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Abstract

We study two-player positional games where Maker and Breaker take turns to select
a previously unoccupied number in {1, 2, . . . , n}. Maker wins if the numbers selected
by Maker contain a solution to the equation

x
1/`
1 + · · ·+ x

1/`
k = y1/`

where k and ` are integers with k ≥ 2 and ` 6= 0, and Breaker wins if they can
stop Maker. Let f(k, `) be the smallest positive integer n such that Maker has
a winning strategy when x1, . . . , xk are not necessarily distinct, and let f∗(k, `)
be the smallest positive integer n such that Maker has a winning strategy when
x1, . . . , xk are distinct. When ` ≥ 1, we prove that, for all k ≥ 2, f(k, `) = (k + 2)`

and f∗(k, `) = (k2 + 3)`; when ` ≤ −1, we prove that f(k, `) = [k + Θk(1)]−` and
f∗(k, `) = [exp(Ok(k log k))]−`. Our proofs use elementary combinatorial arguments
as well as results from number theory and arithmetic Ramsey theory.

1. Introduction

Let F be a family of finite subsets of N := {1, 2, . . .} and n ∈ N. Maker-Breaker

games played on [n] := {1, 2, . . . , n} with winning sets F are two-player positional

games where Maker and Breaker take turns to select a previously unoccupied num-

ber in [n]. Maker goes first. Maker wins if they can occupy a set in F and Breaker

wins otherwise. The van der Waerden games introduced by Beck [1] are games of

this type. In van der Waerden games, F is the set of k-term arithmetic progres-

sions for a fixed k. These games were motivated by a result of van der Waerden’s
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theorem [24] which says that if N is partitioned into two classes, then one of them

contains arbitrarily long arithmetic progressions. By the compactness principle [10,

Chapter 1] (see also [18, Section 2.1]) and strategy stealing [2, Section 5] (see also

[14, Chapter 1]), Maker can win the van der Waerden games if n is large enough.

Therefore, one would naturally want to find the smallest n such that Maker can win

the van der Waerden games. Beck [1] proved that, for any given k, the smallest n

such that Maker has a winning strategy for the van der Waerden games is between

2k−7k
7/8

and k32k−4.

Recently, Kusch, Rué, Spiegel, and Szabó [17] studied a generalization of van der

Waerden games called Rado games. In Rado games, F is the set of solutions to a

system of linear equations. By Rado’s theorem [22], if n is large enough, then Maker

is guaranteed to win the Rado games if the system of linear equations satisfies the so-

called column condition [10, Chapter 10]. Kusch, Rué, Spiegel, and Szabó allowed

Breaker to select q ≥ 1 numbers each round and derived asymptotic thresholds

of q for Breaker to win. Their result on 3-term arithmetic progressions was later

improved by Cao et al. [7]. Hancock [12] replaced [n] with a random subset of [n]

where each number is included with probability p and proved asymptotic thresholds

of p for Breaker or/and Maker to win. However, unlike the van der Waerden games,

the smallest n such that Maker wins for the unbiased and deterministic Rado games

are left unstudied.

In this paper, we study the smallest positive integer n such that Maker wins the

Rado games on [n] when F is the set of solutions to the equation

x
1/`
1 + · · ·+ x

1/`
k = y1/` (1)

where k and ` are integers with k ≥ 2 and ` 6= 0. Equation (1) is connected with

results in arithmetic Ramsey theory [10, 18]. In arithmetic Ramsey theory, a system

of equations E(x1, . . . , xk, y) = 0 in variables x1, . . . , xk, y is called partition regular

if whenever N is partitioned into a finite number of classes, one of them contains a

solution to E(x1, . . . , xk, y) = 0. In 1991, Lefmann [19] proved that, among other

things, Equation (1) is partition regular for all ` ∈ Z\{0}. In the same year, Brown

and Rödl [6] proved that if a system E(x1, . . . , xk, y) = 0 of homogeneous equations

is partition regular, then the system E(1/x1, . . . , 1/xk, 1/y) = 0 is also partition

regular.

To state our results, we first define the games we study in detail. Let A ⊆ N be a

finite set and let e(x1, . . . , xk, y) = 0 be an equation in variables x1, . . . , xk, y. The

Maker-Breaker Rado games denoted

G(A, e(x1, . . . , xk, y) = 0) and G∗(A, e(x1, . . . , xk, y) = 0)

have the following rules:

(1) Maker and Breaker take turns to select a number from A. Once a number
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is selected by a player, neither players can select that number again. Maker

starts the game.

(2) Maker wins the G(A, e(x1, . . . , xk, y) = 0) game if a collection of the num-

bers chosen by Maker form a solution to e(x1, . . . , xk, y) = 0 where x1, . . . , xk
are not necessarily distinct; and Maker wins the G∗(A, e(x1, . . . , xk, y) = 0)

game if a collection of the numbers chosen by Maker form a solution to

e(x1, . . . , xk, y) = 0 where x1, . . . , xk are distinct.

(3) Breaker wins if Maker fails to occupy a solution to e(x1, . . . , xk, y) = 0.

We use the following shorter notations for games with Equation (1):

G([n], k, `) := G
(

[n], x
1/`
1 + · · ·+ x

1/`
k = y1/`

)
and

G∗([n], k, `) := G∗
(

[n], x
1/`
1 + · · ·+ x

1/`
k = y1/`

)
.

We say that a player wins a game if there is a winning strategy which guarantees

that this player wins no matter what the other player does. A winning strategy is

a set of instructions which tells the player what to do each round given what had

been previously played by both players. Let f(k, `) be the smallest positive integer

n such that Maker wins the G([n], k, `) game and let f∗(k, `) be the smallest positive

integer n such that Maker wins the G∗([n], k, `) game.

For ` ≥ 1, we are able to find exact formulas for f(k, `) and f∗(k, `).

Theorem 1. For all integers k ≥ 2 and ` ≥ 1, we have f(k, `) = (k + 2)`.

Theorem 2. For all integers k ≥ 2 and ` ≥ 1, we have f∗(k, `) = (k2 + 3)`.

Our proofs of Theorems 1 and 2 involve showing that f(k, 1) = k + 2 and

f∗(k, 1) = k2 + 3 using elementary combinatorial arguments, and that f(k, `) ≤
[f(k, 1)]` and f∗(k, `) ≤ [f∗(k, 1)]` using a result of Besicovitch [3] on the linear

independence of integers with fractional powers.

For ` ≤ −1, our main results are the following:

Theorem 3. Let k, ` be integers with k ≥ 2 and ` ≤ −1. Then f(k, `) = [k +

Θk(1)]−`. More specifically, if k ≥ 1/(2−1/` − 1), then f(k, `) ≥ (k + 1)−`; and if

k ≥ 4, then f(k, `) ≤ (k + 2)−`.

Theorem 4. Let k, ` be integers with k ≥ 2 and ` ≤ −1. Then f∗(k, `) =

[exp(Ok(k log k))]−`.

The proof of Theorem 4 involves showing that f∗(k,−1) = exp(Ok(k log k)) using

a game theoretic variant of a theorem in arithmetic Ramsey theory by Brown and

Rödl [6].
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Our results indicate that it is “easier” to form a solution to Equation (1) strate-

gically compared to their counterparts in arithmetic Ramsey theory. To illustrate

this, let R(k, `) be the smallest positive integer n such that if [n] is partitioned into

two classes then one of them has a solution to Equation (1) with x1, . . . , xk not

necessarily distinct, and let R∗(k, `) be the smallest positive integer n such that if

[n] is partitioned into two classes then one of them has a solution to Equation (1)

with x1, . . . , xk distinct. Note that if Maker and Breaker choose numbers in [n],

with n ≥ R(k, `) (respectively, n ≥ R∗(k, `)), until there is no number left to choose,

then the sets of numbers chosen by Maker and Breaker form a partition of [n]. If

Maker does not win the game, then it means that the set of numbers chosen by

Breaker contains a solution to Equation (1). Since Maker goes first, by strategy

stealing, Maker could follow Breaker’s strategy and win the game. Therefore, we

have f(k, `) ≤ R(k, `) and f∗(k, `) ≤ R∗(k, `). When ` ∈ {−1, 1}, some results on

R(k, `) and R∗(k, `) are known.

For ` = 1, Beutelsapacher and Brestovansky [4] proved that R(k, 1) = k2 +k−1.

The exact formula for R∗(k, 1) is not known, but Boza, Revuelta, and Sanz [5]

proved that, for k ≥ 6, R∗(k, 1) ≥ (k3 + 3k2 − 2k)/2. Hence, by Theorems 1 and 2,

we have

lim
k→∞

f(k, 1)

R(k, 1)
= lim

k→∞

f∗(k, 1)

R∗(k, 1)
= 0.

For ` = −1, Myers and Parrish [20] calculated that R(2,−1) = 60, R(3,−1) = 40,

R(4,−1) = 48, and R(5,−1) = 39; and the first author [9] proved that R(k,−1) ≥
k2. So by Theorem 3, we have

lim
k→∞

f(k,−1)

R(k,−1)
= 0. (2)

Unfortunately, we do not know a similar lower bound for R∗(k,−1). However,

we believe that Maker can still do better by selecting numbers strategically.

Conjecture 1. limk→∞ f∗(k,−1)/R∗(k,−1) = 0.

This paper is organized as follows. We first prove some preliminary results in

Section 2. The next four sections are devoted to proving Theorems 1 to 4. In

Section 7, we study Rado games for linear equations with arbitrary coefficients. We

discuss some future research directions in Section 8.

1.1. Asymptotic Notation

We use standard asymptotic notation. For functions f(k) and g(k), f(k) = Ok(g(k))

if there exist constants K and C such that |f(k)| ≤ C|g(k)| for all k ≥ K; f(k) =

Ωk(g(k)) if there exist constants K ′ and c such that |f(k)| ≥ c|g(k)| for all k ≥ K ′;
f(k) = Θk(g(k)) if f(k) = Ok(g(k)) and f(k) = Ωk(g(k)); and f(k) = ok(g(k)) if

limk→∞ f(k)/g(k) = 0.
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We remind the reader that, throughout this paper, we only use asymptotic no-

tation for functions of k where ` is neither a parameter nor a constant.

2. Preliminaries

We prove some results which will be used to prove Theorems 1 to 4. Our first result

shows that the games for equations with radicals can be partially reduced to games

for equation without radicals, i.e., ` = 1 or ` = −1.

Lemma 1. Let k and ` be integers with k ≥ 2 and ` 6= 0. If ` ≥ 1, then

f(k, `) ≤ [f(k, 1)]` and f∗(k, `) ≤ [f(k, 1)]`.

If ` ≤ −1, then

f(k, `) ≤ [f(k,−1)]−` and f∗(k, `) ≤ [f(k,−1)]−`.

Proof. We prove that if ` ≥ 1, then f(k, `) ≤ [f(k, 1)]`. The other inequalities can

be proved similarly.

Write M = f(k, 1) and letM be a Maker’s winning strategy for the G([M ], k, 1)

game. Notice that if (x1, . . . , xk, y) = (a1, . . . , ak, b) is a solution to x1+· · ·+xk = y,

then (x1, . . . , xk, y) = (a`1, . . . , a
`
k, b

`) is a solution to x
1/`
1 + · · ·+ x

1/`
k = y1/`.

For i = 1, 2, . . ., let mi ∈ [M `] be the number chosen by Maker and let bi ∈ [M `]

be the number chosen by Breaker in round i. We define a strategy for Maker

recursively. We note that Maker focuses on the set {1`, 2`, . . . ,M `} in this strategy.

In round 1, ifM tells Maker to choose a1 for the G([M ], k, 1) game, then set m1 =

a`1. If b1 = z`1 for some z1 ∈ [M ], then set b′1 = z1; otherwise, arbitrarily set b′1 equal

to some number in M\{a1}. In round i ≥ 2, given a1, a2, . . . , ai−1, b
′
1, b
′
2, . . . , b

′
i−1,

if M tells Maker to choose ai, then set mi = ai. This is possible because M is

a winning strategy. If bi = z`i for some zi ∈ [M ], then set b′i = zi; otherwise,

arbitrarily set b′i equal to some number in M\{a1, a2, . . . , ai−1, ai, b′1, b′2, . . . , b′i−1}.
Now since M is a winning strategy, there exists t such that {a1, a2, . . . , at} has

a solution to x1 + · · · + xk = y. Hence {m1,m2, . . . ,mt} = {a`1, a`2, . . . , a`t} has

a solution to x
1/`
1 + · · · + x

1/`
k = y1/`. Therefore, Maker wins the G([M `], k, `)

game.

Theorems 1 and 2 indicate that these inequalities in Lemma 1 are actually equal-

ities when ` ≥ 2. This is due to a result of Besicovitch [3]. To state this result, we

first need the following definition.

Definition 1. Let a ∈ N\{1}. We say that a is power-` free if a = b`c, with

b, c ∈ N, implies b = 1.
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Theorem 5 (Besicovitch [3]). For all positive integers ` ≥ 2, the set

A(`) := {a1/` : a ∈ N\{1} and a is power-` free}

is linearly independent over Z. That is, if a1, . . . , am ∈ A(`) and c1, . . . , cm ∈ N
satisfy c1a1 + · · ·+ cmam = 0, then c1 = · · · = cm = 0.

Besicovitch [3] actually provided an elementary proof of a stronger result, but

Theorem 5 is enough for our purposes. For interested readers, we note that Richards

[23] proved a similar result to the one in [3], but using Galois theory instead. A

direct consequence of Theorem 5 is the following result which will be used in proving

Theorems 1 and 2.

Corollary 1. Let k, ` be integers with k ≥ 2 and ` ≥ 1. The solutions to x
1/`
1 +· · ·+

x
1/`
k = y1/` are of the form (x1, . . . , xk, y) = (ca`1, . . . , ca

`
k, cb

`) where a1, . . . , ak, b, c ∈
N, a1 + · · ·+ ak = b, and c is power-` free.

Proof. Suppose that α1, . . . , αk, β ∈ N satisfy

α
1/`
1 + · · ·+ α

1/`
k = β1/`.

We write αi = cia
`
i for all i = 1, ..., k, and β = db` where a1, . . . , ak, c1, . . . , ck, b, d ∈

N and c1, . . . , ck, d are power-` free. Then we have

a1c
1/`
1 + · · ·+ akc

1/`
k − bd1/` = 0. (3)

We first show that c1 = · · · = ck = d. Suppose, for a contradiction, that

c1, . . . , ck, d are not all the same. We split this into two cases.

Case 1: d 6= ci for all i ∈ [k]. After combining terms with the same `-th roots, the

left-hand side of Equation (3) has at least two terms where one of them is −bd1/`.
Now by Theorem 5, b = 0 which is a contradiction.

Case 2: d = ci for some i ∈ [k]. Then there exists j ∈ [k]\{i} such that cj 6= ci.

After combining terms with the same `-th roots, the left-hand side of Equation (3)

has a term with c
1/`
j . This is because all the terms with c

1/`
j contain only positive

coefficients. By Theorem 5, the coefficient of c
1/`
j is zero after combining like terms.

But this is impossible because the coefficient of c
1/`
j is the sum of a subset of

{a1, ..., ak} consisting only positive integers.

Hence we have c1 = · · · = ck = d. Therefore, a1 + · · ·+ ak = b.

We note that Newman [21] proved Corollary 1 for the case k = 2 without using

Theorem 5.

Next, we prove a game theoretic variant of a result by Brown and Rödl [6,

Theorem 2.1]. We note that an equation e(x1, . . . , xk, y) = 0 is homogeneous if
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whenever (x1, . . . , xk, y) = (a1, . . . , ak, b) is a solution to e(x1, . . . , xk, y) = 0, for all

m ∈ N, (x1, . . . , xk, y) = (ma1, . . . ,mak,mb) is a also a solution to e(x1, . . . , xk, y) =

0.

Theorem 6. Let A be a finite subset of N, L the least common multiple of A,

k ∈ N, and e(x1, . . . , xk, y) = 0 a homogeneous equation. If Maker wins the

G(A, e(x1, . . . , xk, y) = 0) game, then Maker wins the G([L], e(1/x1, . . . , 1/xk, 1/y) =

0) game. Similarly, if Maker wins the G∗(A, e(x1, . . . , xk, y) = 0) game, then Maker

wins the G∗([L], e(1/x1, . . . , 1/xk, 1/y) = 0) game.

Proof. Suppose that Maker wins the G(A, e(x1, . . . , xk, y) = 0) game. Let M be

a Maker’s winning strategy. We consider the following Maker’s strategy for the

G([L], e(1/x1, . . . , xk, 1/y) = 0) game. In round 1, if M tells Maker to choose m1

for the G(A, e(x1, . . . , xk, y) = 0) game, then Maker chooses L/m1 ∈ {1, . . . , L}.
The rest of the strategy is defined inductively. For all rounds i, let L/bi be

the number chosen by Breaker and L/mi be the number chosen by Maker where

mi ∈ {1, . . . , L}. If bi ∈ A, then we set b′i = bi; if bi /∈ A, then arbitrar-

ily set b′i equal to some number in A\{m1, . . . ,mi, b
′
1, . . . , b

′
i−1}. For all rounds

i ≥ 2, given {m1, . . . ,mi−1, b
′
1, . . . , b

′
i−1}, if M tells Maker to choose mi for the

G(A, e(x1, . . . , xk, y) = 0) game, then Maker chooses L/mi for the

G([L], e(1/x1, . . . , 1/xk, 1/y) = 0)

game. This process is possible because M is a winning strategy.

SinceM is a winning strategy, in some round t, there exists a subset {a1, . . . , as}
of {m1, . . . ,mt} which form a solution to e(x1, . . . , xk, y) = 0. By homogeneity,

{L/a1, . . . , L/as} form a solution to e(1/x1, . . . , 1/xk, 1/y) = 0. So Maker wins the

G([L], e(1/x1, . . . , 1/xk, 1/y) = 0) game.

The case for the G∗([L], e(1/x1, . . . , 1/xk, 1/y) = 0) game can be proved in a

similar way.

The key feature of Theorem 6 is that one can choose a set A whose least common

multiple L is small. This was not used by Brown and Rödl [6, Theorem 2.1]. For

interested readers, we note that the first author [9] recently improved a quantitative

result by Brown and Rödl [6, Theorem 2.5] with the help of this observation.

Finally, we also need the following definitions.

Definition 2. Givenm ∈ N mutually disjoint subsets {s1, t1}, {s2, t2}, . . . , {sm, tm}
of N with size 2, the pairing strategy over those disjoint subsets for a player is de-

fined as follows: if their opponent chooses si for some i = 1, 2, . . . ,m, then this

player chooses ti.

Definition 3. Let k ≥ 2 be an integer and a1x1 + · · ·+akxk = y a linear equation.

Suppose, at some point of the G∗([n], a1x1 + · · · + akxk = y) game, Maker has
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claimed a set A of at least k integers. Then we call a1α1 + · · ·+ akαk a k-sum for

any k distinct integers α1, . . . , αk ∈ A.

3. Proof of Theorem 1

We first prove Theorem 1 for the case ` = 1.

Lemma 2. For all integers k ≥ 2, we have f(k, 1) = k + 2.

Proof. We first show that Maker wins the G([k+ 2], k, 1) game. Note that this will

be proved in more full generality later in Theorem 8. We consider two cases.

Case 1: k = 2. Maker starts by choosing 2. Since 2 + 2 = 4 and 1 + 1 = 2, Maker

wins the game in the next round by choosing either 1 or 4, whichever is available.

Case 2: k > 2. Maker starts by selecting 1. Notice that

1 + 1 + · · ·+ 1︸ ︷︷ ︸
k

= k · 1 = k,

1 + 1 + · · ·+ 1︸ ︷︷ ︸
k−1

+2 = (k − 1) · 1 + 2 = k + 1,

and

1 + 1 + · · ·+ 1︸ ︷︷ ︸
k−2

+2 + 2 = (k − 2) · 1 + 2 · 2 = k + 2.

If Breaker chooses k in the first round, then Maker chooses 2 in round 2 and wins

the game in round 3 by choosing either k + 1 or k + 2. If Breaker does not choose

k in round 1, then Maker can win the game in round 2 by choosing k.

Now we show that Breaker wins the G([k+ 1], k, 1) game. When ` = 1, the only

possible solutions to Equation (1) in {1, . . . , k + 1} are

(x1, x2, . . . , xk−1, xk, y) = (1, 1, . . . , 1, 1, k)

and

(x1, x2, . . . , xk−1, xk, y) = (1, 1, . . . , 1, 2, k + 1).

If k = 2, then Breaker wins the game by the pairing strategy over {1, 2}. If k ≥ 3,

then Breaker wins the game by the pairing strategy over {1, k} and {2, k + 1}.

We also need a result on the solutions to x
1/`
1 + · · ·+x

1/`
k = y1/` in {1, 2, . . . , (k+

2)` − 1} when k, ` are integers with k ≥ 2 and ` ≥ 1.

Lemma 3. For all integers k ≥ 2 and ` ≥ 1, the only solutions to x
1/`
1 +· · ·+x1/`k =

y1/` in {1, 2, . . . , (k + 2)` − 1} are

(x1, . . . , xk−2, xk−1, xk, y) = (a, . . . , a, a, a, ak`),
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and

(x1, . . . , xk−2, xk−1, xk, y) = (b, . . . , b, b, b2`, b(k + 1)`),

where a, b ∈ {1, 2, . . . , 2` − 1} and are power-` free.

Proof. Let k, ` be integers with k ≥ 2 and ` ≥ 1. By Corollary 1, the only solutions

to x
1/`
1 + · · · + x

1/`
k = y1/` in N are (x1, . . . , xk, y) = (cα`

1, . . . , cα
`
k, cβ

`) where

α1, . . . , αk, β, c ∈ N, α1 + · · ·+ αk = β, and c is power-` free. Restricted to the set

{1, 2, . . . , (k+2)`−1}, we must have cα`
1, . . . , cα

`
k, cβ

` ≤ (k+2)`−1. It follows that

α`
1, . . . , α

`
k ∈ {1`, 2`, . . . , (k+ 1)`} and hence α1, . . . , αk, β ≤ k+ 1. So α1, . . . , αk, β

form a solution to x1 + · · ·+ xk = y in {1, 2, . . . , k+ 1}. Since the only solutions to

x1 + · · ·+ xk = y in {1, 2, . . . , k + 1} are

(x1, . . . , xk−1, xk, y) = (1, . . . , 1, 1, k),

and

(x1, . . . , xk−1, xk, y) = (1, . . . , 1, 2, k + 1),

we have either

(α1, . . . , αk−1, αk, β) = (1, . . . , 1, 1, 1, k)

or

(α1, . . . , αk−1, αk, β) = (1, . . . , 1, 2, k + 1).

Now since cβ` ≤ (k + 2)` − 1, we have

c ≤ (k + 2)` − 1

β`
≤ (k + 2)` − 1

k`
<

(
1 +

2

k

)`

≤ 2`.

Hence c ∈ {1, 2, . . . , 2` − 1}.

Proof of Theorem 1. Let k ≥ 2 and ` ≥ 1 be integers. By Lemmas 1 and 2, we have

f(k, `) ≤ [f(k, 1)]` = (k + 2)`. It remains to show that f(k, `) ≥ (k + 2)`. This is

true for ` = 1 by Lemma 2. So we assume ` ≥ 2. It suffices to show that Breaker

wins the G
(
[(k + 2)` − 1], k, `

)
game.

To do this, we build a winning strategy for Breaker based on Lemma 3. If k = 2,

then Breaker wins the game by the pairing strategy over the sets {a, a2`} where

a ∈ {1, 2, . . . , 2` − 1}. If k ≥ 3, then Breaker wins the game by the pairing strategy

over the sets {a, ak`} and {b2`, b(k + 1)`} where a, b ∈ {1, 2, . . . , 2` − 1}. In these

pairing strategies, if Maker chooses some a or b2` so that ak` > (k + 2)` − 1 or

b(k + 1)` > (k + 2)` − 1, then Breaker arbitrarily chooses an available number in

{1, 2, . . . , (k + 2)` − 1}.
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4. Proof of Theorem 2

We first use the following two lemmas to prove Theorem 2 for ` = 1.

Lemma 4. For all integers k ≥ 2, we have f∗ (k, 1) ≤ k2 + 3.

Proof. It suffices to show that Maker wins the G∗([k2 + 3], k, 1) game. For i =

1, 2, ..., dn/2e, let mi denote the number selected by Maker in round i. For j =

1, 2, . . . , bn/2c, let bj denote the number selected by Breaker in round j.

We first consider the case that k = 2. Then k2 + 3 = 7. Maker starts by

choosing m1 = 1. Then no matter what b1 is, there are three consecutive numbers

in {2, 3, 4, 5, 6, 7} available to Maker, say {a, b, c}. Maker sets m2 = b. Notice that

1 + a = b and 1 + b = c. Since Breaker can only choose one of a and c, Maker wins

in round 3 by setting m3 = a or m3 = c.

Now suppose k = 3. Then k2 + 3 = 12. Maker starts by choosing m1 = 1. We

have 4 cases based on Breaker’s choices.

Case 1: If b1 6= 2, then Maker chooses m2 = 2. Suppose Breaker has selected b2.

Now consider the 3-term arithmetic progressions of difference m1 +m2 = 3:

{3, 6, 9}, {4, 7, 10}, and {5, 8, 11}.

At the start of round 3, Breaker has chosen two numbers and hence one of these

3-term arithmetic progressions is available to Maker. Maker can set m3 equal to the

middle number of the available 3-term arithmetic progression and win the game in

round 4 by choosing either the smallest or the largest number of the same 3-term

arithmetic progression.

Case 2: If b1 = 2, then Maker chooses m2 = 3. Suppose b2 6= 4, 8, 12. Since

{4, 8, 12} is a 3-term arithmetic progression of difference m1 + m2 = 4, Maker can

set m3 = 8 and win the game in round 4 by choosing either 4 or 12.

Case 3: If b1 = 2, then Maker chooses m2 = 3. Suppose b2 = 4 or 8. Then Maker

sets m3 = 5. If b3 6= 9, then Maker sets m4 = 9. Since m1 +m2 +m3 = 1 + 3 + 5 =

9 = m4, Maker wins the game. Suppose b3 = 9. Then Maker sets m4 = 6. Since

m1 +m2 +m4 = 1 + 3 + 6 = 10 and m1 +m3 +m4 = 1 + 5 + 6 = 12, Maker wins

in round 5 by choosing either 10 or 12.

Case 4: If b1 = 2, then Maker chooses m2 = 3. Suppose b2 = 12. Then Maker

sets m3 = 4. If b3 6= 8, then Maker sets m4 = 8. Since m1 +m2 +m3 = 1 + 3 + 4 =

8 = m4, Maker wins the game. Suppose b3 = 8. Then Maker sets m4 = 5. Since

m1 +m2 +m4 = 1 + 3 + 5 = 9 and m1 +m3 +m4 = 1 + 4 + 5 = 10, Maker wins in

round 5 by choosing either 9 or 10.

Finally, we consider that k ≥ 4. First notice that, since k ≥ 4, all the k-sums are
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at least
k∑

i=1

i =
1

2
k2 +

1

2
k > 2k.

To see this, consider the following strategy for Maker: if a k-sum is available to

Maker, then Maker chooses the k-sum and wins the game; otherwise Maker selects

the smallest number available. By this strategy, Maker will choose the smallest

numbers possible for the first k rounds and the smallest k-sum is m1 + · · ·+mk.

Also notice that mi ≤ 2i − 1 for i = 1, ..., k. Indeed, at the start of round i,

Maker and Breaker have together chosen 2(i− 1) = 2i− 2 numbers. Hence, one of

the numbers in {1, 2, . . . , 2i− 1} is still available to Maker. So by Maker’s strategy,

we have mi ≤ 2i− 1.

Since mi ≤ 2i− 1 for i = 1, ..., k, we have

k∑
i=1

mi ≤ 1 + 3 + · · ·+ 2k − 1 = k2 ≤ k2 + 3.

If Breaker did not choose m1 + · · · + mk during the first k rounds, then Maker

chooses m1 + · · ·+mk in round k + 1 and wins the game.

Now suppose that Breaker has selected m1 + · · ·+mk during the first k rounds.

Consider the middle of round k + 1 when Maker has chosen k + 1 numbers but

Breaker has only chosen k numbers where s, 1 ≤ s ≤ k, of them are k-sums. Since

there are 2k+1 numbers in {1, 2, . . . , 2k+1} and Breaker has chosen only k numbers,

we have mk+1 ≤ 2k + 1 by Maker’s strategy. Since m1, . . . ,mk+1 are distinct, the

total number of k-sums is
(
k+1
k

)
= k + 1.

Notice that if Breaker has chosen s k-sums during the first k rounds and one of

them is
∑k

i=1mi, then

mk+1−s+j ≤ 2(k + 1− s+ j)− 1− j = 2(k + 1− s) + j − 1

for j = 1, 2, . . . , s. Indeed, since the k-sums are greater than 2k, if Breaker has

chosen s k-sums, then Breaker has chosen at most k− s numbers in {1, 2, . . . , 2k−
s+1}. By Maker’s strategy, Maker has chosen k+1 numbers in {1, 2, . . . , 2k−s+1}.
If s = 1, then we have mk+1 ≤ 2k. If s > 1, then by Maker’s strategy, we have

mk+1 > mk > · · · > mk+1−s+1. Since mk+1, . . . ,mk+1−s+1 ∈ {1, 2, . . . , 2k− s+ 1},
this is also true.

Now we split it into two cases based on the value of s and what Breaker chooses

in round k + 1.

Case 1: 1 ≤ s ≤ k − 1 or s = k and Breaker does not choose a k-sum in round

k + 1. Then Breaker will have chosen at most k k-sums at the beginning of round

k + 2. Since mi ≤ 2i − 1 for i = 1, ..., k and mk+1−s+j ≤ 2(k + 1 − s) + j − 1 for

j = 1, 2, . . . , s, at the beginning of round k + 2, there exists an unclaimed k-sum
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whose value is at most

k+1−s−2∑
i=1

mi +

k+1∑
i=k+1−s

mi ≤
k+1−s−2∑

i=1

(2i− 1) +

s∑
j=0

[2(k + 1− s) + j − 1]

=(k − s− 1)2 + (s+ 1)2(k + 1− s) +
s(s− 1)

2
− 1

=k2 − 1

2
s2 +

3

2
s+ 2 ≤ k2 + 3.

Hence Maker chooses this k-sum in round k+2 and wins the G∗([k2+3], k, 1) game.

Case 2: s = k and Breaker chooses a k-sum in round k+ 1. In this cases, at the

end of round k + 1, Breaker has chosen all possible k-sums from {m1, . . . ,mk+1}.
Recall that the k-sums are greater than 2k. Since k+ 2 ≤ 2k for k ≥ 2, Breaker did

not choose any number in {1, 2, . . . , k+ 2}. So mi = i for i = 1, 2, . . . , k+ 2. Notice

that the largest k-sum before round k + 2 is

k+1∑
i=2

mi =

k+1∑
i=1

i =
(k + 1)(k + 2)

2
− 1 =

1

2
k2 +

3

2
k.

Setting mk+2 = k + 2, Maker now has two larger k-sums which are untouched

by Breaker:

mk+2 +

k∑
i=2

mi = k + 2 +
k(k + 1)

2
− 1 =

1

2
k2 +

3

2
k + 1

and

mk+1 +mk+2 +

k−1∑
i=2

mi = k + 1 + k + 2 +
(k − 1)k

2
− 1 =

1

2
k2 +

3

2
k + 2.

Since k ≥ 4, we have

k2 + 3 ≥ 1

2
k2 +

3

2
k + 2.

Hence Maker can win the G∗([k2 + 3], k, 1) game in round k + 3.

Lemma 5. For all integers k ≥ 2, we have f∗ (k, 1) ≥ k2 + 3.

Proof. It suffices to show that Breaker wins the G([k2 + 2], k, 1) game. For i =

1, 2, . . . , dn/2e, let mi denote the number selected by Maker in round i. For j =

1, 2, . . . , bn/2c, let bj denote the number selected by Breaker in round j.

We first consider k = 2. Then k2 + 2 = 22 + 2 = 6. If m1 = 1, then Breaker

chooses b1 = 4. Now Breaker wins by the pairing strategy over {2, 3} and {5, 6}. If

m1 6= 1, then Breaker chooses b1 = 1. Now there are only two solutions available

to Maker: 2 + 3 = 5 and 2 + 4 = 6. There are three cases.
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Case 1: m1 = 2. Then Breaker wins by the pairing strategy over {3, 5} and

{4, 6}.

Case 2: m1 6= 1, 2, b1 = 1, m2 = 2. Then Breaker wins by the pairing strategy

over {3, 5} and {4, 6}.

Case 3: m1 6= 1, 2, b1 = 1, m2 6= 2. Then by choosing b2 = 2, Breaker wins

because the smallest numbers now available to Maker are 3 and 4, and 3+4 = 7 > 6.

Now we consider k ≥ 3. Notice that we have k2 − 1 ≥ 2k + 2 when k ≥ 3. We

will prove that Breaker wins with the following strategy:

(1) in each round i ∈ [k − 1], Breaker chooses smallest number available;

(2) and in round k, if there is an unclaimed number in [2k − 2], then Breaker

chooses the unclaimed number; otherwise, Breaker’s strategy depends on the

sum of the numbers in [2k − 2] claimed by Maker, which is denoted by S:

• If S = (k− 1)2 + 3, then Breaker chooses the smallest numbers possible.

• If S = (k − 1)2 + 2, then Breaker plays the pairing strategy over {2k −
1, k2 + 2}.

• If S = (k − 1)2 + 1, then Breaker plays the pairing strategy over {2k −
1, k2 + 1} and {2k, k2 + 2}.

• If S = (k−1)2, then Breaker plays the pairing strategy over {2k−1, k2},
{2k, k2 + 1}, and {2k + 1, k2 + 2}.

Let a1 < a2 < a3 < · · · < as with s ≤ dn/2e be the numbers chosen by Maker

when the game ends. We claim the following hold:

(i) ai ≥ 2i− 1 for i = 1, 2, . . . , k, ak+1 ≥ 2k, and ak+2 ≥ 2k + 1;

(ii) if ak−1 > 2k − 2, then Breaker wins;

(iii) the smallest k-sum possible for Maker is
∑k

i=1 ai ≥
∑k

i=1(2i − 1) = k2 and

hence Maker needs one of k2, k2 + 1, and k2 + 2 to win;

(iv) if a k-sum does not contain all {a1, ..., ak−1}, then Breaker wins.

Here is why (i) holds. Since ai ≥ 1 = 2 · 1 − 1, this is true for i = 1. Now

consider 2 ≤ i ≤ k. By Breaker’s strategy, Breaker can select at least i− 1 numbers

in {1, 2, . . . , 2(i−1)}. So Maker can select at most i−1 numbers in {1, 2, . . . , 2(i−1)}.
Hence ai ≥ 2(i− 1) + 1 = 2i− 1.

To see that (ii) holds, notice that if ak−1 > 2k − 2, then ak−1 ≥ 2k − 1 and

ak ≥ 2k. Hence the smallest k-sum possible for Maker is

k∑
i=1

ai ≥ 2k − 1 + 2k +

k−2∑
i=1

(2i− 1) = 2k − 1 + 2k + (k − 2)2 = k2 + 3 > k2 + 2
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and hence Breaker wins.

The reason (iv) holds is because if a k-sum does not contain all of {a1, . . . , ak−1},
then the k-sum is at least

ak + ak+1 +

k−2∑
i=1

ai ≥ 2k − 1 + 2k + (k − 2)2 = k2 + 3 > k2 + 2.

We first suppose that after Maker has chosen m1, . . . ,mk, there is an unclaimed

number in [2k − 2]. In this case, Breaker sets bk equal to some number in [2k − 2].

Now Breaker has chosen k numbers in [2k−2] which implies that Maker can choose

at most k − 2 numbers in [2k − 2]. Hence ak−1 > 2k − 2. It follows that, Breaker

wins.

Now assume that all the numbers in [2k−2] are claimed in the middle of round k

when Breaker has chosen k numbers and Breaker has chosen k−1 numbers. In this

case, we must have a1, . . . , ak−1 ∈ [2k − 2] and hence
∑k−1

i=1 ai = S. We consider

the solutions to x1 + · · ·+ xk = y, where x1, . . . , xk are distinct, such that Breaker

has not occupied any number in them. Recall that if a k-sum does not contain all

numbers in {a1, . . . , ak−1}, then Breaker wins. So we have the following cases.

Case 1: If S =
∑k−1

i=1 ai = (k−1)2, then there are three solutions to x1+· · ·+xk =

y, where x1, . . . , xk are distinct, such that Breaker has not occupied any number in

them: {a1, . . . , ak−1, 2k − 1, k2}, {a1, . . . , ak−1, 2k, k2 + 1}, and {a1, . . . , ak−1, 2k +

1, k2 + 2}. This is because if S =
∑k−1

i=1 ai = (k − 1)2, then

ak +

k−1∑
i=1

ai ≥ 2k − 1 + (k − 1)2 = k2,

ak+1 +

k−1∑
i=1

ai ≥ 2k + (k − 1)2 = k2 + 1,

ak+2 +

k−1∑
i=1

ai ≥ 2k + 1 + (k − 1)2 = k2 + 2,

and

as +

k−1∑
i=1

ai ≥ 2k + 1 + 1 + (k − 1)2 = k2 + 3 > k2 + 2

for s ≥ k + 3.

Case 2: If S =
∑k−1

i=1 ai = (k − 1)2 + 1, then there are two solutions to x1 +

· · ·+ xk = y, where x1, . . . , xk are distinct, such that Breaker has not occupied any

number in them: {a1, . . . , ak−1, k2 + 1} and {a1, . . . , ak−1, ak+1, k
2 + 2}. This is

because if S =
∑k−1

i=1 ai = (k − 1)2 + 1, then

ak +

k−1∑
i=1

ai ≥ 2k − 1 + (k − 1)2 + 1 = k2 + 1,
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ak+1 +

k−1∑
i=1

ai ≥ 2k + (k − 1)2 + 1 = k2 + 2,

and

as +

k−1∑
i=1

ai ≥ 2k + 1 + (k − 1)2 + 1 = k2 + 3 > k2 + 2

for s ≥ k + 2.

Case 3: If S =
∑k−1

i=1 ai = (k − 1)2 + 2, then there is only one solution to x1 +

· · ·+ xk = y, where x1, . . . , xk are distinct, such that Breaker has not occupied any

number in them: {a1, . . . , ak, k2 +2}. This is because if S =
∑k−1

i=1 ai = (k−1)2 +2,

then

ak +

k−1∑
i=1

ai ≥ 2k − 1 + (k − 1)2 + 2 = k2 + 2,

and

as +

k−1∑
i=1

ai ≥ 2k + (k − 1)2 + 2 = k2 + 3 > k2 + 2

for s ≥ k + 1.

In Case 1, Breaker uses the pairing strategy over {2k − 1, k2}, {2k, k2 + 1}, and

{2k + 1, k2 + 2}. Since these sets are pairwise disjoint, Breaker wins. Similarly, in

Case 2, Breaker uses the pairing strategy over {2k−1, k2 +1} and {2k, k2 +2}; and

in Case 3, Breaker uses the pairing strategy over {2k − 1, k2 + 2}.

Proof of Theorem 2. Let k, ` be integers with k ≥ 2 and ` ≥ 1. By Lemmas 1,

4 and 5, we have f∗(k, `) ≤ [f∗(k, 1)]` = (k2 + 3)`. It remains to show that

f∗(k, `) ≥ (k2 + 3)` for all ` ≥ 2. To do this, it suffices to show that Breaker wins

the G([(k2 + 3)` − 1], k, `) game. For all c ∈ {1, 2, . . . , 2` − 1}, let

A(c) = {c · 1`, c · 2`, . . . , c · (k2 + 2)`} ∩ {1, 2, . . . , (k2 + 3)` − 1}.

Notice that if c, c′ ∈ {1, 2, . . . , 2` − 1} with c 6= c′, then A(c) ∩ A(c′) = ∅. By

Corollary 1, every solution to x
1/`
1 + · · · + x

1/`
k = y1/`, with x1, . . . , xk distinct, in

{1, 2, . . . , (k2 + 3)` − 1} belongs to A(c) for some c ∈ {1, 2, . . . , 2`−1}.
Let B be a Breaker’s winning strategy for the G∗([k2 + 2], k, 1) game. We define

a Breaker’s strategy for the G([(k2 + 3)` − 1], k, `) game recursively. For rounds

i = 1, 2, . . ., let mi be the number chosen by Maker and let bi be the number chosen

by Breaker. Let m1 = c1a
`
1 where c1 is power-` free. If B tells Breaker to choose

α1 for the G∗([k2 + 2], k, 1) game given that Maker has selected a1, then Breaker

sets b1 = c1α
`
1. Consider round i ≥ 2. Suppose Maker has chosen m1 = c1a

`
1,m2 =

c2a
`
2, . . . ,mi = cia

`
i and Breaker has selected b1 = c1α

`
1, b2 = c2α

`
2, . . . , bi−1 =

ci−1α
`
i−1. Let cj1 , cj2 , . . . , cjs ∈ {1, . . . , i− 1} be all the indices such that

cj1 = cj2 = · · · = cjs = ci.
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If B tells Breaker to choose αi for the G∗([k2 + 2], k, 1) game given that Maker

has has selected aj1 , aj2 , . . . , ajs , ai and Breaker has selected bj1 , bj2 , . . . , bjs , then

Breaker sets bi = ciα
`
i .

Since B is a winning strategy for Breaker, Breaker can stop Maker from complet-

ing a solution set from each A(c) and hence wins the game.

5. Proof of Theorem 3

The following observation will be use in proving Theorem 3.

Lemma 6. Let k, ` be integers with k ≥ 2 and ` ≤ −1. If n < 2k−` and Maker

does not choose 1 in the first round, then Breakers wins the G([n], k, `) game.

Proof. Suppose n < 2k−` and Maker does not choose 1 in the first round. We show

that Breaker wins the G([n], k, `) game by choosing 1 in the first round. Suppose, for

a contradiction, that Maker wins. Let (x1, . . . , xk, y) = (a1, . . . , ak, b) be a solution

to Equation (1) in {1, 2, . . . , n} completed by Maker. Then since ai ≤ n < 2k−` for

all i = 1, . . . , k, we have

b1/` = a
1/`
1 + · · ·+ a

1/`
k > k(2k−`)1/` = 21/`.

So b < 2 which is impossible.

Proof of Theorem 3. We first prove that, if k ≥ 1/(2−1/` − 1), then f(k, `) ≥ (k +

1)−`. To do this, it suffices to show that that Breaker wins the G([(k+1)−`−1], k, `)

game. By straightforward calculation, we have

(k + 1)−` − 1 < 2k−`.

Hence, by Lemma 6, we can assume that Maker chooses 1 in the first round and

b = 1. Now we show that the only solution to x
1/`
1 + · · ·+x

1/`
k = 1 in {1, 2, . . . , (k+

1)−`−1} is (x1, . . . , xk) = (k−`, . . . , k−`). This would imply that Breaker can choose

k−` in the first round and win the game. Let a1, . . . , ak ∈ {1, 2, . . . , (k + 1)−` − 1}
with

a
1/`
1 + · · ·+ a

1/`
k = 1,

and a1 ≤ · · · ≤ ak. Since the sum a rational number and an irrational number

is irrational, a
1/`
1 , . . . , a

1/`
k are rational numbers. Since a1, . . . , ak ∈ {1, 2, . . . , (k +

1)−` − 1}, we have a1, . . . , ak ∈ {1, 2−`, . . . , k−`}. If ai < k−` for some i ∈ [k], then

1 = a
1/`
1 + · · ·+ a

1/`
k > k(k−`)1/` = 1

which is impossible. Hence the only solution to x
1/`
1 +· · ·+x1/`k = 1 in {1, 2, . . . , (k+

1)−`−1} is (x1, . . . , xk) = (k−`, . . . , k−`) and Breaker wins the G([(k+1)−`−1], k, `)

game.
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Now we prove that if k ≥ 4, then f(k, `) ≤ (k + 2)−`. By Lemma 1, f(k, `) ≤
[f(k,−1)]−`. Hence, it suffices to show that for all k ≥ 4, f(k,−1) ≤ k + 2. We

split it into two cases.

Case 1: k + 1 6= p or p2 for any prime p. We will prove that f(k,−1) ≤ k + 1.

To do this, we will prove that Maker wins the G([k + 1], k,−1) game. In this case,

we have k + 1 = rs for some integers r > 1 and s > 1 with r 6= s. Then we have

(r − 1)s 6= r(s − 1), (r − 1)s < k < k + 1 and r(s − 1) < k < k + 1. Consider the

following solutions in {1, 2, . . . , k + 1}:

(x1, x2, . . . , xk−1, xk, y) = (k, k, . . . , k, k, 1),

(x1, . . . , x(r−1)s, x(r−1)s+1, . . . , xk, y) = (rs, . . . , rs, r(s− 1), . . . , r(s− 1), 1),

and

(x1, . . . , xr(s−1), xr(s−1)+1, . . . , xk, y) = (rs, . . . , rs, (r − 1)s, . . . , (r − 1)s, 1).

Based on these solutions, Maker wins the G([k+ 1], k,−1) game using the following

strategy: Maker chooses 1 in the first round; if Breaker does not choose k in the

first round, then Maker chooses k in the second round to win the game; otherwise,

Maker will choose k + 1 = rs in the second round and win the game by choosing

either r(s− 1) or (r − 1)s in the third round.

Case 2: k+ 1 = p or p2 for some prime p ≥ 5. We will show that Maker wins the

G([k + 2], k,−1) game.

Since k + 1 ≥ 5 is odd, k is even and k ≥ 4. Hence (k + 2)/2 6= k. Consider the

following solutions in {1, 2, . . . , k + 2}:

(x1, x2, . . . , xk−1, xk, y) = (k, k, . . . , k, k, 1),

(x1, . . . , x(k−2)/2, x(k−2)/2+1, . . . , xk, y) = (k − 2, . . . , k − 2, k + 2, . . . , k + 2, 1),

and

(x1, x2, x3, . . . , xk, y) = ((k + 2)/2, (k + 2)/2, k + 2, . . . , k + 2, 1).

Based on these solutions, Maker wins the G([k + 2], k,−1) game by the following

strategy: Maker chooses 1 in the first round; if Breaker does not choose k in the

first round, then Maker chooses k in the second round to win the game; otherwise,

Maker will choose k + 2 in the second round and win the game by choosing either

(k + 2)/2 or k − 2 in the third round.

5.1. Remarks

In the proof of Theorem 3, we showed that if k+ 1 = p or p2 for some prime p ≥ 5,

then f(k,−1) ≤ k + 2. This inequality becomes equality when k + 1 = p for some

odd prime p.
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Theorem 7. If k + 1 = p for some odd prime p, then f(k,−1) = k + 2.

Proof. Suppose k + 1 = p for some odd prime. By Theorem 3, we have f(k,−1) ≤
k+ 2. It remains to show that f(k,−1) ≥ k+ 2. To do this, it suffices to show that

Breaker wins the G([k + 1], k,−1) game. We consider two cases.

Case 1: k+ 1 = 3. The only solution to 1/x1 + · · ·+ 1/xk = 1/y in {1, 2, 3} with

x1, . . . , xk not necessarily distinct is (x1, x2, y) = (2, 2, 1). Hence Breaker can win

by choosing either 1 or 2 in the first round.

Case 2: k + 1 ≥ 5. By Lemma 6, if Maker does not choose 1 in the first round,

then Breaker wins. So we assume that Maker chooses 1 in the first round. Now

we show that Breaker wins by choosing k in the first round. It suffices to show

that {1, 2, . . . , k − 1, k + 1} does not have a solution to 1/x1 + · · · + 1/xk = 1/1

where x1, . . ., xk are not necessarily distinct. Suppose (x1, x2, . . . , xk−1, xk) =

(a1, a2, . . . , ak−1, ak) is a solution in {1, 2, . . . , k−1, k+1}. We show that ak = k+1.

Suppose not. Then ai < k for all i = 1, 2, . . . , k. So

1

a1
+ · · ·+ 1

ak
>

1

k
+ · · ·+ 1

k
=

1

1

which is a contradiction. Hence ak = k + 1. Now we have

1 =
r

k + 1
+

k−r∑
i=1

1

ai

where r ∈ {1, 2, . . . , k − 1} and ai < k for all i = 1, . . . , k − r. Rearranging the

equation, we get
k−r∑
i=1

1

ai
=
p− r
p

.

Since p is prime, p divides the least common multiple of a1, . . . , ak−r. Since p is

prime, p divides ai for some i which is a contradiction because ai < p for all i.

Hence Breaker wins the game.

We are unable to verify that f(k,−1) = k + 2 when k + 1 = p2 for some odd

prime p. However, we believe this should be the case.

Conjecture 2. If k + 1 = p2 for some odd prime p, then f(k,−1) = k + 2.

6. Proof of Theorem 4

To prove Theorem 4, we need the following result.
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Lemma 7. Let k ≥ 4 be an integer and let A = {1, . . . , 2k+1}∪{k2−k+1, . . . , k2+

2k}. Then Maker wins the G∗(A, x1 + · · ·+ xk = y) game.

Proof. Let k ≥ 4. For i = 1, . . . , k + 3, let mi be the number selected by Maker in

round i and let bi be the number selected by Breaker in round i.

Consider the following strategy for Maker:

(1) Set m1 = 1 and M1 = {{2, 3}, {4, 5}, . . . , {2k, 2k + 1}}.

(2) For i = 2, . . . , k + 1, if bi−1 ∈ B for some B ∈ Mi−1, then set mi ∈
B\{bi−1} and Mi = Mi−1\{B}; if bi−1 /∈ B for any B ∈ Mi−1, then set

mi = minS∈Mi−1
minS, Mi = Mi−1\S′ where mi ∈ S′.

(3) In round k + 2, if there exists a subset {a1, . . . , ak} ⊆ {m1, . . . ,mk+1} of size

k such that a1 + · · ·+ ak ∈ {k2 − k + 1, . . . , k2 + 2k}\{b1, . . . , bk+1}, then set

mk+2 = a1 + · · · + ak. Otherwise, set mk+2 = 2k + 1, and then, in round

k+ 3, set mk+3 = a1 + · · ·+ ak where {a1, . . . , ak} ⊆ {m1, . . . ,mk+2} has size

k with a1 + · · ·+ ak ∈ {k2 − k + 1, . . . , k2 + 2k}\{b1, . . . , bk+2}.

In Step (3), Maker wins for the first case. So it remains to show that if no subset

{a1, . . . , ak} ⊆ {m1, . . . ,mk+1} of size k satisfies a1+ · · ·+ak ∈ {k2−k+1, . . . , k2+

2k}\{b1, . . . , bk+1}, then Maker can set mk+2 = 2k + 1 in round k + 2 and there

exists a subset {a1, ..., ak} ⊆ {m1, . . . ,mk+2} of size k such that a1 + · · · + ak ∈
{k2 − k + 1, . . . , k2 + 2k}\{b1, . . . , bk+2}.

Suppose, at the beginning of round k+2, no subset {a1, . . . , ak} ⊆ {m1, . . . ,mk+1}
of size k satisfies a1 + · · ·+ak ∈ {k2−k+ 1, . . . , k2 + 2k}\{b1, . . . , bk+1}. First note

that by Maker’s strategy, for all i = 2, . . . , k + 1, mi = 2(i− 1) or 2(i− 1) + 1. So

for all subsets {a1, . . . , ak} ⊆ {m1, . . . ,mk+1} of size k, we have

a1 + · · ·+ ak ≥ 1 + 2 + 4 + · · ·+ 2(k − 1) = k2 − k + 1

and

a1 + · · ·+ ak ≤ 3 + 5 + · · ·+ 2k + 1 = (k + 1)2 − 1 = k2 + 2k.

So if no subset {a1, . . . , ak} ⊆ {m1, . . . ,mk+1} of size k satisfies a1 + · · · + ak ∈
{k2 − k + 1, . . . , k2 + 2k}\{b1, . . . , bk+1}, then b1, . . . , bk+1 /∈ {1, . . . , 2k + 1}. Now

according to Maker’s strategy, we have, m1 = 1, and mi = 2(i − 1) for all i =

2, . . . , k+ 1. This implies that at the beginning of round k+ 2, 2k+ 1 is available to

Maker and hence Maker can set mk+2 = 2k + 1. At the same time, for all subsets

{a1, . . . , ak} ⊆ {m1, . . . ,mk+1} of size k, we have a1 + · · ·+ ak ≤ 2 + 4 + · · ·+ 2k =

k2 +k and hence b1, . . . , bk+1 ≤ k2 +k. By setting mk+2 = 2k+1, there are at least

two subsets of {m1, . . . ,mk+2} of size k whose sum is greater than k2 + k. They

are {2, 4, . . . , 2(k − 1), 2k + 1} and {2, 4, . . . , 2(k − 2), 2k, 2k + 1}. The first subset

sums to k2 + k + 1 < k2 + 2k and the second one sums to k2 + k + 3 < k2 + 2k.
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Since Breaker can only occupy one of them in round k + 2, there exists a subset

{a1, . . . , ak} ⊆ {m1, ...,mk+2} of size k such that a1+ · · ·+ak ∈ {k2−k+1, . . . , k2+

2k}\{b1, . . . , bk+2}. This proves that Maker wins the G∗(A, x1 + · · · + xk = y)

game.

Proof of Theorem 4. By Lemma 1, we have f∗(k, `) ≤ [f∗(k,−1)]−`. It remains to

show that f∗(k,−1) = exp(Ok(k log k)). By Theorem 6, it suffices to find a finite

set A ⊆ N such that Maker wins the G∗(A, x1 + · · · + xk = y) game and the least

common multiple of A is small.

Let k ≥ 4 be an integer and let A := {1, . . . , 2k + 1} ∪ {k2 − k + 1, . . . , k2 + 2k}.
By Theorem 6 and Lemma 7, we have

f∗(k,−1) ≤lcm{n : n ∈ A}
≤lcm{1, ..., 2k + 1}lcm{k2 − k + 1, ..., k2 + 2k}
≤lcm{1, ..., 2k + 1}(k2 + 2k)3k

=e(2+ok(1))ke3k log(k2+2k).

Hence we have f∗(k,−1) = exp(Ok(k log k)).

6.1. Remarks

By exhaustive search, we are able to find the exact value of f∗(k,−1) for k = 2.

Proposition 1. We have f∗(2,−1) = 36.

Proof. We first show that Maker wins the G∗([36], 2,−1) game. Consider the fol-

lowing solutions to 1/x1 + 1/x2 = 1/y in {1, 2, . . . , 36} with x1 6= x2: (x1, x2, y) =

(4, 12, 3), (6, 12, 4), (12, 36, 9), and (18, 36, 12).

3 6 9 18

4 36

12

Figure 1: Rooted Binary Tree for Solutions to 1/x1 + 1/x2 = 1/y

In Figure 1, we constructed a rooted binary tree based on these solutions. Each

path from the root 12 to a leaf is a solution set to 1/x1 + 1/x2 = 1/y. It is easy to

see that Maker can win this game by doing the following:

(1) Maker selects the root in round 1.
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(2) In round 2, Maker selects a vertex that is adjacent to the root such that both

of its children are untouched by Breaker.

(3) In round 3, Maker chooses a child of the vertex that Maker selected in round

2.

Now we show that Breaker wins the G∗([35], 2,−1) game. By standard calcu-

lation, one can check that there are 13 solutions to 1/x1 + 1/x2 = 1/y in [35]:

{2, 3, 6}, {3, 4, 12}, {4, 6, 12}, {4, 5, 20}, {5, 6, 30}, {6, 8, 24}, {6, 9, 18}, {6, 10, 15},
{8, 12, 24}, {10, 14, 35}, {10, 15, 30}, {12, 20, 30}, and {12, 21, 28}. Breaker wins

the game using the pairing strategy over {4, 12}, {8, 24}, {10, 15}, {2, 3}, {5, 20},
{6, 30}, {9, 18}, {14, 35}, {20, 30}, and {21, 28}.

For general k, Theorem 4 only provides an upper bound for f∗(k,−1). It is

trivially true that f∗(k,−1) ≥ 2k+ 1 because Maker needs to occupy at least k+ 1

numbers to win. However, we do not have a nontrivial lower bound.

Problem 1. Find a nontrivial lower bound for f∗ (k,−1).

7. Equations with Arbitrary Coefficients

In this section, we briefly discuss the Maker-Breaker Rado games for the equation

a1x1 + · · ·+ akxk = y, (4)

where k, a1, . . . , ak are positive integers with k ≥ 2 and a1 ≥ a2 ≥ · · · ≥ ak. Write

w := a1 + · · ·+ ak, and w∗ :=
∑k

i=1(2i− 1)ai. Let f(a1, . . . , ak; y) be the smallest

positive integer n such that Maker wins the G([n], a1x1 + · · · + akxk = y) game

and let f∗(a1, . . . , ak; y) be the smallest positive integer n such that Maker wins the

G∗([n], a1x1 + · · ·+ akxk = y) game.

Hopkins and Schaal [16], and Guo and Sun [11], proved that if {1, 2, . . . , akw2 +

w − ak} is partitioned into two classes, then one of them contains a solution to

Equation (4) with x1, . . . , xk not necessarily distinct; and there exists a partition of

{1, 2, . . . , akw2+w−ak−1} into two classes such that neither contains a solution to

Equation (4) with x1, . . . , xk not necessarily distinct. By these results and strategy

stealing, we have f(a1, . . . , ak; y) ≤ akw2 +w− ak. The strategy stealing argument

here is similar to the one in Section 1 where we explained that f(k, `) ≤ R(k, `) and

f∗(k, `) ≤ R∗(k, `). The next theorem shows that, in fact, f(a1, . . . , ak; y) is much

smaller than akw
2 + w − ak.

Theorem 8. For all integers k ≥ 2, we have w + 2ak ≤ f(a1, . . . , ak; y) ≤ w +

ak−1 + ak.
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Proof. The case that k = 2 and a1 = a2 = 1 is a special case of Lemma 2. So we

assume that k > 2 or k = 2 but a1 ≥ 2. Then w > 2.

We first show that Maker wins the G([w + ak−1 + ak], a1x1 + · · · + akxk = y)

game. Maker chooses 1 in round 1. If Breaker does not choose w in round 1, then

Maker wins in round 2 by choosing w. If Breaker chooses w in round 1, then Maker

chooses 2 in round 2 and either w+ak or w+ak−1 +ak in round 3 to win the game.

Now we show that Breaker wins the G([w+2ak−1], a1x1+ · · ·+akxk = y) game.

The only solutions to Equation (4) in {1, 2, . . . , w + 2ak − 1} are

(x1, x2, . . . , xk−1, xk, y) = (1, 1, . . . , 1, 1, w)

and

(x1, x2, . . . , xk−1, xk, y) = (1, 1, . . . , 1, 2, w + ak).

Now Breaker wins by the pairing strategy over {1, w} and {2, w + ak}. Note that

if ai = ak for some i ∈ {1, 2, . . . , k − 1}, then (x1, . . . , xi−1, xi, xi+1, . . . , xk, y) =

(1, . . . , 1, 2, 1, . . . , 1, w + a1) is also a solution, but Breaker can still win the game

by the pairing strategy becuase w + ai = w + ak.

The next theorem provides lower and upper bounds for f∗(a1, . . . , ak; y).

Theorem 9. For all integers k ≥ 4, we have

w∗ ≤ f∗(a1, . . . , ak; y) ≤ w∗ + (2k − 2)(a1 − ak) + (k + 3)ak−2.

Proof. Let k ≥ 4 be an integer and write W = w∗+ (2k−2)(a1−ak) + (k+ 3)ak−2.

We first show that Breaker wins the G∗([w∗ − 1], a1x1 + · · · + akxk = y) game by

choosing the smallest number available each round. Suppose, for a contradiction,

that Maker wins. Let α1 ≤ α2 ≤ · · · ≤ αs, where s ≥ k+ 1, be the numbers chosen

by Maker after winning the game. Then by Breaker’s strategy, we have αi ≥ 2i− 1

for all i = 1, 2, . . . , k. By the rearrangement inequality [13], the smallest k-sum is

k∑
i=1

aiαi ≥
k∑

i=1

(2i− 1)ai = w∗

which is a contradiction.

Now we show that Maker wins the G∗([W ], a1x1 + · · · + akxk = y) game. We

split it into two cases.

Case 1: α1 = αk = c for some c. Since the coefficients of x1, . . . , xk are the

same, Maker’s strategy defined in the proof of Lemma 4 still applies by multiplying

the k-sums in the proof of Lemma 4 by c. So Maker wins the G∗([ck2 + 3c], a1x1 +

· · ·+ akxk = y) game. Since

W = w∗ + (2k − 2)(a1 − ak) + (k + 3)ak−2 = ck2 + ck + 3c > ck2 + 3c,
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Maker wins the G∗([W ], a1x1 + · · ·+ akxk = y) game.

Case 2: a1 > ak. We will show that Maker wins the game with the following

strategy:

(1) Maker chooses the smallest number available each round for the first k + 1

rounds;

(2) and then chooses an available k-sum in round k + 2.

For i = 1, 2, . . . , k + 1, let mi be the number chosen by Maker in round i. Then

by Maker’s strategy, we have i ≤ mi ≤ 2i− 1 for all i = 1, 2, . . . , k + 1.

Since a1 > ak, there exists t ∈ {2, 3, . . . , k} such that αt < αt−1. For i =

1, . . . , k+1, let mi be the number chosen by Maker in round i. By the rearrangement

inequality, we have the following k distinct k-sums involving only m1, . . . ,mk:

(atmt+j + at+jmt)− (atmt + at+jmt+j) +

k∑
i=1

aimi, where j = 0, 1, . . . , k − t

and

(at−j′mk + akmt−j′)− (at−j′mt−j′ + akmk) +

k∑
i=1

aimi, where j′ = 1, 2, . . . , t− 1.

Among these distinct k-sums, the smallest is
∑k

i=1 aimi and the largest is

(a1mk + akm1)− (a1m1 + akmk) +

k∑
i=1

aimi = a1mk +

(
k−1∑
i=2

aimi

)
+ akm1. (5)

Since k ≥ 4, there are two terms of the form aimi, i ∈ {2, . . . , k − 1}, in the

middle of the right hand side of Equation (5). Replacing mk−1 with mk+1 and

replacing mk−2 with mk+1, we get two larger and distinct k-sums:

a1mk +

(
k−2∑
i=2

aimi

)
+ ak−1mk+1 + akm1

and

a1mk +

(
k−3∑
i=2

aimi

)
+ ak−2mk+1 + ak−1mk−1 + akm1.
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The largest of these k-sums is

a1mk +

(
k−3∑
i=2

aimi

)
+ ak−2mk+1 + ak−1mk−1 + akm1

=a1mk + +ak−2mk+1 + akm1 − a1m1 − ak−2mk−2 − akmk +

k∑
i=1

aimi

=(mk −m1)(a1 − ak) + ak−2(mk+1 −mk−2) +

k∑
i=1

aimi

≤w∗ + [(2k − 1)− 1](a1 − ak) + [2k + 1− (k − 2)]ak−2

=w∗ + (2k − 2)(a1 − ak) + (k + 3)ak−2 = W.

So there exists a k-sum unoccupied by Breaker in the beginning of round k + 2

and hence Maker wins the G∗([W ], a1x1 + · · · + akxk = y) game by choosing the

available k-sum in round k + 2.

The bounds in Theorem 9 can be optimized using the technique in the proofs of

Lemmas 4 and 5, but we do not attempt it here.

8. Concluding Remarks

It would be interesting to study Rado games for other well-studied equations in

arithmetic Ramsey theory. One direction is to study Rado games for

a1x
1/`
1 + · · ·+ akx

1/`
k = y1/`, (6)

where `, k, a1, . . . , ak are positive integers with k ≥ 2 and ` 6= 0. We studied the

G([n], a1x1 + · · ·+akxk = y) and G∗([n], a1x1 + · · ·+akxk = y) games in Section 7,

but how the fractional power 1/` interacts with the coefficients a1, . . . , ak is yet

unknown.

Problem 2. What is the smallest integer n such that Maker wins theG([n], a1x
1/`
1 +

· · · + akx
1/`
k = y1/`) game for ` ∈ Z\{−1, 0, 1}? And what is the smallest integer

n such that Maker wins the G∗([n], a1x
1/`
1 + · · · + akx

1/`
k = y1/`) game for ` ∈

Z\{−1, 0, 1}?

Another direction is to study Rado games for the equation

x`1 + · · ·+ x`k = y`, (7)

where ` ∈ Z\{−1, 0, 1} and k ∈ N\{1}. In 2016, Heule, Kullmann, and Marek

[15] verified that if {1, 2, . . . , 7825} is partitioned into two classes, then one of them
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contains a solution to Equation (7) with k = ` = 2 and that there exists a partition

of {1, 2, . . . , 7824} into two classes so that neither contains a solution to Equation (7)

with k = ` = 2. It is easy to see that if a1, a2, b ∈ N with a21 +a22 = b2, then a1 6= a2.

So the result of Heule, Kullmann, and Marek implies that Maker wins both the

G([7825], x21 + x22 = y2) game and the G∗([7825], x21 + x22 = y2) game. It would be

interesting to see if Maker can do better.

Problem 3. Does there exist n < 7825 such that Maker wins the G∗([n], x21 +x22 =

y2) game?

The situation for Maker is more complicated when ` ≥ 3. By Fermat’s last

theorem [25], for all n, ` ∈ N with ` ≥ 3, Breaker wins both the G([n], x`1 +x`2 = y`)

game and the G∗([n], x`1 + x`2 = y`) for ` ≥ 3. By homogeneity, Breaker also wins

the G([n], x`1 + x`2 = y`) game and the G∗([n], x`1 + x`2 = y`) game for all n ∈ N
and ` ≤ −3. Hence, in order to study Rado games for Equation (7), one needs

extra conditions on k and ` to make sure there are solutions to Equation (7) in

N. Recently, Chow, Lindqvist, and Prendiville [8] proved that, for all ` ∈ N, there

exists k0 ∈ N such that for all k ≥ k0, if we partition of N into two classes, then one

of them contains a solution to Equation (7) with x1, . . . , xk not necessarily distinct.

By the result of Brown and Rödl [6] described in Section 1, the same result holds

for ` ∈ {−1,−2, . . .} as well. For example, if |`| = 2, then k = 4 suffices; and if

|`| = 3, then k = 7 is enough.
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