbb{Z}_n which is an E-extremal sequence for U(n). By Theorem 6.3 we have that $E_{U(n)}=n+r$. So any E-extremal sequence for U(n) has length n+r-1. Suppose S has at least two units. By Lemma 6.5 we see that S has a zero-sum subsequence of length t for any even t which is at most k-1. We may assume that $r \geq 2$, and so we get that $k-1=n+r-2 \geq n$. Thus, we get the contradiction that S has a U(n)-weighted zero-sum subsequence of length n. Hence, we see that S has at most one unit.

Let $s \leq r-2$. Suppose for each $i \in [0, s-1]$, the sequence S has at most one term which is a unit multiple of 2^i . We claim that S has at most one term which is a unit multiple of 2^s . By our assumption, we see that S has at least k-s terms which are divisible by 2^s . If our claim is not true, we can find a subsequence of S having length k-s-1 which has an even number of terms which are a unit multiple of 2^s .

So given any even number t which is at most k-s-1, by Lemma 6.5 we see that S has a U(n)-weighted zero-sum subsequence having length t. As n=k-(r-1) and $s \leq r-2$, it follows that $n \leq k-1-s$. Thus, we get the contradiction that S has a U(n)-weighted zero-sum subsequence of length n. Hence, our claim must be true. Thus, we see by induction that for each $i \in [0, r-2]$ the sequence S can have at most one term which is a unit multiple of 2^i .

We now claim that for each $i \in [0, r-2]$ the sequence S has exactly one term which is a unit multiple of 2^i . If not, there are at most r-2 such terms, and so S will have at least k-(r-2)=n+1 terms which are either zero or a unit multiple of 2^{r-1} . We can find a subsequence of S having length n which has an even number of terms which are a unit multiple of 2^{r-1} . So by Lemma 6.5 we get the contradiction that S has a U(n)-weighted zero-sum subsequence of length n. Hence, we see that our claim is true.

Thus, we see that S has k-(r-1)=n terms which are either zero or a unit multiple of 2^{r-1} . By Lemma 6.5 we see that the number of terms of S which are a unit multiple of 2^{r-1} must be odd. Thus, S is U(n)-equivalent to a sequence in which 2^i occurs exactly once for each $i \in [0, r-2]$, and there is an odd number $m \in [1, n-1]$ such that 2^{r-1} occurs exactly m times, and the remaining terms are zero.

For example, a sequence in \mathbb{Z}_8 is an *E*-extremal sequence for U(8) if and only if it is U(8)-equivalent to one of the following sequences:

```
(1, 2, 4, 0, 0, 0, 0, 0, 0, 0), (1, 2, 4, 4, 4, 0, 0, 0, 0, 0),
(1, 2, 4, 4, 4, 4, 4, 0, 0, 0), (1, 2, 4, 4, 4, 4, 4, 4, 4, 0).
```

We will now characterize the C-extremal sequences for $U(2^r)$. The following result is Lemma 5 in [9].

Lemma 6.7 ([9]). Let S be a sequence in \mathbb{Z}_n and p be a prime divisor of n such that every term of S is divisible by p. Suppose n' = n/p and S' is the sequence in $\mathbb{Z}_{n'}$ whose terms are obtained by dividing the terms of S by p and taking their images under $f_{n,n'}$. If S' is a U(n')-weighted zero-sum sequence, then S is a U(n)-weighted zero-sum sequence.

If S is a sequence in \mathbb{Z}_n such that all the terms of S are divisible by d, then S/d denotes the sequence in \mathbb{Z}_n whose terms are obtained by dividing the corresponding terms of S by d.

Theorem 6.8. Let $n = 2^r$ and n' = n/2. Suppose $S = (x_1, \ldots, x_{n-1})$ is a sequence in \mathbb{Z}_n , $S_1 = (x_1, \ldots, x_{n'-1})$, and $S_2 = (x_{n'+1}, \ldots, x_{n-1})$. Then S is a C-extremal sequence for U(n) if and only if all the terms of S are even except the term $x_{n'}$, and the images of $S_1/2$ and $S_2/2$ under $f_{n,n'}$ are C-extremal sequences for U(n').

Proof. Let $S = (x_1, \ldots, x_{n-1})$ be a C-extremal sequence for U(n). Suppose S has at least two odd terms. We can find a subsequence T of consecutive terms of S which has exactly two odd terms. By Lemma 6.5 we get the contradiction that T is a U(n)-weighted zero-sum sequence. Thus, we see that at most one term of S can be odd.

Suppose $x_{n'}$ is even where n' = n/2. As at most one term of S is odd, we can find a subsequence T of consecutive terms of S of length n' all of whose terms are even. Let T' be the image of T/2 under $f_{n,n'}$. As $n' = 2^{r-1}$ by Theorem 3.6 we have that $C_{U(n')} = n'$. Hence, as T' has length n' we see that T' has an U(n')-weighted zero-sum subsequence of consecutive terms. So by Lemma 6.7 we get the contradiction that T (and hence S) has a U(n)-weighted zero-sum subsequence of consecutive terms.

Thus, we see that S has a unique odd term which is $x_{n'}$. Let S'_1 and S'_2 be the images of $S_1/2$ and $S_2/2$ under $f_{n,n'}$. Suppose S'_1 has a U(n')-weighted zero-sum subsequence of consecutive terms. By Lemma 6.7 we get the contradiction that S_1 (and hence S) has a U(n)-weighted zero-sum subsequence of consecutive terms. As S'_1 has length n'-1, it follows that S'_1 is a C-extremal sequence for U(n'). A similar argument shows that S'_2 is also a C-extremal sequence for U(n').

The proof of the converse statement is similar to the proof of Theorem 5 of [10], and hence we omit it. \Box

For example, a sequence S in \mathbb{Z}_8 is a C-extremal sequence for U(8) if and only if there exist units $a_1, \ldots, a_7 \in \mathbb{Z}_8$ such that

$$S = (4a_1, 2a_2, 4a_3, a_4, 4a_5, 2a_6, 4a_7).$$

For a real number x, we denote the smallest integer which is greater than or equal to x by $\lceil x \rceil$.

13

Theorem 7.1. Let $n \geq 2$ be an integer and $r \in [1, n-1]$. Suppose $A = [1, r] \subseteq \mathbb{Z}_n$. Then we have that $C_A = \lceil n/r \rceil$.

Proof. In Theorem 3 (i) of [15] it is shown that $D_A = \lceil n/r \rceil$. As we have that $C_A \geq D_A$, it follows that $C_A \geq \lceil n/r \rceil$. So it suffices to show that $C_A \leq \lceil n/r \rceil$. Let $S = (x_1, \ldots, x_m)$ be a sequence in \mathbb{Z}_n of length $m = \lceil n/r \rceil$. Consider the sequence

$$S' = (\overbrace{x_1, \ldots, x_1}^{r \text{ times}}, \overbrace{x_2, \ldots, x_2}^{r \text{ times}}, \ldots, \overbrace{x_m, \ldots, x_m}^{r \text{ times}}).$$

We observe that the length of S' is mr which is at least n. By Theorem 1 of [9] we see that $C(\mathbb{Z}_n) \leq n$. So it follows that S' has a zero-sum subsequence of consecutive terms. Thus, we obtain an A-weighted zero-sum subsequence of S having consecutive terms. Hence, it follows that $C_A \leq \lceil n/r \rceil$.

Theorem 7.2. Let n be an even number such that $v_2(n) = r$ and let $m = n/2^r$. Suppose B is the set of all the odd elements of \mathbb{Z}_n . Then for every $A \subseteq \mathbb{Z}_n$ such that $\{m\} \subseteq A \subseteq B$ we have that $C_A = 2^r$.

Proof. Let $S = (x_1, ..., x_k)$ be a sequence in \mathbb{Z}_n having length $k = 2^r$. Let S' denote the image of the sequence S under the map $f_{n,2^r}$. By applying Theorem 1 of [9] to \mathbb{Z}_{2^r} we see that $C(\mathbb{Z}_{2^r}) \leq 2^r$. So there is a subsequence T of S having consecutive terms such that the image T' of T under $f_{n,2^r}$ is a zero-sum subsequence. It follows that the sum of the terms of T is divisible by 2^r . So we see that T is an $\{m\}$ -weighted zero-sum sequence. Thus, we see that $C_{\{m\}} \leq 2^r$.

By Corollary 2 of [9] we have that $C_{U(2^r)} \geq 2^r$. So there is a sequence S' of length $2^r - 1$ in \mathbb{Z}_{2^r} which has no $U(2^r)$ -weighted zero-sum subsequence of consecutive terms. As the map $f_{n,2^r}$ is onto, we can find a sequence S in \mathbb{Z}_n whose image under $f_{n,2^r}$ is S'. Suppose S has a B-weighted zero-sum subsequence having consecutive terms. As n is even, we see that the image of B under $f_{n,2^r}$ is contained in $U(2^r)$. So we get the contradiction that S' has a $U(2^r)$ -weighted zero-sum subsequence having consecutive terms. Thus, we see that $C_B \geq 2^r$.

As $\{m\}\subseteq A\subseteq B$, we see that $C_B\subseteq C_A\subseteq C_{\{m\}}$. Hence, it follows that $C_A=2^r$. \square

Our next result generalizes a result of [15]. We follow a similar argument as in Theorem 7.2.

Theorem 7.3. Let n be an even number such that $v_2(n) = r$ and let $m = n/2^r$. Suppose B denotes the set of all the odd elements of \mathbb{Z}_n . Then for every $A \subseteq \mathbb{Z}_n$ such that $\{m\} \subseteq A \subseteq B$ we have that $D_A = r + 1$.

Proof. Let $S=(x_1,\ldots,x_k)$ be a sequence in \mathbb{Z}_n having length k=r+1. Let S' denote the image of the sequence S under the map $f_{n,2^r}$. By Theorem 4.4 we have that $D_{U(2^r)}=r+1$. So there is a subsequence T of S such that the image T' of T under $f_{n,2^r}$ is a $U(2^r)$ -weighted zero-sum subsequence. By Lemma 7 of [10] we see that the map $f_{n,2^r}$ maps U(n) onto $U(2^r)$. So if I denotes the set $\{i:x_i \text{ is a term of } T\}$, we see that for each $i\in I$ there exists $a_i\in U(n)$ such that $f_{n,2^r}\left(\sum_{i\in I}a_ix_i\right)=0$. Hence, it follows that $\sum_{i\in I}a_ix_i$ is divisible by 2^r , and so we see that T is an $\{m\}$ -weighted zero-sum sequence. Thus, we see that $D_{\{m\}}\leq r+1$.

By Theorem 4.4 we have that $D_{U(2^r)} = r + 1$. So there is a sequence S' of length r in \mathbb{Z}_{2^r} which has no $U(2^r)$ -weighted zero-sum subsequence. The rest of the proof is very similar to the argument given in the second and third paragraphs of the proof of Theorem 7.2. Hence, we get that $D_A = r + 1$.

Remark 7.4. When n is even and A is the set of all even elements of \mathbb{Z}_n , in [15] it is shown that $D_A = 2$. So it follows that $C_A = 2$.

When n is odd and A is the set of all odd (or all even) elements of \mathbb{Z}_n , in [15] it is shown that $D_A = 3$. From the proof of this result in [15] we see that $C_A = 3$.

Theorem 7.5. Let k be an odd prime and p be a prime such that $p \equiv 1 \pmod{k}$ and $p \not\equiv 1 \pmod{k^2}$. Then we have that $D_{U(p)^k} \leq k$.

Proof. As $p \equiv 1 \pmod k$ there exists $c \in U(p)$ such that c has order k. The subgroup $U(p)^k$ is the image of the map $U(p) \to U(p)$ given by $x \mapsto x^k$. The kernel of this map has at most k elements and contains c. As c has order k, it follows that the kernel is $\langle c \rangle$. Thus, we have that $|U(p)| = k |U(p)^k|$ and so we see that $U(p)/U(p)^k$ has order k.

Suppose $c \in U(p)^k$. Then there exists $a \in U(p)$ such that $c = a^k$, and so $a^{k^2} = c^k = 1$. As k is a prime and $a^k = c \neq 1$, we see that the order of a is k^2 . However, as $p \not\equiv 1 \pmod{k^2}$ there is no element of order k^2 in U(p). Thus, we see that $c \not\in U(p)^k$. For $x \in U(p)$ if we denote the coset $xU(p)^k$ by [x] we see that $[c] \neq [1]$. As k is prime, we see that [c] has order k. Hence, we get a partition of U(p) by the cosets $[1], [c], \ldots, [c^{k-1}]$.

Let $S=(x_1,\ldots,x_k)$ be a sequence in U(p). Suppose we show that S has a $U(p)^k$ -weighted zero-sum subsequence. It will follow that $D_{U(p)^k} \leq k$.

Case 1: There exist two elements of S which are in the same coset.

As there exists $l \in [0, k-1]$ such that $x_i, x_j \in [c^l]$, it follows that there exist $a, b \in U(p)^k$ such that $x_i = a c^l$ and $x_j = b c^l$. Then we have that $(-b) x_i + a x_j = 0$. As k is odd, we see that $-1 \in U(p)^k$. Hence, it follows that (x_i, x_j) is a $U(p)^k$ -weighted zero-sum subsequence of S.

Case 2: No two elements of S are in the same coset.

Without loss of generality, we can assume that for each $i \in [1, k]$ there exist $a_i \in U(p)^k$ such that $x_i = a_i c^{i-1}$. Then we see that $a_1^{-1} x_1 + a_2^{-1} x_2 + \cdots + a_k^{-1} x_k = a_i c^{i-1}$.

 $1+c+\cdots+c^{k-1}=0$ as c satisfies $X^k-1=(X-1)(X^{k-1}+\cdots+X+1)$ and $c\neq 1$. Thus, it follows that S is a $U(p)^k$ -weighted zero-sum sequence. \square

From Theorem 3 of [3] we see that $D_{U(p)^2} = 3$ where p is an odd prime. This shows that Theorem 7.5 is not true when k = 2. The next result is Corollary 1 of [10].

Lemma 7.6 ([10]). Let F be a field and A be a subgroup of F^* . A sequence S = (x, y) in F does not have an A-weighted zero-sum subsequence if and only if x and -y are in different cosets of A in F^* .

Corollary 7.7. Let F be a field and A be a proper subgroup of F^* . Then we have that $D_A \geq 3$.

Corollary 7.8. Let $k \geq 2$ be an integer and p be a prime such that $p \equiv 1 \pmod{k}$. Then we have that $D_{U(p)^k} \geq 3$.

Proof. As $p \equiv 1 \pmod{k}$, there is an element in U(p) of order k. So as in the first paragraph of the proof of Theorem 7.5, we see that the index of the subgroup $U(p)^k$ of U(p) is k. As $k \geq 2$, we see that $U(p)^k$ is a proper subgroup of U(p), and so the result follows from Corollary 7.7.

8. Concluding Remarks

From Remark 7.4 we see that when $A = \{a \in [1, n-1] : a \text{ is odd}\}$ and n is odd, we have that $C_A = D_A = 3$. Also, from Theorem 3 of [3] and Theorem 4 of [9], we see that $C_{Q_p} = D_{Q_p} = 3$ when p is an odd prime. This makes us curious to see if we can find a weight-set $A \subseteq \mathbb{Z}_n$ when n is odd, such that A has size (n-1)/2 and either $D_A > 3$ or $C_A > 3$. It will also be interesting to characterize the C-extremal and D-extremal sequences for U(n) when n is an even number which is not a power of 2.

Acknowledgements. Santanu Mondal would like to acknowledge CSIR, Govt. of India for a research fellowship whose file number is 09/934(0013)/2019-EMR-I. We thank the referee for the suggestions.

References

[1] S. D. Adhikari, The relation between two combinatorial group invariants: History and ramifications *Math. Student* 77 (2008), 131-143.

16

- [2] S. D. Adhikari, I. Molla, and S. Paul, Extremal sequences for some weighted zero-sum constants for cyclic groups, CANT IV, Springer Proc. Math. Stat. 347 (2021), 1-10.
- [3] S. D. Adhikari and P. Rath, Davenport constant with weights and some related questions, Integers 6 (2006), #A30.
- [4] H. Enomoto, P. Frankl, N. Ito, and K. Nomura, Codes with given distances, Graphs Combin. 3 (1987), 25-38.
- [5] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations: Algebraic, Combinatorial, and Analytic Theory, Chapman & Hall, Boca Raton, 2006.
- [6] S. Griffiths, The Erdős-Ginzberg-Ziv theorem with units, Discrete Math. 308 (2008), 5473-5484.
- [7] D. J. Grynkiewicz and F. Hennecart, A weighted zero-sum problem with quadratic residues, Unif. Distrib. Theory 10(1) (2015), 69-105.
- [8] F. Luca, A generalization of a classical zero-sum problem, Discrete Math. 307(13) (2007), 1672-1678.
- [9] S. Mondal, K. Paul, and S. Paul, On a different weighted zero-sum constant, Discrete Math. 346(6) (2023), 113350.
- [10] S. Mondal, K. Paul, and S. Paul, Extremal sequences for a weighted zero-sum constant, Integers 22 (2022), #A93.
- [11] S. Mondal, K. Paul, and S. Paul, Zero-sum constants related to the Jacobi symbol, J. Integer Seq. 27 (2024), Article 24.1.7.
- [12] S. Mondal, K. Paul, and S. Paul, Extremal sequences for the unit-weighted Gao constant of \mathbb{Z}_n , Integers 23 (2023), #A23.
- [13] J. E. Olson, A combinatorial problem on finite abelian groups, I, J. Number Theory 1(1) (1969), 8-10.
- [14] J. E. Olson, A combinatorial problem on finite abelian groups, II, J. Number Theory ${\bf 1}(2)$ (1969), 195-199.
- [15] X. Xia and Z. Li, Some Davenport constants with weights and Adhikari and Rath's conjecture, Ars Combin. 88 (2008), 83-95.
- [16] P. Yuan and X. Zeng, Davenport constant with weights, European J. Combin. 31 (2010), 677-680.