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Abstract

The notion of Carmichael indices N(n) for positive integers n was defined, and
some relevant properties were investigated by Matsukuma in his graduation thesis
in 2012. In this article, we examine a formula for the Carmichael indices N(n) for
any positive integers n, as a generalization of specific results given by Matsukuma.
We then give a proof of Korselt’s criterion for Carmichael numbers by means of the
formula. To address a question posed by Matsukuma, we also find that there is no
positive integer n such that N(n) = n− 1.

1. Introduction

In [1, Definition 1.2], the notion of Carmichael indices N(n) for positive integers n

is defined as follows.

Definition 1. For any integer n ≥ 1, we define

N(n) := #{a ∈ Z | 0 ≤ a ≤ n− 1, an ≡ a (mod n)}

and call it the Carmichael index of n, where #X denotes the cardinality of a finite

set X. Namely, N(n) is the number of solutions in the residue ring Z/nZ modulo

n for the equation xn = x.

We can immediately observe that N(1) = 1 and N(p) = p for any prime number

p by Fermat’s little theorem. Moreover, we know that for any composite number

n, N(n) = n if and only if n is a Carmichael number. This is the reason why N(n)

is called the Carmichael index of n.
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Example 1. In Table 1, we present the list of Carmichael indices for composite

numbers 4 ≤ n ≤ 105, as calculated by the second author.

n 4 6 8 9 10 12 14 15 16 18 20 21 22 24 25
N(n) 2 4 2 3 4 4 4 9 2 4 4 9 4 4 5

n 26 27 28 30 32 33 34 35 36 38 39 40 42 44
N(n) 4 3 8 8 2 9 4 9 4 4 9 4 8 4

n 45 46 48 49 50 51 52 54 55 56 57 58 60 62
N(n) 15 4 4 7 4 9 8 4 9 4 9 4 8 4

n 63 64 65 66 68 69 70 72 74 75 76 77 78 80
N(n) 9 2 25 24 4 9 16 4 4 9 8 9 8 4

n 81 82 84 85 86 87 88 90 91 92 93 94 95 96
N(n) 3 4 8 25 4 9 4 8 49 4 9 4 9 4

n 98 99 100 102 104 105
N(n) 4 9 4 8 4 25

Table 1. The list of Carmichael indices for composite numbers 4 ≤ n ≤ 105.

In [1, Corollaries 1 and 2], it was proven that for any prime number p ≥ 5,

N(3p) = N(3p2) = 9.

In this article, we prove a formula for Carmichael indices N(n) of positive integers

n ≥ 2, as stated in the following theorem.

Theorem 1. For any positive integer n ≥ 2, we denote the prime factorization of

n by

n = pe11 · · · perr
with distinct prime factors p1, . . . , pr and positive integers e1, . . . , er. For any 1 ≤
i ≤ r, we write

N(n; peii ) := #

{
ā ∈ (Z/peii Z)

×
: ord(ā)

∣∣∣∣(pi − 1,
n

peii
− 1

)}
,

where x | y means that x divides y for any integers x 6= 0 and y, ord(ā) is the order

of ā in (Z/peii Z)
×
, and

(
pi − 1,

n

peii
− 1

)
is the greatest common divisor of pi − 1

and
n

peii
− 1. Then,

N(n) =

r∏
i=1

(N(n; peii ) + 1).
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Example 2. For any prime number p ≥ 5, we see that

N(3p) = (N(3p; 3) + 1)(N(3p; p) + 1)

by the formula given in Theorem 1. Then,

N(3p; 3) = #
{
ā ∈ (Z/3Z)

× | ord(ā) | (2, p− 1)
}

= #
{
ā ∈ (Z/3Z)

× | ord(ā) | 2
}

= # {1̄, 2̄}
= 2

and

N(3p; p) = #
{
ā ∈ (Z/pZ)

× | ord(ā) | (p− 1, 2)
}

= #
{
ā ∈ (Z/pZ)

× | ord(ā) | 2
}

= #
{

1̄,−1
}

= 2

imply that

N(3p) = (2 + 1)(2 + 1) = 9.

This conclusion agrees with the result obtained in [1, Corollary 1] and the examples

with N(n) = 9 for

n = 15, 21, 33, 39, 51, 57, 69, 87, 93

as in Example 1.

Moreover, we see that

N(3p2) = (N(3p2; 3) + 1)(N(3p2; p2) + 1)

by the formula given in Theorem 1. Then,

N(3p2; 3) = #
{
ā ∈ (Z/3Z)

× ∣∣ ord(ā) |
(
2, p2 − 1

)}
= #

{
ā ∈ (Z/3Z)

× | ord(ā) | 2
}

= # {1̄, 2̄}
= 2

and

N(3p2; p2) = #
{
ā ∈

(
Z/p2Z

)× | ord(ā) | (p− 1, 2)
}

= #
{
ā ∈

(
Z/p2Z

)× | ord(ā) | 2
}

= #
{

1̄,−1
}

= 2
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imply that

N(3p2) = (2 + 1)(2 + 1) = 9,

which agrees with the result obtained in [1, Corollary 2] and the example N(75) = 9

in the list given in Example 1. We note that in the above calculation,(
Z/p2Z

)× ∼= (Z/pZ)
× × Z/pZ

as abelian groups. Then,
{
ā ∈

(
Z/p2Z

)× | ord(ā) | 2
}

is a subset of the prime-

to-p component of
(
Z/p2Z

)×
, which is isomorphic to (Z/pZ)

×
under the above

isomorphism.

Example 3. Consider the case where n = 66 with three distinct prime factors

2, 3, 11. We see that

N(66) = (N(66; 2) + 1)(N(66; 3) + 1)(N(66; 11) + 1)

by the formula given in Theorem 1. Then,

N(66, 2) = #
{
ā ∈ (Z/2Z)

× | ord(ā) | (1, 33)
}

= #
{
ā ∈ (Z/2Z)

× | ord(ā) | 1
}

= # {1̄}
= 1,

N(66, 3) = #
{
ā ∈ (Z/3Z)

× | ord(ā) | (2, 21)
}

= #
{
ā ∈ (Z/3Z)

× | ord(ā) | 1
}

= # {1̄}
= 1,

N(66; 11) = #
{
ā ∈ (Z/11Z)

× | ord(ā) | (10, 5)
}

= #
{
ā ∈ (Z/11Z)

× | ord(ā) | 5
}

= # {1̄, 3̄, 4̄, 5̄, 9̄}
= 5

imply that

N(66) = (1 + 1)(1 + 1)(5 + 1) = 24,

which agrees with the value in the list given in Example 1.

In Section 1, we prove Theorem 1, and subsequently use it to prove Korselt’s

criterion for Carmichael numbers. In Section 2, we observe that there is no positive

integer n such that N(n) = n− 1. This result answers a question posed in [1].
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Remark 1. In [1, Section 6], some properties of loop lengths in the sequences

{0n (mod n), . . . , (n−1)n (mod n)} were investigated in the case where n = pk and

pkq with any distinct prime numbers p, q and any positive integer k. More precisely,

it was proven that the length of the loop in {0pk

(mod pk), . . . , (pk−1)p
k

(mod pk)}
(resp. {0pkq (mod pkq), . . . , (pkq − 1)p

kq (mod pkq)}) is equal to p (resp. pq) in

[1, Theorem 6.1] (resp. [1, Theorem 6.2]). For example, the second author of this

article calculated that in the case where n = 81 = 34, the sequence

{081 (mod 81), . . . , 8081 (mod 81)}

consists of 27 copies of the loop

0 (mod 81), 1 (mod 81), 80 (mod 81)

of length 3, and in the case where n = 104 = 23 × 13, the sequence

{0104 (mod 104), . . . , 103104 (mod 104)}

consists of four copies of the loop

0̄, 1̄, 48, 9̄, 16, 1̄, 16, 81, 40, 81, 48, 9̄, 40, 65, 40, 9̄, 48, 81, 40, 81, 16, 1̄, 16, 9̄, 48, 1̄

of length 26 = 2×13, where we denote by ā the residue class modulo 104 represented

by an integer a. In this article, we do not examine any properties of the sequences

{0n (mod n), . . . , (n− 1)n (mod n)}

for any n ≥ 2, but we would like to pursue this question for positive integers n of

various types in the future.

2. Proof of Theorem 1

We now present a proof of Theorem 1.

Proof of Theorem 1. Recall the notation and definitions introduced in the statement

of Theorem 1. By the Chinese Remainder Theorem, for any a ∈ Z, an ≡ a (mod n)

if and only if an ≡ a (mod peii ) for any 1 ≤ i ≤ r.

We now fix any 1 ≤ i ≤ r and set p := pi and e := ei. We then assume that

an ≡ a (mod pe).

First, in the case where p | a, if a 6≡ 0 (mod pe), then

0 6≡ a ≡ an ≡ 0 (mod pe)

by the inequality n ≥ pe > e, which is a contradiction. On the other hand, 0n ≡
0 (mod pe). Therefore, an ≡ a (mod pe) implies that

a ≡ 0 (mod pe);
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i.e., the equation ān = ā has only one solution ā = 0̄ in Z/peZ in the case where

p | a. Here, ā is the residue class in Z/peZ represented by a.

Next, we assume that p - a.

In the case where p = 2, because (a, 2) = 1 and # (Z/2eZ)
×

= 2e−1, we see that

a2
e−1

≡ 1 (mod 2e)

by Euler’s theorem. Therefore the congruence an ≡ a (mod 2e) implies that

a ≡ an ≡ a2
e−1· n

2e−1 ≡ 1 (mod 2e);

i.e., the equation ān = ā has only one solution ā = 1̄ in (Z/2eZ)
×

.

In the case where p 6= 2, because (a, p) = 1 and # (Z/peZ)
×

= pe − pe−1, we see

that

ap
e−1(p−1) ≡ ap

e−pe−1

≡ 1 (mod pe)

by Euler’s theorem. Therefore, the congruence an ≡ a (mod pe) implies that

ap−1 ≡ an(p−1) ≡ a
pe−1(p−1)· n

pe−1 ≡ 1 (mod pe). (1)

Because this congruence implies that ap ≡ a (mod pe), we see that ap
e ≡ a (mod pe)

and

a ≡ an ≡ ap
e· n

pe ≡ a
n
pe (mod pe).

Because (a, p) = 1, we then see that

a
n
pe−1 ≡ 1 (mod pe). (2)

The congruences (1) and (2) imply that the order ord(ā) of the residue class ā ∈

(Z/peZ)
×

divides

(
p− 1,

n

pe
− 1

)
.

Conversely, for any integer a such that

ord(ā)

∣∣∣∣(p− 1,
n

pe
− 1

)
,

we see that ap ≡ a
n
pe ≡ a (mod pe) and

an ≡ a
n
pe ·p

e

≡ ap
e

≡ a (mod pe).

Therefore, for any integer a which is coprime to p, an ≡ a (mod pe) if and only if

ord(ā)

∣∣∣∣(p− 1,
n

pe
− 1

)
in (Z/peZ)

×
.

Combining the above discussion and the Chinese remainder theorem, we see that

N(n) =

r∏
i=1

(N(n; pe) + 1),
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because the Carmichael index N(n) of n is the number of solutions to the equation

ān = ā in Z/nZ. We note that
(

2− 1,
n

2e
− 1
)

= 1 implies that N(n; 2e) = 1 by

definition. �

Example 4. We can solve the equation ān = ā in Z/nZ by the argument in the

proof of Theorem 1. Here, we do this in the case where n = 66 as well as in

Example 3. By the argument in Example 3 to calculate that N(66) = 24, we can

obtain solutions to the equation

ā66 = ā

in Z/66Z by the following system of congruences:

a ≡


0, 1 (mod 2)

0, 1 (mod 3)

0, 1, 3, 4, 5, 9 (mod 11).

Therefore, the solutions to ā66 = ā in Z/66Z are the following 24 residue classes:

ā = 0̄, 1̄, 3̄, 4̄, 9̄, 12, 15, 16, 22, 25, 27, 31, 33,

34, 36, 37, 42, 45, 48, 49, 55, 58, 60, 64.

As a corollary to Theorem 1, we shall give a proof of Korselt’s criterion for

Carmichael numbers as stated in the following corollary.

Corollary 1 (Korselt’s criterion [2]). A composite number n is a Carmichael num-

ber if and only if n is a product of distinct odd prime numbers and for any prime

factor p of n, p− 1 is a divisor of n− 1.

Proof. By definition, a composite number n is a Carmichael number if and only if

for any integer a, an ≡ a (mod n), i.e., N(n) = n. In particular, for any Carmichael

number n, because n ≥ 4 and (−1)n ≡ −1 (mod n), n must be odd.

Firstly, we assume that a composite number n is a Carmichael number. Let

n = pe11 · · · perr be the prime factorization of n as in the statement of Theorem 1.

Because n is odd, pi 6= 2 for any 1 ≤ i ≤ r, and the set{
ā ∈ (Z/peii Z)

×
: ord(ā)

∣∣∣∣(pi − 1,
n

peii
− 1

)}
is a subset of the prime-to-p component of (Z/peii Z)

×
, which is isomorphic to

(Z/piZ)
×

. Therefore, by definition,

N(n; peii ) ≤ pi − 1



INTEGERS: 24 (2024) 8

for any 1 ≤ i ≤ r. By Theorem 1 and the assumption that n is a Carmichael

number, we see that

r∏
i=1

pi ≤
r∏

i=1

peii = n = N(n) =

r∏
i=1

(N(n; peii ) + 1) ≤
r∏

i=1

pi,

which implies that ei = 1 and N(n; pi) = pi − 1 for any 1 ≤ i ≤ r. Because

pi ≡ 1 (mod pi − 1), we see that

n− 1 ≡ n

pi
− 1 ≡ 0 (mod pi − 1)

by the definition of N(n; pi). Therefore, n is a product of distinct odd prime num-

bers, and for any prime factor p of n, that p− 1 is a divisor of n− 1.

Conversely, we assume that n is a product of distinct odd prime numbers, and

for any prime factor p of n, p− 1 is a divisor of n− 1. Because

0 ≡ n− 1 ≡ n

p
− 1 (mod p− 1),

we see that

N(n; p) = p− 1,

which implies that

N(n) =
∏
p|n

(N(n; p) + 1) =
∏
p|n

p = n

by Theorem 1. Therefore, n is a Carmichael number and the corollary is proven.

3. Non-existence of Integers n Such That N(n) = n − 1

In [1], the question of whether there exists any positive number n such that N(n) =

n− 1 is raised. We answer this question in the following theorem.

Theorem 2. There is no positive integer n such that N(n) = n− 1.

Proof. Assume that there exists some positive integer n such that N(n) = n − 1.

Because N(1) = 1, N(2) = 2, N(3) = 3, N(4) = 2, N(5) = 5, N(6) = 4, we may

assume that n ≥ 7.

The condition that N(n) = n − 1 implies that there exists only one integer

0 ≤ b ≤ n− 1 such that

bn 6≡ b (mod n). (3)

If 2b ≡ b (mod n), then b ≡ 0 (mod n), which contradicts (3). Therefore

2b 6≡ b (mod n),
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which implies that

(2b)n ≡ 2b (mod n) (4)

by (3). We now assume that n is odd. If b 6= 2, then 2n ≡ 2 (mod n), which implies

that

2bn ≡ 2b (mod n)

by (4). This contradicts (3), as n is odd. Therefore, b = 2, i.e.,

2n 6≡ 2 (mod n) (5)

by (3). Because n ≥ 7, we see that

n− 2 6≡ 2 (mod n), 2(n− 2) 6≡ 2 (mod n),

which imply that

(n− 2)n ≡ n− 2 (mod n), 2n(n− 2)n ≡ 2(n− 2) (mod n),

respectively. These congruences contradict (5), as (n, n− 2) = 1 by the assumption

that n is odd. Therefore, n must be even.

Then we see that (n−1)n ≡ 1 6≡ n−1 (mod n), i.e., b = n−1. Therefore, for any

integer 0 ≤ a ≤ n− 2, we have that an ≡ a (mod n). In particular, for a =
n

2
± 1,

we see that
n

2
− 1 ≡

( n

2
− 1
)n
≡
( n

2
− 1− n

)n
≡
(
− n

2
− 1
)n
≡
( n

2
+ 1
)n

≡ n

2
+ 1 (mod n),

which implies a contradiction that n = 2. Thus, the proof is complete.
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