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Abstract

Let n and t be positive integers with t ≥ 2. Let Rt(n) be the number of t-regular
partitions of n. A class of functions, denoted τk(n), is defined as follows:

q

∞∏
m=1

(1− qm)k =

∞∑
n=1

τk(n)qn,

where k is an integer. We express τk(n) as a binomial coefficient weighted partition

sum. Consequently, we obtain congruence identities that relate τk(n), Rt(n) and

partition function weighted composition sums.

1. Introduction

Euler [3] considered the following product-to-sum representation:

∞∏
m=1

(1− qm) =

∞∑
n=0

ω(n)qn,
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and found that

ω(n) =

{
(−1)l if n = 3l2±l

2 ;

0 otherwise.
(1)

This is the celebrated Euler’s pentagonal number theorem.

Ramanujan [15] considered the following product-to-sum representation:

q

∞∏
m=1

(1− qm)24 =

∞∑
n=1

τ(n)qn,

and made the following conjectures:

1. τ(nm) = τ(n)τ(m) if gcd(m,n) = 1,

2. for prime p and integer r ≥ 1: τ(pr+1) = τ(p)τ(pr)− p11τ(pr−1),

3. for prime p: |τ(p)| ≤ 2p
11
2 .

The first two were established by Mordell [12]. Delinge [2] established the third.

The function τ(n) defined above is known as Ramanujan’s tau function.

The following common generalization of the aforementioned functions of Ra-

manujan and Euler is the object of study in this article.

Definition 1. Let k 6= 0 be an integer. We define an arithmetical function, denoted

τk(n), in the following way:

q

∞∏
m=1

(1− qm)k =

∞∑
n=1

τk(n)qn. (2)

Newman [14] and Kostant [10] were concerned with the polynomial representation

of τk(n). Serre [17] and Heim et al. [7] examined the natural density of the set

{k ∈ N : τk(n) 6= 0} at several instances of n.

The main objective of this paper is to explore various arithmetic properties of

τk(n). We will first use the logarithmic derivative method to determine some arith-

metic properties of τk(n) (at specific instances of k). This forms the core part of

Section 2. In Section 3, τk(n) is expressed as a binomial coefficient weighted parti-

tion sum. As a result, congruence relations involving τk(n) and t-regular partition

functions are obtained (at certain instances of k and t). In Section 4, an expression

for ∑
n=a1+a2+···ak
ai∈N∪{0}

p(a1)p(a2) · · · p(ak) modulo l

is obtained, where l is an odd prime number, and p(n) is the number of partitions

of n.
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2. Divisibility Properties of τk(n) Using Logarithmic Differentiation

In this section, we will discuss several congruence properties of τk(n) when the

modulus belongs to the set {k − 1} ∪ {d ∈ N : d|k}.

2.1. τk(n) Modulo k − 1 When k − 1 Is a Prime Number

Proposition 1. Let n be a positive integer, and let k − 1 be a prime number. If

0 ≤ n− 1− 3r2±r
2 6≡ 0 (mod (k − 1)) for every non-negative integer r, then

τk(n) ≡ 0 (mod (k − 1)).

Proof. The pentagonal number theorem of Euler [3] allows us to write

∞∑
n=1

τk(n)qn = q

∞∏
m=1

(1− qm)k

=

( ∞∑
r=1

τk−1(r)qr

)( ∞∑
s=0

ω(s)qs

)
, (3)

where ω(s) is as in (1). When equating the coefficients of qn at the extremes of the

chain of equalities (3), we obtain the following identity:

n−1∑
i=0

τk−1(n− i)ω(i) = τk(n).

If τk−1(n− i) ≡ 0 (mod (k−1)) whenever ω(i) = ±1, then it follows that τk(n) ≡ 0

(mod (k − 1)). So a criterion for

τk−1(n) ≡ 0 (mod (k − 1))

is a requisite to proceed further. To that end, we define

Tk−1(q) =

∞∏
m=1

(1− qm)k−1 =

∞∑
n=1

τk−1(n)qn−1.

Now performing the operation q ddq (log Tk−1(q)) and considering the Lambert’s series

expansion for the sum of positive divisors of n (denoted σ(n)), we obtain

nτk−1(n+ 1) = −(k − 1)

(
n∑
i=1

τk−1(i)σ(n+ 1− i)

)
. (4)

Now we observe from the Identity (4) that, if gcd(n, k−1) = 1, then τk−1(n+1) ≡ 0

(mod (k − 1)). Since k − 1 is a prime number, the condition gcd(n, k − 1) = 1 is

equivalent to the condition n 6≡ 0 (mod (k−1)). Thus, if n 6≡ 0 (mod (k−1)) then

τk−1(n+ 1) ≡ 0 (mod (k − 1)). This completes the proof.
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Remark 1. Since the τ function was introduced, an in-depth study over the value

τ(n) modulo 23 is an important consideration. Mordell [13] gave the following

criterion for the divisibility of τ(n) by 23:

τ(23n+m) ≡ 0 (mod 23)

for m ∈ {5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22}. Here an application of Proposition 1

gives the following criterion: if 0 ≤ n − 1 − 3r2±r
2 6≡ 0 (mod 23) for every non-

negative integer r, then

τ(n) ≡ 0 (mod 23).

2.2. τk(n) Modulo Divisors of k

Interestingly, by substituting any formal power series with integer coefficients, say

f(q) ∈ Z[[q]], for
∞∏
m=1

(1− qm), one can further generalize Definition 1. Denote

f(q)k = a0 + a1q + a2q
2 + · · · .

On differentiating with respect to q, we have

kf(q)
k−1

f ′(q) = a1 + 2a2q + · · · .

This gives the relation

nan ≡ 0 (mod |k|).

Now fixing f(q) =
∞∏
m=1

(1− qm) we have an = τk(n+ 1). This observation yields the

following result.

Proposition 2. Let n be a positive integer, and let k be an integer with |k| ≥ 2.

Then we have

nτk(n+ 1) ≡ 0 (mod |k|).

The following result is a straightforward application of Proposition 2.

Proposition 3. Let m ≥ 0 and k be integers such that |k| ≥ 2. Then we have

τk(|k|m+ dr + 1) ≡ 0

(
mod

|k|
d

)
for every d | |k| such that d < |k|, and for every integer r such that gcd(r, |k|d ) = 1.

Proof. We have the congruence below based on Proposition 2:

nτk(n+ 1) ≡ 0 (mod |k|).
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Given the aforementioned congruence and gcd(n, |k|) = d, it can be deduced that

n

d
τk(n+ 1) ≡ 0

(
mod

|k|
d

)
.

Since gcd(n, |k|) = d, for a positive integer r satisfying gcd
(
r, |k|d

)
= 1, the integer

n
d must have the form n

d = |k|
d m+ r for some integer m ≥ 0. As a result, n assumes

the form n = |k|m+ dr.

The following list of congruences for τ(n) modulo the divisors of 24 is obtained

by substituting 24 for k.

Proposition 4. For every integer m ≥ 0, we have

1. τ(24m+ r + 1) ≡ 0 (mod 24) for each r ∈ {1, 5, 7, 11, 13, 17, 19, 23};

2. τ(24m+ r + 1) ≡ 0 (mod 12) for each r ∈ {4, 20};

3. τ(24m+ r + 1) ≡ 0 (mod 8) for each r ∈ {3, 9, 6, 15};

4. τ(24m+ r + 1) ≡ 0 (mod 6) for each r ∈ {8, 16};

5. τ(24m+ 13) ≡ 0 (mod 4).

3. Representation of τk(n) as a Partition Sum Involving Binomial Coef-
ficients

In this section, congruence properties of τk(n) are derived using a partition sum

representation (involving binomial coefficients) of τk(n). Presenting the main results

of this section requires the following definitions of partition theory.

Definition 2. Let n be a positive integer. By a partition of n, we mean a non-

increasing sequence of positive integers whose sum equals n. Each element of the

sequence is called a part. If each part, say ai, appears fi times in a partition of n

then we denote that partition by n = af11 · · · afrr . In this case f1, · · · , fr are said to

be the frequencies of the partition af11 · · · afrr .

Definition 3. Let n and t ≥ 2 be positive integers. If all of the parts of a partition

of n are not divisible by t, then the partition is called a t-regular partition. We

denote the number of t-regular partitions of n by Rt(n).
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We note that the number of partitions of n with parts from the set N \ tN equals

the number of t-regular partitions of n, from which the following equalities arise:

∞∑
n=0

Rt(n)qn =
∏

r∈N\tN

1

1− qr

=
∏
s∈N

1− qts

1− qts
∏

r∈N\tN

1

1− qr

=

∞∏
m=1

1− qtm

1− qm
.

This insight is one we utilize frequently in this section. We express τk(n) as a

binomial-coefficient-weighted partition sum in the following result.

Theorem 1. Let k be a positive integer. We have

(a)

τk(n+ 1) =
∑

n=a
f1
1 ···a

fr
r ;

fi≤k.

(−1)f1+···fr
(
k

f1

)
· · ·
(
k

fr

)
, (5)

(b)

τ−k(n+ 1) =
∑

n=a
f1
1 ···a

fr
r

(
f1 + k − 1

k − 1

)
· · ·
(
fr + k − 1

k − 1

)
. (6)

Proof. In light of the binomial theorem, we may write

∞∑
n=1

τk(n)qn = q

∞∏
m=1

(1− qm)k

= q

∞∏
m=1

(
1−

(
k

1

)
q1·m +

(
k

2

)
q2·m − · · ·+ (−1)k

(
k

k

)
qk·m

)
.

The above equality suggests that the value (−1)f1+f2+···+fr
(
k
f1

)(
k
f2

)
· · ·
(
k
fr

)
con-

tributes to the coefficient of qn+1 for each partition of n of the form n = af11 · · · afrr
with the restriction 1 ≤ fi ≤ k, and vice versa. Therefore, (a) is implied.

By using binomial expansion, we can write

∞∑
n=1

τ−k(n)qn = q

∞∏
m=1

(1− qm)−k

= q

∞∏
m=1

((
k − 1

k − 1

)
+

(
(k − 1) + 1

k − 1

)
qm +

(
(k − 1) + 2

k − 1

)
q2m + · · ·

)
.
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The aforementioned equality suggests that the value
(
f1+k−1
k−1

)
· · ·
(
fr+k−1
k−1

)
con-

tributes to the coefficient of qn+1 for each partition of n of the type n = af11 · · · afrr ,

and vice versa. Thus, (b) is implied.

3.1. Parity Results Connecting τk(n) and Rt(n) at Specific Instances of
k and t

We can get a parity result for τk(n) (which involves a partition function) using the

partition sum representation mentioned in Theorem 1.

Definition 4. Let n be a positive integer and let A be a set of positive integers.

We define FA(n) to be the number of partitions of n having each frequency from

the set A.

Theorem 2. Let k be a positive integer. Let A = {a ∈ N : a ≤ k,
(
k
a

)
≡ 1 (mod 2)}.

We have

τk(n+ 1) ≡ FA(n) (mod 2). (7)

Proof. From the representation given in (5) of Theorem 1, the proof follows imme-

diately.

Using Theorem 2, we obtain a parity result for the 4-regular partition function.

Theorem 3. Let n be a positive integer. We have

R4(n) ≡

{
1 (mod 2) if n = m(m+1)

2 ;

0 (mod 2) otherwise.
(8)

Proof. We observe that
(
24
k

)
≡ 1 (mod 2) if, and only if, k ∈ {8, 16, 24}. We may

now write

τ(n+ 1) ≡ F{8,16,24}(n) (mod 2),

in accordance with Theorem 2. As a result, τ(n + 1) ≡ 0 (mod 2) for each n 6≡ 0

(mod 8). Therefore, the n such that n ≡ 0 (mod 8) is our primary concern.

The partitions of n that the function F{8,16,24}(n) counts when n ≡ 0 (mod 8)

can be expressed as follows:

n = a81a
16
2 a

24
3 .

Alternatively expressed,
n

8
= a11a

2
2a

3
3.

Consequently, F{8,16,24}(8m) counts the number of partitions of m whose fre-

quencies do not exceed 3. We denote the number of such partitions by d3(m).



INTEGERS: 24 (2024) 8

As can be seen,

∞∑
n=0

d3(n)qn = (1 + q + q2 + q3)(1 + q2 + q4 + q6)(1 + q3 + q6 + q9) · · ·

=

∞∏
m=1

1− q4m

1− qm
(9)

=

∞∏
m=1

(1 + qm)(1 + q2m).

Considering that
∞∑
n=0

q(n)qn =
∞∏
m=1

(1 + qm)

is the generating function for the number of partitions of n with distinct parts

(denoted q(n)), the equation

d3(n) =

bn2 c∑
s=0

q(n− 2s)q(s) (10)

is obtained from the above chain of equalities.

We obtain

q(s) ≡ ω(s) (mod 2),

in light of Euler’s Pentagonal Number theorem. Upon substituting this in Equation

(10), we obtain

d3(n) ≡
bn2 c∑
s=0

q(n− 2s)ω(s) (mod 2). (11)

In view of Theorem 3 (i) in [1], we have

bn2 c∑
s=0

q(n− 2s)ω(s) =

{
1 if δt(n) = 1;

0 otherwise,
(12)

where

δt(n) =

{
1 if n = m(m+1)

2 ;

0 otherwise.

At this point, we can see from Equation (9) that d3(n) = R4(n). Now the result

follows from (11) and (12).

Remark 2. The congruence d3(n) ≡ 1 (mod 2) is true only when n = m(m+1)
2 .

This suggests that τ(n+1) is odd only if n8 = m(m+1)
2 . Since n

8 = m(m+1)
2 simplifies

to n+ 1 = (2m+ 1)2, it follows that τ(n+ 1) is odd only if n+ 1 is an odd square.

This is an established result. Ewell [4] previously provided a proof.
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Remark 3. The number of 4-regular partitions of n is equal to the number of

partitions of n with frequencies from the set {1, 2, 3}, as we have concluded in the

previous theorem’s proof. This equinumerous statement can be generalized in the

way that follows: the number of (t+1)-regular partitions of n is equal to the number

of partitions of n with frequencies from the set {1, 2, · · · , t}. This generalization may

be validated by the subsequent equalities. If one denotes the number of partitions

of n with frequencies not greater than t by dt(n), then:

1 +

∞∑
n=1

dt(n)qn =

∞∏
m=1

(1 + qm + q2m · · ·+ qtm)

=

∞∏
m=1

1− q(t+1)m

1− qm

= 1 +

∞∑
n=1

Rt+1(n)qn.

Remark 4. We find that

τ2k(2n) ≡ 0 (mod 2)

without the use of Theorem 2. This is deduced from a general property of f(q) ∈
Z[[q]]. Denote f(q) = a0 + a1q + a2q

2 + · · · . Then

f(q)2 = a0a0 + (a0a1 + a0a1)q + (a0a2 + a1a1 + a2a0)q2 + · · ·
≡ a20 + a21q

2 + · · · (mod 2)

≡ a0 + a1q
2 + · · · (mod 2).

This gives

f(q)2 ≡ f(q2) (mod 2).

Consequently, we have

qf(q)2k ≡ qf(q2)k (mod 2).

Now plugging
∞∏
m=1

(1− qm) in place of f(q), we have τ2k(2n) ≡ 0 (mod 2).

It is not so simple to determine the parity of τ2k(2n + 1). We obtain parity

expressions for τ14(2n+ 1) and τ6(2n+ 1) in the following result.

Theorem 4. Let n be a positive integer. We have

(a) τ14(2n+ 1) ≡ R8(n) (mod 2);

(b) τ6(2n+ 1) ≡

{
1 (mod 2) if n = m(m+1)

2 ;

0 (mod 2) otherwise.
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Proof. Define A = {1 ≤ ai ≤ 14 :
(
14
ai

)
≡ 1 (mod 2)} = {2, 4, 6, 8, 10, 12, 14}.

Considering Theorem 2, we can now write

τ14(n+ 1) ≡ F{2,4,6,8,10,12,14}(n) (mod 2).

All partitions of n that F{2,4,6,8,10,12,14}(n) counts while n is even are of the type

n = a21a
4
2a

6
3a

8
4a

10
5 a

12
6 a

14
7 .

Alternatively expressed,
n

2
= a11a

2
2a

3
3a

4
4a

5
5a

6
6a

7
7.

As a result, F{2,4,6,8,10,12,14}(n) counts the number of n
2 partitions with frequencies

that do not exceed 7. Consequently, F{2,4,6,8,10,12,14}(n) = d7(n2 ) = R8(n2 ). Thus,

considering the even n, we have

τ14(n+ 1) ≡ F{2,4,6,8,10,12,14}(n) (mod 2)

≡ R8

(n
2

)
(mod 2).

Now (a) follows. A similar search together with the parity result of R4(n) (men-

tioned in Theorem 3) gives (b).

The following parity result relates R2s(n) and τ2s−1(n). This follows from a

parity result concerning binomial coefficients.

Theorem 5. For every positive integer s, we have

R2s(n) ≡ τ2s−1(n+ 1) (mod 2). (13)

Proof. We note that 2s−2
2 = 2s−1 − 1 is the largest integer that does not exceed

2s−1
2 . Stated in another way,

b2
s − 1

2
c = 2s−1 − 1.

Using the result of James Glaisher [9], we obtain(
n

k

)
≡

{
0 (mod 2) if n is even and k is odd;(bn2 c
b k2 c

)
(mod 2) otherwise.

(14)

We obtain the following congruence relation by substituting 2s − 1 for n in (14):(
2s − 1

k

)
≡
(

2s−1 − 1

bk2 c

)
(mod 2).
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After using the previously specified modulo 2 reduction s − 1 times, taking the

right-side term for subsequent reduction, we obtain(
2s − 1

k

)
≡ 1 (mod 2).

Now that the aforementioned observation has been made, we may write

∞∑
n=0

τ2s−1(n+ 1)qn =

∞∏
m=1

(1− qm)2
s−1

≡
∞∏
m=1

(1 + qm + · · ·+ q2
(s−1)m

) (mod 2)

≡
∞∏
m=1

1− q2sm

1− qm
(mod 2)

≡
∞∑
n=0

R2s(n)qn (mod 2).

The proof is now completed.

3.2. Ramanujan’s Tau Function Modulo 3, 5, 7, 11, 13, 17, 23, and 25

This section is concerned with deriving a simple expression for τ(n) modulo m

when m ∈ {3, 5, 7, 11, 13, 17, 23, 25}. The derivations of this section just rely on

some arithmetic properties of
(
24
s

)
.

Theorem 6. Let n be a positive integer. We have

τ(n+ 1) ≡

{
R9

(
n
3

)
(mod 3) if 3 | n;

0 (mod 3) otherwise.
(15)

Proof. Given the following observations:

1.
(
24
k

)
≡ 0 (mod 3) when k ∈ {1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23},

2.
(
24
k

)
≡ −1 (mod 3) when k ∈ {3, 9, 15, 21},

3.
(
24
k

)
≡ 1 (mod 3) when k ∈ {6, 12, 18, 24},

we may write

∞∑
n=0

τ(n+ 1)qn ≡
∞∏
m=1

(1 + q3m + q6m + · · ·+ q24m) (mod 3)

≡
∞∏
m=1

1− q9×3m

1− q3m
(mod 3).



INTEGERS: 24 (2024) 12

Since
∞∏
m=1

1− q9m

1− qm
=

∞∑
n=0

R9(n)qn,

in view of the above observation, we obtain the following congruence:

τ(n+ 1) ≡

{
R9

(
n
3

)
(mod 3) if 3 | n,

0 (mod 3) otherwise.

As an immediate consequence of the theorem above, we obtain the following

result of Ramanujan.

Corollary 1 (Ramanujan [16]). Let n be a positive integer. We have

τ(3n) ≡ 0 (mod 3).

Proof. Theorem 6 allows us to write

τ(3n) = τ(3n− 1 + 1)

≡ 0 (mod 3).

As another consequence of Theorem 6, we obtain the following expression for

R9(n) modulo 3.

Corollary 2. Let n be a positive integer. We have

R9(n) ≡ σ(3n+ 1) (mod 3). (16)

Proof. We have

τ(n) ≡ nσ(n) (mod 3)

from the works of Ramanujan [6, p. 112]. It follows therefrom that

τ(n) ≡

{
0 (mod 3) if 3 | n;

σ(n) (mod 3) if gcd(n, 3) = 1.

Given the above observation, Theorem 6 allows us to write

R9(n) ≡ τ(3n+ 1) (mod 3)

≡ σ(3n+ 1) (mod 3).
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Theorem 7. Let n be a positive integer. We have

τ(n+ 1) ≡ R25(n) (mod 5). (17)

Proof. We observe that

1.
(
24
k

)
≡ 1 (mod 5) when k ∈ {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24},

2.
(
24
k

)
≡ −1 (mod 5) when k ∈ {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23}.

Based on these observations, we can write

∞∑
n=0

τ(n+ 1)qn ≡
∞∏
m=1

(1 + qm + q2m + · · ·+ q24m) (mod 5)

≡
∞∏
m=1

1− q25m

1− qm
(mod 5).

Since
∞∏
m=1

1− q25m

1− qm
=

∞∑
n=0

R25(n)qn,

we obtain from the above observation that

τ(n+ 1) ≡ R25(n) (mod 5).

An expression for R25 modulo 5 can be obtained by applying the aforementioned

theorem.

Corollary 3. Let n be a positive integer. We have

R25(n) ≡ (n+ 1)σ(n+ 1) (mod 5). (18)

Proof. Wilton [18] established that

τ(n) ≡ nσ(n) (mod 5).

We may now write in light of Theorem 7:

R25(n) ≡ τ(n+ 1) (mod 5)

≡ (n+ 1)σ(n+ 1) (mod 5).

Theorem 8. Let n be a positive integer. We have

τ(n+ 1) ≡
∑

n=
m(m+1)

2 +7
r(r+1)

2

(−1)m+r(2m+ 1)(2r + 1) (mod 7). (19)
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Proof. We observe that

(
24

k

)
≡



1 (mod 7) if k=0, 3, 21, 24;

0 (mod 7) if k=4, 5, 6, 11, 12, 13, 18, 19, 20;

3 (mod 7) if k=1, 2, 22, 23;

−4 (mod 7) if k=7, 10, 14, 17;

−12 (mod 7) if k=8, 9, 25, 16.

Based on this observation, we can write

∞∑
n=0

τ(n+ 1)qn ≡
∞∏
m=1

[(
1− 3qm + 3q2m − q3m

)
+ 4

(
q7m − 3q8m + 3q9m − q10m

)
− 4

(
q14m − 3q15m + 3q16m − q17m

)
−
(
q21m − 3q22m + 3q23m − q24m

)]
(mod 7)

≡
∞∏
m=1

[(
1− 3qm + 3q2m − q3m

)
− 3

(
q7m − 3q8m + 3q9m − q10m

)
+ 3

(
q14m − 3q15m + 3q16m − q17m

)
−
(
q21m − 3q22m + 3q23m − q24m

)]
(mod 7)

≡
∞∏
m=1

[(
1− 3qm + 3q2m − q3m

)(
1− 3q7m + 3q14m − q21m

)]
(mod 7)

≡
∞∏
m=1

(1− qm)
3
∞∏
r=1

(
1− q7r

)3
(mod 7).

Jacobi’s triple product identity states that

∞∏
n=1

(1− qn)3 =

∞∑
s=0

asq
s, (20)

where

as =

{
(−1)t(2t+ 1) if s = t(t+1)

2 ;

0 otherwise.

The intended congruence will result from applying this identity to the tail end

product of the preceding chain of expressions.

Theorem 9. Let n be a positive integer. We have

τ(n+ 1) ≡
∑

n= 3l2±l
2 + 3m2±m

2 +11 3s2±s
2 +11 3r2±r

2

(−1)l+m+s+r (mod 11). (21)
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Proof. Since

(
24

k

)
≡


1 (mod 11) for k=0, 2, 22, 24;

2 (mod 11) for k=1, 11, 13, 23;

4 (mod 11) for k=12;

0 (mod 11) for k=3, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17, 18, 19, 20, 21,

we can write

∞∑
n=0

τ(n+ 1)qn ≡
∞∏
m=1

[(
1− 2qm + q2m

)
− 2

(
q11m − 2q12m + q13m

)
+
(
q22m − 2q23m + q24m

)]
(mod 11)

≡
∞∏
m=1

[
(1− qm)2(1− q11m)2

]
(mod 11).

Applying Euler’s pentagonal number theorem now results in the following equality:

∞∏
m=1

[
(1− qm)2(1− q11m)2

]
= 1 +

∑
n= 3l2±l

2 + 3m2±m
2 +11 3s2±s

2 +11 3r2±r
2

(−1)l+m+s+rqn.

This insight will yield the expected congruence when applied to the tail end product

of the aforementioned chain of expressions.

Theorem 10. Let n be a positive integer. We have

τ(n+ 1) ≡
∑

n=13× 3r2±r
2 +s

(−1)rτ11(s) (mod 13). (22)

Proof. We observe that

(
24

k

)
≡


(
11
k

)
(mod 13) when 0 ≤ k ≤ 11;

0 (mod 13) when k = 12;(
11

24−k
)

(mod 13) when 13 ≤ k ≤ 24.

This observation enables us to write

∞∑
n=0

τ(n+ 1)qn ≡
∞∏
m=1

[((
11

0

)
−
(

11

1

)
qm + · · · −

(
11

11

)
q11m

)
− q13m

((
11

0

)
−
(

11

1

)
qm + · · · −

(
11

11

)
q11m

)]
(mod 13)

≡
∞∏
m=1

[
(1− qm)11(1− q13m)

]
(mod 13).
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Now given the definition of τ11(n) and Euler’s pentagonal number theorem, we may

write

∞∏
m=1

(1− qm)11(1− q13m) = 1 +

 ∑
n=13× 3r2±r

2 +s

(−1)rτ11(s)

 qn.

This observation will yield the expected congruence when applied to the tail end

product of the aforementioned chain of expressions.

Theorem 11. Let n be a positive integer. We have

τ(n+ 1) ≡
∑

n=17× 3r2±r
2 +s

(−1)rτ7(s) (mod 17). (23)

Proof. Since

(
24

k

)
≡


(
7
k

)
(mod 17) when 0 ≤ k ≤ 7;(

7
24−s

)
(mod 17) when 0 ≤ 24− s ≤ 7;

0 (mod 17) otherwise,

one can write

∞∑
n=0

τ(n+ 1)qn ≡
∞∏
m=1

[((
7

0

)
−
(

7

1

)
qm + · · · −

(
7

7

)
q7m

)
− q17m

((
7

0

)
−
(

7

1

)
qm + · · · −

(
7

7

)
q7m

)]
(mod 17)

≡
∞∏
m=1

(1− qm)7(1− q17m) (mod 17).

One can have

∞∏
m=1

(1− qm)7(1− q17m) = 1 +

 ∑
n=17× 3r2±r

2 +s

(−1)rτ7(s)

 qn

based on the definition of τ7(n) and Euler’s pentagonal number theorem. This

observation will yield the expected congruence when applied to the tail end product

of the aforementioned chain of expressions.

Theorem 12. Let n be a positive integer. We have

τ(n+ 1) ≡
∑

n=19× 3r2±r
2 +s

(−1)rτ5(s) (mod 19). (24)
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Proof. Since

(
24

k

)
≡


1 (mod 19) when k = 0, 5, 19, 24;

5 (mod 19) when k = 1, 4, 20, 23;

10 (mod 19) when k = 2, 3, 21, 22;

0 (mod 19) otherwise,

one can write
∞∑
n=0

τ(n+ 1)qn ≡
∞∏
m=1

[(
1− 5qm + 10q2m − 10q3m + 5q4m − q5m

)
− q19m

(
1− 5qm + 10q2m − 10q3m + 5q4m − q5m

)]
(mod 19)

≡
∞∏
m=1

[
(1− qm)5(1− q19m)

]
(mod 19).

Now from the definition of τ5(n) and Euler’s pentagonal number theorem, we have

∞∏
m=1

(1− qm)5(1− q19m) = 1 +

 ∑
n=19× 3r2±r

2 +s

(−1)rτ5(s)

 qn.

While applying this observation in the tail end product of the above chain of ex-

pressions, we get the expected congruence.

Utilizing the following Ramanujan’s formula [8, pp. 163-164] for τ(pr):

τ(pr) =
p

11
2 r

sinψp
sin (r + 1)ψp,

where p is a prime number and cosψp = τ(p)

2p
11
2

, Lehmer [11] gave an expression for

τ(n) modulo 23:

τ(n) ≡ σ11(n1)2t3
−t
2

t∏
i=1

sin
2π

3
(1 + αi) (mod 23), (25)

where n = n1
t∏
i=1

pαi
i , pis are the only prime factors of n which are not of the form

u2 + 23v2 but are quadratic residues of 23, and αi is the exponent of the highest

power of pi dividing n.

We provide an expression for τ(n) modulo 23 in the following result, which is

quite simple in comparison to (25).

Theorem 13. Let n be a positive integer. We have

τ(n+ 1) ≡
∑

n= 3r2±r
2 +23× 3s2±s

2

(−1)r+s (mod 23). (26)
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Proof. Since (
24

k

)
≡

{
1 (mod 23) if k = 0, 1, 23, 24;

0 (mod 23) otherwise,

we can write

∞∑
n=0

τ(n+ 1)qn ≡
∞∏
m=1

(
1− qm − q23m + q24m

)
(mod 23)

≡
∞∏
m=1

[
(1− qm)(1− q23m)

]
(mod 23).

Write
∞∏
m=1

[
(1− qm)(1− q23m)

]
=

∞∑
n=0

anq
n.

Now in accordance with Euler’s pentagonal number theorem, we have

an =

{
(−1)r+s if n = 3r2±r

2 + 23× 3s2±s
2 ;

0 otherwise.

While applying this observation in the tail end product of the above chain of ex-

pressions, we get the intended congruence.

Theorem 14. Let n be a positive integer. We have

τ(n+ 1) ≡
∑

n=r+5
s(s+1)

2 +5 3t2±t
2

(−1)s+t(2s+ 1)R5(r) (mod 25). (27)

Proof. Since

(
24

k

)
≡



1 when k=0, 2, 4, 20, 22, 24;

−1 when k=1, 3, 21, 23;

4 when k=5, 7, 9, 15, 17, 19;

−4 when k=6, 8, 16, 18;

6 when k=10, 12, 14;

−6 when k=11, 13,

we can write

∞∑
n=0

τ(n+ 1)qn ≡
∞∏
m=1

[(
1 + qm + q2m + q3m + q4m

)
− 4

(
q5m + q6m + q7m + q8m + q9m

)
+ 6

(
q10m + q11m + q12m + q13m + q14m

)
− 4

(
q15m + q16m + q17m + q18m + q19m

)
+
(
q20m + q21m + q22m + q23m + q24m

)]
(mod 25)
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≡
∞∏
m=1

[
1− q5m

1− qm
− 4q5m

1− q5m

1− qm
+ 6q10m

1− q5m

1− qm
− 4q15m

1− q5m

1− qm

+q20m
1− q5m

1− qm

]
(mod 25)

≡
∞∏
m=1

1− q5m

1− qm
∞∏
r=1

(1− q5r)4 (mod 25).

Given the generating function of R5(n), Euler’s pentagonal number theorem and

Jacobi’s triple product identity, we may write

∞∏
m=1

1− q5m

1− qm
∞∏
r=1

(1− q5r)4 = 1 +
∑
n∈N

n=r+5
s(s+1)

2 +5 3t2±t
2

(−1)s+t(2s+ 1)R5(r)qn.

While applying this observation in the tail end product of the above chain of ex-

pressions, we get the intended congruence.

3.3. Prime Moduli

Let p be a prime number. This section provides an expression for τk(n) modulo p

when k ∈ {ps : s ∈ N} ∪ {2p, 2p+ 1, p2 + 1}.

Theorem 15. Let p be a prime number, and let s be a positive integer. We have

τps(n+ 1) ≡

{
(−1)t (mod p) if n = ps(3t2±t)

2 ;

0 (mod p) otherwise.
(28)

Proof. Since (
ps

t

)
≡ 0 (mod p)

for every t ∈ {1, 2, . . . , ps − 1}, we can write

∞∑
n=1

τps(n)qn−1 =

∞∏
m=1

(1− qm)p
s

≡
∞∏
m=1

(1− qp
sm) (mod p).

Using Euler’s pentagonal number theorem, we now obtain

∞∏
m=1

(1− qp
sm) =

∞∑
r=0

ωps(r)qr,
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where

ωps(r) =

{
(−1)t if r

ps = (3t2±t)
2 ;

0 otherwise.

While applying this observation in the tail end product of the above chain of ex-

pressions, we get the intended congruence.

Definition 5. Let m be a positive integer and let p be a prime number. Let ϑp(m)

be defined as a non-negative integer k such that pk | m but pk+1 - m.

Theorem 16. Let p be an odd prime number. We have

τ2p(n+ 1) ≡
∑

n+1=p
(

3r2±r
2 + 3s2±s

2

)(−1)r+s (mod p). (29)

Proof. Clearly
(
2p
0

)
≡ 1 (mod p) and

(
2p
2p

)
≡ 1 (mod p). We observe that ϑp(2p ×

(2p− 1)× · · · × (2p− (k − 1)) = 1 and ϑp(1× 2× · · · × k) = 0 when 1 ≤ k ≤ p− 1.

Consequently,
(
2p
k

)
≡ 0 (mod p) when 1 ≤ k ≤ p− 1. Also, we have(

2p

p

)
=

2p× (2p− 1)× · · · × (p+ 1)

1× 2× · · · × p
=

2× (2p− 1)× · · · × (p+ 1)

(p− 1)!
.

Since 2p− 1 ≡ −1 (mod p), 2p− 2 ≡ −2 (mod p), · · · , p+ 1 ≡ −(p− 1) (mod p),

we obtain (in light of Wilson’s theorem) that

2× (2p− 1)× · · · × (p+ 1) ≡ 2(p− 1)! (mod p)

≡ −2 (mod p).

Consequently,
(
2p
p

)
is of the form rp−2

kp−1 . Given this form, we obtain
(
2p
p

)
− 2 =

rp−2
kp−1 − 2 = (r−2k)p

kp−1 . Therefrom, it follows that
(
2p
p

)
≡ 2 (mod p). Moreover, since(

2p
k

)
=
(

2p
2p−k

)
, we can write

∞∑
n=0

τ2p(n+ 1)qn ≡
∞∏
m=1

(
1 + (−1)p2qpm + (−1)2pq2pm

)
(mod p)

≡
∞∏
m=1

(1− qpm)2 (mod p).

Since
∞∏
m=1

(1− qpm)2 = 1 +

 ∑
n+1=p

(
3r2±r

2 + 3s2±s
2

)(−1)r+s

 qn,

the result follows as a consequence of the above observation.
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Corollary 4. Let p be an odd prime number. If p - n+ 1 then

τ2p(n+ 1) ≡ 0 (mod p).

Theorem 17. Let p be an odd prime number. Then we have

τ2p+1(n+ 1) ≡
∑

n+1= 3r2±r
2 +p

(
3s2±s

2 + 3t2±t
2

)(−1)r+s+t (mod p). (30)

Proof. In general, the congruences
(
2p+1

0

)
≡
(
2p+1

1

)
≡ 1 (mod p) are true. Consider

the product:
2p+1∏
k=1

2p+ 1− (k − 1)

k
. (31)

Here, the product of the first r terms gives the value
(
2p+1
r

)
. Based on this observa-

tion, we deduce that
(
2p+1
r

)
≡ 0 (mod p) for r limited to the bound 2 ≤ r ≤ p− 1.

We will now show that
(
2p+1
p

)
≡ 2 (mod p). To that end, consider the product

of the first p terms of (31):

2p+ 1

1
· 2p

2
· 2p− 1

3
· · · (2p+ 1)− (p− 1)

p
.

After cancelling p in the above product, we obtain the following term:

(2p+ 1)× 2× (2p− 1)× · · · × ((2p+ 1)− (p− 1))

(p− 1)!
.

Wilson’s theorem allows us to write

(2p+ 1)× 2× (2p− 1)× · · · × ((2p+ 1)− (p− 1)) ≡ −2× (p− 2)! (mod p)

≡ −2 (mod p).

The form of
(
2p+1
p

)
is thus sp−2

rp−1 . From this, we have
(
2p+1
p

)
− 2 = sp−2

rp−1 − 2 =
(s−2r)p
rp−1 ≡ 0 (mod p).

Considering that
(
2p+1
k

)
=
(

2p+1
2p+1−k

)
, we can write

∞∑
n=0

τ2p+1(n+ 1)qn ≡
∞∏
m=1

(
1− qm − 2qpm + 2q(p+1)m

+q2pm − q(2p+1)m
)

(mod p)

≡
∞∏
m=1

[
(1− qm)(1− qpm)2

]
(mod p).
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In light of Euler’s pentagonal number theorem, we obtain

∞∏
m=1

(1− qm)(1− qpm)2 = 1 +

 ∑
n= 3r2±r

2 +p
(

3s2±s
2 + 3t2±t

2

)(−1)r+s+t

 qn.

By using this in the congruence mentioned above, we obtain the intended congru-

ence.

Theorem 18. Let p be an odd prime number. We have

τp2+1(n+ 1) ≡
∑

n+1= 3r2±r
2 +p2 3s2±s

2

(−1)r+s (mod p). (32)

Proof. The following congruences are all evident:
(
p2+1

0

)
≡ 1 (mod p),

(
p2+1

1

)
≡ 1

(mod p),
(
p2+1
p2

)
≡ 1 (mod p) and

(
p2+1
p2+1

)
≡ 1 (mod p).

Consider the term(
p2 + 1

k

)
=

(p2 + 1)× p2 × · · · × (p2 + 1− (k − 1))

1× 2× · · · × k
.

Assume 1 ≤ a ≤ p−1. It can then be observed that, for (a−1)p+1 ≤ k−1 ≤ ap,

ϑp((p
2 + 1)× (p2 + 1− 1)× · · · × (p2 + 1− (k − 1))) = a+ 1

and

ϑp(1× 2× · · · × k) = a− 1 or a.

Assume k − 1 ∈ {(p− 1)p+ 1, · · · , p2 − 2}. It is easy to see that

ϑp((p
2 + 1)× p2 × · · · × (p2 − (k − 1))) = p+ 1

and

ϑp(1× 2× · · · × k) = p− 1.

Consequently,
(
p2+1
k

)
≡ 0 (mod p) when 2 ≤ k ≤ p2 − 1. Based on this observa-

tion, we may write

∞∑
n=0

τp2+1(n+ 1)qn ≡
∞∏
m=1

(
1− qm + (−1)p

2

qp
2m + (−1)p

2+1q(p
2+1)m

)
(mod p)

≡
∞∏
m=1

(1− qm)(1− qp
2m) (mod p).

Since
∞∏
m=1

(1− qm)(1− qp
2m) = 1 +

 ∑
n= 3r2±r

2 +p2 3s2±s
2

(−1)r+s

 qn,

the result follows.
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3.4. Congruence Properties of R9(n) Modulo 3 and Rp(n) Modulo p,
Where p is a Prime Number

In this section, we apply Ewell’s congruence for τ(n) to obtain a recursive congru-

ence relation for R9(n) modulo 3. Additionally, for any prime number p, we derive

an expression for Rp(n) modulo p.

Theorem 19. Let n be a positive integer. We have

R9(4n+ 1) ≡ R9(n) (mod 3). (33)

Proof. Theorem 6 allows us to write

R9(n) ≡ τ(3n+ 1) (mod 3).

Ewell [5] proved that

τ(4n) ≡ τ(n) (mod 3).

Given these insights, we may write

R9(4n+ 1) ≡ τ(4(3n+ 1)) (mod 3)

≡ τ(3n+ 1) (mod 3)

≡ R9(n) (mod 3).

Now the result follows.

Corollary 5. Let r and s be positive integers. We have

R9

(
(r − 1)4s−1 +

4s − 1

3

)
≡ R9(r) (mod 3). (34)

In particular,

R9

(
4s − 1

3

)
≡ 1 (mod 3),

R9

(
4s−1 +

4s − 1

3

)
≡ 2 (mod 3)

and

R9

(
2× 4s−1 +

4s − 1

3

)
≡ 0 (mod 3).

Proof. The recurrence relation

as = 4as−1 + 1,

with initial condition a1 = r must be solved in order to apply the recursive congru-

ence relation (33) of Theorem 19.
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Let F (x) = a1x+a2x
2+· · · be the generating function for the sequence a1, a2, . . ..

Then the above recurrence relation yields

F (x) =
(r − 1)x

1− 4x
+
x(1− x)

1− 4x
.

We obtain as = (r− 1)4s−1 + 4s−1
3 when we expand the aforementioned expression

using the geometric series expansion.

We now obtain

R9(as) ≡ R9(as−1) (mod 3)

according to Theorem 19. The preceding recursive congruence is then applied s− 1

times, yielding the following congruence:

R9(as) ≡ R9(r) (mod 3).

Now (34) follows. After fixing r = 1, r = 2, and r = 3, respectively, and noticing

that R9(1) = 1, R9(2) = 2, and R9(3) = 3, we obtain the particular cases.

Theorem 20. For every prime number p, we have

Rp(n) ≡ τp−1(n+ 1) (mod p). (35)

Proof. Since p is a prime number, for 1 ≤ k ≤ bp2c, we obtain(
p− 1

k

)
=
tp+ k!(−1)k

k!

≡ (−1)k (mod p).

Given this observation, we may write

∞∑
n=0

τp−1(n+ 1)qn ≡
∞∏
m=1

(
1 + qm + · · ·+ q(p−1)m

)
(mod p)

≡
∞∏
m=1

1− qpm

1− qm
(mod p)

≡
∞∑
n=1

Rp(n)qn (mod p).

Now the result follows.

4. Divisibility of Partition Function Weighted Composition Sums

The Ramanujan’s congruences for the partition function are as follows:
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(a) p(5n+ 4) ≡ 0 (mod 5),

(b) p(7n+ 5) ≡ 0 (mod 7),

(c) p(11n+ 6) ≡ 0 (mod 11).

It is rare to find such a simple congruence for other larger primes. The following

congruence (modulo l, an odd prime), involving partition function values, is found

in this section:∑
n=a1+a2+···ak
ai∈N∪{0}

p(a1)p(a2) · · · p(ak) ≡
∑

n=t+ls

τl−k(t)p(s) (mod l).

The following lemma is crucial in obtaining the above congruence.

Lemma 1. Let l be an odd prime number. Let k be an integer such that 1 ≤ k < l.

Let n ≥ 0 be an integer. Let r be the remainder obtained by division of n into l.

We have(
n+ k

k

)
≡

{
(−1)r

(
l−k−1
r

)
(mod l) when r ∈ {0, 1, · · · , l − k − 1};

0 (mod l) when r ∈ {l − k, · · · , l − 1}.
(36)

Proof. Consider the following expression:(
n+ k

k

)
=

(n+ k)(n+ k − 1) · · · (n+ 1)

k!
.

Using this representation, we find an expression for
(
n+k
k

)
modulo l.

Assume that n = sl + r for some r ∈ {l − 1, l − 2, · · · , l − k}. Then (n +

k)(n + k − 1) · · · (n + 1) ≡ 0 (mod l). Since l is a prime number and k < l,

we obtain (n+k)(n+k−1)···(n+1)
k! ≡ 0 (mod l). That is,

(
n+k
k

)
≡ 0 (mod l) when

r ∈ {l − k, · · · , l − 1}. The second case follows.

Assume that n = sl + r for some r ∈ {0, 1, · · · , l − k − 1}. Since l is a prime

number and k < l, we obtain(
n+ k

k

)
=

(sl + r + k)(sl + r + k − 1) · · · (sl + r + 1)

k!

=
s∗l

k!
+

(r + k)(r + k − 1) · · · (r + 1)

k!

≡
(
r + k

k

)
(mod l)

≡
(
r + k

r

)
(mod l).
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On the other hand, we have

(−1)r
(
l − k − 1

r

)
= (−1)r

(l − k − 1)(l − k − 2) · · · (l − k − 1− (r − 1))

r!

= (−1)r
(l − (k + 1))(l − (k + 2)) · · · (l − (k + r))

r!

= (−1)r

(
s
′
l

k!
+ (−1)r

(k + 1)(k + 2) · · · (k + r)

r!

)

≡ (−1)r(−1)r
(
r + k

r

)
(mod l).

From the above two congruences, we have the relation(
n+ k

k

)
≡ (−1)r

(
l − k − 1

r

)
(mod l)

when k < l. The proof is now completed.

Now we are equipped to prove the following main result of this section.

Theorem 21. Let k ≥ 2 be a positive integer. Let l > k be an odd prime number.

Let p(n) be the number of partitions of n. We have

τ−k(n+ 1) ≡
∑

n=t+ls

τl−k(t)p(s) (mod l). (37)

In another notation,∑
n=a1+a2+···ak
ai∈N∪{0}

p(a1)p(a2) · · · p(ak) ≡
∑

n=t+ls

τl−k(t)p(s) (mod l). (38)

Proof. We have

∞∏
m=1

(1− qm)−k =
∞∑
n=0

τ−k(n+ 1)qn

= 1 +

∞∑
n=1

 ∑
n=a1+a2+···ak
ai∈N∪{0}

p(a1)p(a2) · · · p(ak)

 qn.

This equality permits us to present the congruence of this result in two different
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forms. Now in accordance with Lemma 1, we may write

∞∏
m=1

(1− qm)−k =

∞∏
m=1

( ∞∑
n=0

(
n+ k − 1

k − 1

)
qmn

)

≡
∞∏
m=1

[(
l−k∑
r=0

(−1)r
(
l − k
r

)
qrm

)(
1− qlm

)−1]
(mod l)

≡
∞∏
m=1

[
(1− qm)l−k

(
1− qlm

)−1]
(mod l).

Now the result follows.

Corollary 6. Let p(n) be the number of partitions of n. We have∑
a+b=n

a,b∈N∪{0}

p(a)p(b) ≡
∑

n=t+3s

ω(t)p(s) (mod 3), (39)

where ω(t) is given in (1).

Proof. Fix l = 3 and k = 2 in Theorem 21, then the result follows as a consequence

of the observation τ1(n) = ω(n).

Let l ≥ 5 be a prime number. In view of Identity (20), we find a sufficient

condition for the following congruence:∑
n=a1+a2+···+al−3

ai∈N∪{0}

p(a1)p(a2) · · · p(al−3) ≡ 0 (mod l).

Corollary 7. Let l ≥ 5 be a prime number. For non-zero integer n, let R(n, l)

denote the remainder obtained by division of n into l. If m is a non-negative integer

such that m 6≡ s (mod l) for every

s ∈
{

0
}
∪
{
R

(
(−1)r

(
l − 3

r

)
, l

)
: 0 ≤ r ≤ l − 3

2

}
,

then for n ≡ m (mod l) we have∑
n=a1+a2+···al−3

ai∈N∪{0}

p(a1)p(a2) · · · p(al−3) ≡ 0 (mod l). (40)

Proof. Assume the following:

1. m 6≡ s (mod l) for every s ∈ {0} ∪
{
R
(

(−1)r
(
l−3
r

)
, l
)

: 0 ≤ r ≤ l−3
2

}
,
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2. n ≡ m (mod l) ,

3. k = l − 3.

Based on assumption 3 and Theorem 21, we may write∑
n=a1+a2+···al−3

ai∈N∪{0}

p(a1)p(a2) · · · p(al−3) ≡
∑

n=t+ls

τ3(t)p(s) (mod l). (41)

In view of Identity (20), we can write

τ3(t) =

{
(−1)j(2j + 1) if t = j(j+1)

2 ;

0 otherwise.

So, based on assumption 2, (41) can be expressed as follows:∑
n=a1+a2+···al−3

ai∈N∪{0}

p(a1)p(a2) · · · p(al−3) ≡
∑

n=(j+1
2 )+ls

(−1)j(2j + 1)p(s) (mod l)

≡
∑

lb+m=(j+1
2 )+ls

(−1)j(2j + 1)p(s) (mod l)

for some non-negative integer b. The index of the right extreme summation is non-

empty only when
(
j+1
2

)
≡ m (mod l) for some j. In view of Lemma 1, R

((
j+1
2

)
, l
)

for j = 1, 2 · · · , constitute a subset of the set {0} ∪
{
R
(

(−1)r
(
l−3
r

)
, l
)

: 0 ≤

r ≤ l−3
2

}
. Based on assumption 1, we have m 6≡ s (mod l) for every s ∈ {0} ∪{

R
(

(−1)r
(
l−3
r

)
, l
)

: 0 ≤ r ≤ l−3
2

}
. Given this observation, it follows that the

index of the right extreme sum is empty. This leads to the conclusion that∑
n=a1+a2+···al−3

ai∈N∪{0}

p(a1)p(a2) · · · p(al−3) ≡ 0 (mod l).

Now the proof is completed.

An interplay of Lemma 1 with Theorem 8 yields the following result of Ramanu-

jan.

Corollary 8 (Ramanujan [16]). Let n be a positive integer. We have

τ(7n) ≡ 0 (mod 7).



INTEGERS: 24 (2024) 29

Proof. In accordance with Theorem 8, we can write

τ(7n) = τ(7n− 1 + 1)

≡
∑

7n−1=m(m+1)
2 +7

r(r+1)
2

(−1)m+r(2m+ 1)(2r + 1) (mod 7). (42)

The index of the summation above suggests that(
m+ 1

2

)
=

(
m− 1 + 2

2

)
≡ 6 (mod 7).

Since 6 =
(
4
2

)
, in view of Lemma 1, we obtain that m−1 ≡ 2 (mod 7). This implies

that 2m + 1 ≡ 0 (mod 7). Substituting this congruence in the sum in (42), we

obtain that τ(7n) ≡ 0 (mod 7).
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