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Abstract

In this paper, we give some identities involving degenerate harmonic numbers and
some special degenerate numbers by using Riordan arrays. For example,

n∑
k=1

(−1)
k
βk,λHλ(n, k − 1, α)

k!
= αHn+1,λ(α)− 1 for n ≥ 1,

and
n∑
k=0

(−1)kHk+1
n−k+1,λ(α) =

(−1)nDn,λ

αn+1n!
for n ≥ 0,

where Hn,λ(α) are generalized degenerate harmonic numbers, Hr
n,λ(α) are gener-

alized degenerate hyperharmonic numbers of order r, Hλ(n, r, α) are generalized

degenerate harmonic numbers of rank r, Dn,λ are degenerate Daehee numbers, and

βn,λ are degenerate Bernoulli numbers.

1. Introduction

For a positive real number λ, the degenerate exponential functions ([9], [10], [11],

[12], and [15]) are defined by

exλ(t) = (1 + λt)x/λ =

∞∑
n=0

(x)n,λ
tn

n!
, (1)
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where (x)0,λ = 1 and (x)n,λ = x(x − λ) . . . (x − (n − 1)λ) for n ≥ 1. When x = 1,

it is seen that e1λ(t) = eλ(t).

Let logλ t be the compositional inverse function of eλ(t) such that logλ(eλ(t)) =

eλ(logλ t) = t. The logλ t are called the degenerate logarithm functions and are

given by

logλ t =
tλ − 1

λ
=

∞∑
n=1

λn−1(1)n,1/λ

n!
(t− 1)n =

∞∑
n=1

1

λ

(
λ

n

)
(t− 1)n, (2)

where (
x

k

)
=

(x)k
k!

for a non-negative integer k, a real number x, and (x)n = (x)n,1. Note that

limλ→0 logλ t = log t and limλ→0 eλ(t) = et.

For a non-negative integer r, it is well known that

1

(1− t)r+1
=

∞∑
n=0

(
n+ r

n

)
tn. (3)

Harmonic numbers and their generalizations are important in various branches

of combinatorics, number theory, and there has been a lot of work involving these

numbers (see [3], [4], [5], [6], [7], [16], and [24]). The harmonic numbers, denoted

by Hn, are defined by

H0 = 0 and Hn =

n∑
k=1

1

k
for n ≥ 1.

For a positive real number α, the generalized harmonic numbers of rank r ([6],

[20]) denoted by H(n, r, α), are given by

H(n, r, α) =
∑

1≤k0+k1+...+kr≤n

1

k0k1 . . . krαk0+k1+...+kr
for n > r ≥ 0.

Note that H(n, r, α) = 0 for n ≤ r by convention. When α = 1, H(n, r, α) = H(n, r)

were introduced in ([7], [21]).

The degenerate harmonic numbers [18] are defined by

H0,λ = 0 and Hn,λ =

n∑
k=1

(−1)
k−1

λ

(
λ

k

)
for n ≥ 1,

and the generating function of these numbers is given by

− logλ(1− t)
1− t

=

∞∑
n=1

Hn,λt
n.
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Note that limλ→0Hn,λ = Hn.

In [16], Kim et al. introduced the degenerate hyperharmonic numbers, denoted

by Hr
n,λ, which are given by

Hr
0,λ = 0, H1

n,λ = Hn,λ and Hr
n,λ =

n∑
k=1

Hr−1
k,λ for n ≥ 1, r ≥ 2.

Also, they gave the generating function of these numbers as

− logλ(1− t)
(1− t)r

=

∞∑
n=1

Hr
n,λt

n. (4)

They investigated some properties, recurrence relations and identities involving

degenerate harmonic numbers and degenerate hyperharmonic numbers. For non-

negative integers n and k,

Hk+1
n,λ =

(−1)k(
λ−1
k

) (n+ k

n

)
(Hn+k,λ −Hk,λ).

For a positive real number α, Dağlı [4] defined the generalized degenerate har-

monic numbers, denoted by Hn,λ(α), as

H0,λ(α) = 0 and Hn,λ(α) =

n∑
k=1

(−1)
k−1

λαk

(
λ

k

)
for n ≥ 1,

and the generalized degenerate hyperharmonic numbers of order r, denoted by

Hr
n,λ(α), as

Hr
0,λ(α) = 0, H1

n,λ(α) = Hn,λ(α) and Hr
n,λ(α) =

n∑
k=1

Hr−1
k,λ (α) for n ≥ 1, r ≥ 2,

with H0
n,λ(α) = (−1)n−1

λαn

(
λ
n

)
. The generating functions of these numbers are

− logλ
(
1− t

α

)
1− t

=

∞∑
n=0

Hn,λ(α)tn,

and
− logλ(1− t

α )

(1− t)r
=

∞∑
n=0

Hr
n,λ(α)tn,

respectively.

The generalized degenerate harmonic numbers of rank r are defined by [5]

Hλ(n, r, α) =
∑

1≤k0+k1+...+kr≤n

(−1)
k0+k1+···kr+r+1

λr+1αk0+k1+...kr

(
λ

k0

)(
λ

k1

)
. . .

(
λ

kr

)
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for n > r ≥ 0. Note that Hλ(n, r, α) = 0 for n ≤ r by convention. The generating

function of these numbers is(
− logλ(1− t

α )
)r+1

1− t
=

∞∑
n=0

Hλ(n, r, α)tn. (5)

When α = 1, Hλ(n, r, 1) = Hλ(n, r) are called the degenerate harmonic numbers of

rank r.

The degenerate Bernoulli polynomials βn,λ(x) and the degenerate Euler polyno-

mials εn,λ(x) are defined by

texλ(t)

eλ(t)− 1
=
∞∑
n=0

βn,λ(x)
tn

n!
, (6)

and
2exλ(t)

eλ(t) + 1
=

∞∑
n=0

εn,λ(x)
tn

n!
, (7)

respectively ([1], [2], and [14]). When x = 0 , βn,λ(0) = βn,λ are called the degener-

ate Bernoulli numbers, and εn,λ(0) = εn,λ are called the degenerate Euler numbers.

The degenerate Stirling numbers of the first kind S1,λ(n, k) and the degenerate

Stirling numbers of the second kind S2,λ(n, k) are defined by

(x)n =

n∑
k=0

S1,λ(n, k)(x)k,λ for n ≥ 0,

(x)n,λ =

n∑
k=0

S2,λ(n, k)(x)k for n ≥ 0,

respectively. The generating functions of these numbers are given by ([5], [8], [13],

and [17])

(logλ(1 + t))
k

k!
=

∞∑
n=k

S1,λ(n, k)
tn

n!
and

(eλ(t)− 1)k

k!
=

∞∑
n=k

S2,λ(n, k)
tn

n!
, (8)

respectively, where k is a non-negative integer.

The degenerate Daehee polynomials are defined by [19]

logλ(1 + t)

t
(1 + t)x =

∞∑
n=0

Dn,λ(x)
tn

n!
. (9)

When x = 0, Dn,λ(0) = Dn,λ are called the degenerate Daehee numbers.

Recently, by using the concept of Riordan arrays, several identities pertaining

to special numbers and binomial coefficients have been established ([23], [24]). Let
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g(t) and f(t) be formal power series in the indeterminate, i.e., g(t) =
∑∞
n=0 gnt

n

and f(t) =
∑∞
n=0 fnt

n. A Riordan array is an infinite, lower triangular array and

defined by a pair of functions g(t) and f(t) such that R = (g(t), f(t)) = [rn,k]n,k≥0
with

rn,k = [tn] g (t) (f (t))
k
, (10)

where g (0) 6= 0, f (0) = 0, f(1) 6= 0, and [tn] defined by [tn]A(t) = an in the power

series of function A(t) =
∑∞
n=0 ant

n. An important example of Riordan arrays is

the Pascal triangle, defined by
[(
n
k

)]
n,k≥0 =

(
1

1−t ,
t

1−t

)
, with the matrix

[(
n

k

)]
n,k≥0

=



1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
1 2 1 0 0 · · ·
1 3 3 1 0 · · ·
1 4 6 4 1 · · ·
...

...
...

...
...

. . .


. (11)

Let R denote the set of Riordan arrays. It is known that 〈R, ∗〉 forms a group under

matrix multiplication ∗ with the identity I = (1, 1) [22]:

(g (t) , f (t)) ∗ (h (t) , l (t)) = (g (t)h (f (t)) , l (f (t))) . (12)

Basically, the concept of Riordan arrays is used in a constructive way to find the

generating function of many combinatorial sums. The summation property for a

Riordan array R = (g (t) , f (t)) = [rn,k]n,k≥0 is

n∑
k=0

rn,khk = [tn] g (t)h (f (t)) , (13)

where h(t) =
∑∞
n=0 hnt

n.

2. Some Identities Using Riordan Arrays

In this section, we will give some identities using properties of Riordan arrays and

generating functions. Some Riordan arrays for families of generalized degenerate

harmonic numbers can be given as follows:

[Hn−k+1,λ(α)]n,k =

(
− logλ

(
1− t

α

)
(1− t)t

, t

)
, (14)

[
Hk+1
n−k+1,λ(α)

]
n,k

=

(
− logλ

(
1− t

α

)
(1− t)t

,
t

1− t

)
, (15)
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and

[Hλ(n+ 1, k, α)]n,k =

(
− logλ

(
1− t

α

)
(1− t)t

,− logλ
(
1− t

α

))
. (16)

Theorem 1. For a non-negative integer n, we have

n∑
k=0

(−1)kHk+1
n−k+1,λ(α) =

(−1)nDn,λ

αn+1n!
,

and for a non-negative integer r,

n∑
k=0

(
k + r

r

)
Hn−k+1,λ(α) = Hr+2

n+1,λ(α).

Proof. For the first identity, taking the Riordan array (15) and h (t) = 1
1+t in

Equation (13), by Equations (5) and (9), we have

n∑
k=0

(−1)kHk+1
n−k+1,λ(α) =[tn]

− logλ
(
1− t

α

)
(1− t)t

1

1 + t
1−t

= [tn]
− logλ

(
1− t

α

)
t

=[tn]

∞∑
n=0

(−1)nDn,λ

αn+1n!
tn =

(−1)nDn,λ

αn+1n!
.

So, we have the first identity. Similarly, using the Riordan array (14) and taking

h (t) = 1
(1−t)r+1 in Equation (13), by Equation (4), the desired result is obtained.

Theorem 2. For a positive integer n, we have

n∑
k=0

(−1)k+1

(
n

k

)
Hk,λ =

1

λ

(
n+ λ− 1

n

)
.

Proof. By choosing Riordan array R =
(
−1
1−t ,

−t
1−t

)
=
[
(−1)

k+1 (n
k

)]
n,k

and h(t) =

− logλ(1−t)
1−t in Equation (13), using Equations (2) and (3), we have

n∑
k=0

(−1)k+1

(
n

k

)
Hk,λ = [tn]

−1

1− t

− logλ

(
1 + t

1−t

)
1 + t

1−t
= [tn]

(
1

1−t

)λ
− 1

λ

=
1

λ
[tn]

( ∞∑
n=0

(
n+ λ− 1

n

)
tn − 1

)

=
1

λ
[tn]

∞∑
n=1

(
n+ λ− 1

n

)
tn

=
1

λ

(
n+ λ− 1

n

)
for n ≥ 1. So, the proof is complete.
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Theorem 3. For a non-negative integer n, we have

n∑
k=0

(−1)
k

(1)k,λ
k!

Hλ(n+ 1, k, α) = Hn+1,λ(α)− Hn,λ(α)

α
.

Proof. Taking the Riordan array (16) and h (t) = eλ(−t) in Equation (13), by

Equations (1) and (5), we have

n∑
k=0

Hλ(n+ 1, k, α)
(−1)

k
(1)k,λ
k!

= [tn]
− logλ

(
1− t

α

)
(1− t)t

(
1− t

α

)

= [tn+1]
− logλ

(
1− t

α

)
1− t

− 1

α
[tn]
− logλ

(
1− t

α

)
1− t

= Hn+1,λ(α)− Hn,λ(α)

α

for n ≥ 0. So, the proof is complete.

Theorem 4. For non-negative integers n and r, we have

n∑
k=0

Hλ(k, r + 1, α) =

n∑
k=0

Hn−k,λ(α)Hλ(k, r, α).

Proof. Taking the Riordan array [rn,k]n,k≥0 =
(

1
1−t , t

)
, which means rn,k = 1,

when n ≥ k and h (t) =
(− logλ(1− t

α ))
r+2

1−t in Equation (13), we have

n∑
k=0

Hλ(k, r + 1, α) = [tn]
− logλ(1− t

α )

1− t

(
− logλ(1− t

α )
)r+1

1− t

= [tn]

∞∑
n=0

Hn,λ(α)tn
∞∑
n=0

Hλ(n, r, α)tn

=

n∑
k=0

Hn−k,λ(α)Hλ(k, r, α),

as claimed.

Theorem 5. For a non-negative integer n, we have

n∑
k=0

(−1)k(1)k+1,λ

(k + 1)!
Hλ(n+ 1, k, α) =

1

α
.

Proof. Taking the Riordan array (16) and

h(t) =
1− eλ(−t)

t
=

∞∑
n=0

(−1)n(1)n+1,λt
n

(n+ 1)!
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in Equation (13), we have

n∑
k=0

(−1)k(1)k+1,λ

(k + 1)!
Hλ(n+ 1, k, α) = [tn]

− logλ
(
1− t

α

)
(1− t)t

h
(
− logλ

(
1− t

α

))
= [tn]

1

1− t
1

α

=
1

α
.

So, the proof is complete.

Theorem 6. For non-negative integers n and r, we have

n∑
k=r

(−1)n−k

λαn−k+1

(
λ

n− k + 1

)(
k

r

)
= Hr+1

n−r+1,λ(α).

Proof. By Equation (12), we write(
− logλ

(
1− t

α

)
(1− t)t

,
t

1− t

)
=

(
− logλ

(
1− t

α

)
t

, t

)
∗
(

1

1− t
,

t

1− t

)
. (17)

By Equations (2) and (10), we have[
(−1)n−k

λαn−k+1

(
λ

n− k + 1

)]
n,k

=

(
− logλ

(
1− t

α

)
t

, t

)
,

and from Matrix (11) and Equation (17), we write[
Hk+1
n−k+1,λ(α)

]
n,k

=

[
(−1)n−k

λαn−k+1

(
λ

n− k + 1

)]
n,k

[(
n

k

)]
n,k

,

which completes the proof by using matrix multiplication.

3. Some Identities Involving Hλ(n, r, α)

Let θn be any sequence, and its generating function be Θ(t) =
∑∞
n=0 θnt

n. Since

Hλ(n, r, α) = 0 when n ≤ r, we can write

n∑
r=1

θrHλ(n, r − 1, α) =

∞∑
r=1

θrHλ(n, r − 1, α) =

∞∑
r=1

θr[t
n]

(
− logλ(1− t

α )
)r

1− t

= [tn]
Θ
(
− logλ(1− t

α )
)
− θ0

1− t
. (18)

According to this scheme, we give some identities involving Hλ(n, r, α) with the

following theorems.
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Theorem 7. Let n be a positive integer. Then

n∑
k=1

(1)k,λ
k!

Hλ(n, k − 1, α) =

n∑
k=1

k∑
i=1

(−1)
k+i

(1)i,λ S1,λ (k, i)

αkk!
.

Proof. Let θk =
(1)k,λ
k! , that is, Θ (t) = eλ(t) in Equation (18). Using the binomial

theorem, Equations (1) and (8), we have

eλ
(
− logλ(1− t

α )
)
− θ0 =

(
1− λ logλ(1− t

α )
)1/λ − 1

=

∞∑
i=1

(−1)i
(

1/λ

i

)
λi(logλ(1− t

α ))i

=

∞∑
i=1

(−1)i (1)i,λ

∞∑
n=i

(−1)nS1,λ (n, i)

αnn!
tn

=

∞∑
n=1

n∑
i=1

(−1)n+i (1)i,λ S1,λ (n, i)

αnn!
tn.

Then by Equation (18), we get

n∑
k=0

(1)k,λ
k!

Hλ(n, k − 1, α) = [tn]
1

1− t
eλ
(
− logλ(1− t

α )− 1
)

= [tn]

( ∞∑
n=0

tn

)( ∞∑
n=1

n∑
i=1

(−1)n+i (1)i,λ S1,λ (n, i)

αnn!
tn

)

=

n∑
k=1

k∑
i=1

(−1)
k+i

(1)i,λ S1,λ (k, i)

αkk!
.

So, we have the proof.

Theorem 8. Let n be a positive integer. Then

n∑
k=1

(−1)
k
βk,λHλ(n, k − 1, α)

k!
= αHn+1,λ(α)− 1,

and
n∑
k=1

(−1)k+1εk,λ
k!

Hλ (n, k − 1, α) =
(2α)−n − 1

2α− 1
, (α 6= 1/2).

Proof. For the first identity, let Θ (t) = −t
eλ(−t)−1 =

∑∞
k=0

(−1)kβk,λ
k! tk in Equation
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(18). By Equation (6), we have

n∑
k=1

(−1)
k
βk,λHλ(n, k − 1, α)

k!
= [tn]

1

1− t

(
logλ(1− t

α )

eλ
(
logλ(1− t

α )
)
− 1
− 1

)

= [tn]
logλ(1− t

α )

1− t
−α
t
− [tn]

1

1− t
= αHn+1,λ(α)− 1.

For the second identity, let Θ (t) = 2
eλ(−t)+1 =

∑∞
k=0

(−1)kεk,λ
k! tk in Equation (18).

In a similar way, by Equation (7), for α 6= 1/2, we get

n∑
k=1

(−1)k+1εk,λHλ(n, k − 1, α)

k!
= −[tn]

1

1− t

(
2

2− t
α

− 1

)

= −[tn]

∞∑
n=0

tn
∞∑
n=1

1

2nαn
tn

= −
n∑
k=1

1

2kαk

=
(2α)−n − 1

2α− 1
,

as claimed. So, the proof is complete.

Theorem 9. Let n and m be positive integers such that n ≥ m. Then we have

n∑
k=m

(−1)kS2,λ(k,m)Hλ(n, k − 1, α)

k!
=

(−1)m

m!αm
.

Proof. Let Θ (t) = (eλ(−t)−1)m
m! . By the fact that S2,λ(n,m) = 0 when n < m and

Equation (18), we have

n∑
k=m

(−1)kS2,λ(k,m)Hλ(n, k − 1, α)

k!
= [tn]

1

1− t
(− t

α )m

m!

=
(−1)m

m!αm
[tn−m]

1

1− t

=
(−1)m

m!αm
.

Hence, the proof is complete.
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