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Abstract

The primary objective of this paper is to find suitable binary operations on the set of
Pythagorean triples, obtaining two commutative infinite groups, one with elements
in Q and the other with elements in Z. Additionally, we aim to get a commutative
infinite monoid with elements in N or in Z. In particular, on the set of primitive
Pythagorean triples, we establish a commutative infinite group with elements in Z.

1. Introduction

Let x, y, and z be positive integers satisfying

x2 + y2 = z2.

Such a triple (x, y, z) is called a Pythagorean triple. In particular, if x, y, and z are

coprime, the triple is termed a primitive Pythagorean triple, while if x, y, z ∈ Q,

then it is described as a rational Pythagorean triple.

The main aim of this paper is to find some suitable binary operations on the

set of Pythagorean triples to obtain some commutative infinite groups having el-

ements in Q or in Z. Moreover, we get a commutative infinite monoid having

elements in N or in Z. To achieve this, it is necessary to initially establish relations

among Pythagorean triples. Let us review previous results concerning some rela-

tions among Pythagorean triples that have already been established. The primary

tool utilized in those works was the fundamental characterization of Pythagorean

triples through a cathetus. This reads as follows.

Theorem 1 ([1]). The triple (x, y, z) is a Pythagorean triple if and only if there

exists d ∈ C(x) such that

x = x, y =
x2

2d
− d

2
, z =

x2

2d
+

d

2
(1)
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with x positive integer, and where

C(x) =

 D(x), if x is odd,

D(x) ∩ P (x), if x is even,

with

D(x) = {d ∈ N : d ≤ x with d divisor of x2},

and if x is even with x = 2nk, n ∈ N and k ≥ 1 odd fixed, with

P (x) = {d ∈ N : d = 2sl with l divisor of x2 and s ∈ {1, 2, ..., n− 1}}.

In Theorem 1 x is a predetermined integer, which means finding all right triangles

whose sides have integer measures and one cathetus is predetermined. Moreover in

[4], an analytic result was found that characterizes primitive Pythagorean triples

through a cathetus. This method, which differs from Euler’s formulas, offers the

advantage of easily identifying all primitive Pythagorean triples x, y, z ∈ N, where

x is a predetermined integer.

In [2], relations were established between the primitive Pythagorean triple (x, y, z)

generated by any predetermined positive odd integer x using formulas (1) and the

primitive Pythagorean triple generated by xm with m ∈ N and m ≥ 2. In the same

study, relations were found for the specific case in which the primitive triple (x, y, z)

is generated by d ∈ C(x) for d = 1 and the primitive triple (xm, y′, z′) is generated

by dm ∈ C(xm) for dm = 1. Consequently. formulas were obtained that give y′ and

z′ directly from x, y, z.

Subsequently, additional relations among Pythagorean triples were established

in [3]. The primary tool that serves as the foundation of our analysis is Theorem 1

in [1], enabling the determination of relationships between two Pythagorean triples

with assigned catheti a and b, and the Pythagorean triple with cathetus a · b. To

summarize, the above statements can be encapsulated as follows.

Theorem 2 ([1],[3]). Let (a, a1, a2), (b, b1, b2), and (a · b, y, z) be the Pythagorean

triples generated by a, b, and a · b, respectively, using (1) with a2 − a1 = d1 ∈
C(a), b2 − b1 = d2 ∈ C(b), and z − y = d3 ∈ C(a · b). Then

y = a1b2 + a2b1, z = a1b2 + a2b1 + d1d2 (2)

and moreover,

y = a1b1 + a2b2 − d1d2, z = a1b1 + a2b2 (3)

with d3 = d1 · d2 ∈ C(a · b).
In Section 2 we will prove the existence of some suitable binary operations on

the set of Pythagorean triples. The goal is to establish some commutative infinite

groups having elements in Q or in Z, and a commutative infinite monoid having

elements in N or in Z.



INTEGERS: 24 (2024) 3

2. Results

We consider the set

G = {(a, b) : a, b ∈ Z with |a| and |b| coprime}

and for all (a,b), (c,d), and (e,f) in G, we define the set

E =

{(
a

b
,
c

d
,
e

f

)
with

a

b
,
c

d
,
e

f
∈ Q and a, b, d, f 6= 0 such that(

a

b

)2

+

(
c

d

)2

=

(
e

f

)2}
.

In order to find a binary operation on E, we need to prove the following lemma.

Lemma 1. For any

(
a

b
,
c

d
,
e

f

)
and

(
g

h
,
i

l
,
m

n

)
∈ E the operation, defined as

(
a

b
,
c

d
,
e

f

)
·
(
g

h
,
i

l
,
m

n

)
=

(
ag

bh
,
cm

dn
+

ei

fl
,
cm

dn
+

ei

fl
+ d1d2

)
, (4)

with d1 =
e

f
− c

d
and d2 =

m

n
− i

l
, is a binary operation on E.

Proof. To prove that

(
ag

bh
,
cm

dn
+

ei

fl
,
cm

dn
+

ei

fl
+ d1d2

)
∈ E, we verify that

(
ag

bh

)2

+

(
cm

dn
+

ei

fl

)2

=

(
cm

dn
+

ei

fl
+ d1d2

)2

, (5)

that is, (
a2

b2

)
·
(
g2

h2

)
= d21d

2
2 + 2

(
cm

dn
+

ei

fl

)
d1d2 .

Taking into account that (
a

b
,
c

d
,
e

f

)
,

(
g

h
,
i

l
,
m

n

)
∈ E,

we obtain(
e2

f2
− c2

d2

)
·
(
m2

n2
− i2

l2

)
=

(
e

f
− c

d

)
·
(
m

n
− i

l

)
·
[(

e

f
− c

d

)
·
(
m

n
− i

l

)
+2

(
cm

dn
+

ei

fl

)]
.

From this, we get(
e

f
+

c

d

)
·
(
m

n
+

i

l

)
=

(
e

f
− c

d

)
·
(
m

n
− i

l

)
+2

(
cm

dn
+

ei

fl

)
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from which it is easy to see that 2edin + 2fcml = 2cmfl + 2eidn. As a result, the

Pythagorean triple (5) is an identity in Q. Therefore,(
ag

bh
,
cm

dn
+

ei

fl
,
cm

dn
+

ei

fl
+ d1d2

)
∈ E

and the operation (4) is a binary operation on E.

It is noteworthy that the binary operation (4) is defined in the same manner as

the relation among Pythagorean triples (2) found in [3], specifically in the case of

positive integers.

The following theorem holds.

Theorem 3. The set E, together with the binary operation (4) defined on E, is a

commutative infinite group with elements in Q.

Proof. We prove that in E, together with the binary operation (4) defined on E,

the three group axioms hold, and the binary operation is commutative.

In order to prove the first axiom, considering for all

(
a

b
,
c

d
,
e

f

)
,

(
g

h
,
i

l
,
m

n

)
, and(

o

p
,
q

r
,
s

t

)
∈ E with d1 =

e

f
− c

d
, d2 =

m

n
− i

l
, and d3 =

s

t
− q

r
we verify that

[(
a

b
,
c

d
,
e

f

)
·
(
g

h
,
i

l
,
m

n

)]
·
(
o

p
,
q

r
,
s

t

)
=

(
a

b
,
c

d
,
e

f

)
·
[(

g

h
,
i

l
,
m

n

)
·
(
o

p
,
q

r
,
s

t

)]
. (6)

Using the operation (4) within the square brackets, we get(
ag

bh
,
cm

dn
+

ei

fl
,
cm

dn
+

ei

fl
+ d1d2

)
·
(
o

p
,
q

r
,
s

t

)

=

(
a

b
,
c

d
,
e

f

)
·
(
go

hp
,
is

tl
+

mq

nr
,
is

tl
+

mq

nr
+ d2d3

)
and re-applying it, we obtain(
ago

bhp
,

(
cm

dn
+

ei

fl

)
·s
t

+

(
cm

dn
+

ei

fl
+ d1d2

)
·q
r
,

(
cm

dn
+

ei

fl

)
·s
t

+

(
cm

dn
+

ei

fl
+ d1d2

)
·q
r

+ d1d2d3

)

=

(
ago

bhp
,
c

d
·
(
is

tl
+

mq

nr
+ d2d3

)
+
e

f
·
(
is

tl
+

mq

nr

)
,
c

d
·
(
is

tl
+

mq

nr
+ d2d3

)
+
e

f
·
(
is

tl
+

mq

nr

)
+d1d2d3

)
.
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To prove that the latter equation is an identity, it suffices to verify that(
cm

dn
+

ei

fl

)
·s
t

+

(
cm

dn
+

ei

fl
+ d1d2

)
·q
r

=
c

d
·
(
is

tl
+

mq

nr
+ d2d3

)
+
e

f
·
(
is

tl
+

mq

nr

)
.

To this aim, by replacing d1, d2, d3, we have(
cm

dn
+

ei

fl

)
·s
t

+

(
cm

dn
+

ei

fl
+

(ed− cf) · (ml − ni)

fdnl

)
·q
r

=
c

d
·
(
is

tl
+

mq

nr
+

(ml − ni) · (sr − qt)

nltr

)
+
e

f
·
(
is

tl
+

mq

nr

)
,

from which

cmfl + eidn

df
· s
t

+
edml + cfin

fd
· q
r

=
c

d
· mlsr + inqt

tr
+

e

f
· isnr + mqlt

tr

that can be easily proved to be an identity in Q. As a result, the requirement of

associativity (6) holds. Therefore, the first axiom is proved.

To prove the second axiom, we define the identity element as(
1

1
,

0

1
,

1

1

)
= (1, 0, 1) ; (7)

obviously (1, 0, 1) ∈ E. We also verify that, for all

(
a

b
,
c

d
,
e

f

)
∈ E, we have

(
a

b
,
c

d
,
e

f

)
· (1, 0, 1) = (1, 0, 1) ·

(
a

b
,
c

d
,
e

f

)
=

(
a

b
,
c

d
,
e

f

)
. (8)

Using the operation (4) on both sides of equation (8), we obtain(
a

b
·1, c

d
·1+

e

f
·0, c

d
·1+

e

f
·0+

(
e

f
− c

d

)
·1
)

=

(
1·a
b
, 0· e

f
+·1· c

d
, 0· e

f
+1· c

d
+1

(
e

f
− c

d

))
,

that is, (
a

b
,
c

d
,
e

f

)
=

(
a

b
,
c

d
,
e

f

)
and consequently, the second axiom is proved.

To prove the third axiom, for all

(
a

b
,
c

d
,
e

f

)
∈ E, we define the inverse element

as (
b

a
,− c

d
· b

2

a2
,
e

f
· b

2

a2

)
. (9)
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Obviously

(
b

a
,− c

d
· b

2

a2
,
e

f
· b

2

a2

)
∈ E. We also verify that, for all

(
a

b
,
c

d
,
e

f

)
∈ E,

we have(
a

b
,
c

d
,
e

f

)
·
(
b

a
,− c

d
· b

2

a2
,
e

f
· b

2

a2

)
=

(
b

a
,− c

d
· b

2

a2
,
e

f
· b

2

a2

)
·
(
a

b
,
c

d
,
e

f

)
=

(
1, 0, 1

)
. (10)

Using the operation (4) on both sides of the equation (10), we obtain(
a

b

b

a
,
c

d

e

f

b2

a2
− e

f

c

d

b2

a2
,
c

d

e

f

b2

a2
− e

f

c

d

b2

a2
+

(
e

f
− c

d

)
b2

a2

(
e

f
+

c

d

))

=

(
b

a

a

b
,− c

d

b2

a2
e

f
+

e

f

b2

a2
c

d
,
c

d

b2

a2
e

f
− e

f

b2

a2
c

d
+

b2

a2

(
e

f
+

c

d

)(
e

f
− c

d

))
.

From this, we get(
1, 0,

(
e2

f2
− c2

d2

)
b2

a2

)
=

(
1, 0,

b2

a2

(
e2

f2
− c2

d2

))
from which

(1, 0, 1) = (1, 0, 1).

Therefore, the third axiom is proved.

To prove that the group is commutative for all

(
a

b
,
c

d
,
e

f

)
and

(
g

h
,
i

l
,
m

n

)
∈ E

with d1 =
e

f
− c

d
and d2 =

m

n
− i

l
, we verify that

(
a

b
,
c

d
,
e

f

)
·
(
g

h
,
i

l
,
m

n

)
=

(
g

h
,
i

l
,
m

n

)
·
(
a

b
,
c

d
,
e

f

)
. (11)

Using the operation (4) on both sides of equation (11), we obtain that(
ag

bh
,
cm

dn
+

ei

fl
,
cm

dn
+

ei

fl
+ d1d2

)
=

(
ga

hb
,
ie

lf
+

mc

nd
,
ie

lf
+

mc

nd
+ d2d1

)
is an identity in Q and therefore the fourth axiom is proved. Consequently, Theorem

3 is fully proved.

Now, taking into account the relation among Pythagorean triples (2) found in

[3], if we consider the set

M = {(a, b, c) with a, b, c ∈ Z such that a2 + b2 = c2},

it is easily to note that, for all (a, b, c) and (d, e, f) ∈ M with d1 = c − b and

d2 = f − e, the operation defined as

(a, b, c) · (e, f, g) = (ae, bf + ce, bf + ce + d1d2) (12)
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is still a binary operation on M . Furthermore, it is straightforward to confirm that

the first and second axioms hold true. The binary operation is commutative being

a particular case of operation (4), with the same identity element (1, 0, 1). The

inverse element can be defined as in definition (9), for all (a, b, c) ∈M , as

if a 6= 0,

(
1

a
,− b

a2
,
c

a2

)
. (13)

Consequently, this element does not belong to M because
1

a
,− b

a2
, and

c

a2
do not

belong to Z.

Therefore, since the third axiom is not verified, the following corollary holds.

Corollary 1. The set M , together with the binary operation (12) defined on M ,

is a commutative infinite monoid with elements in Z, and with elements in N if

a, b, c ∈ N.

Moreover, it is worth noticing that the previously obtained results can be also

retrieved through the relations among Pythagorean triples (3) found in [3].

Now, we aim to study if the set of all primitive Pythagorean triples forms a

commutative infinite group. To this goal, let us define the set

P =

{(
a

c
,
b

c

)
with a, b, c ∈ Z and a, c 6= 0, with |a|, |b|, and |c| coprime,

such that a2 + b2 = c2
}

and prove the following theorem.

Theorem 4. The set P together with the binary operation on P , defined for all(
a

c
,
b

c

)
and

(
d

f
,
e

f

)
∈P as l : P×P→P , such that



(
a

c
,
b

c

)
·
(
d

f
,
e

f

)
=

(
ad

cf + eb
,
bf + ec

cf + eb

)
(I)(

a2

a2
,

0

a2

)
=

(
1

1
,

0

1

)
(II)(

a2nad

a2n(cf + eb)
,
a2n(bf + ec)

a2n(cf + eb)

)
=

(
ad

cf + eb
,
bf + ec

cf + eb

)
, for all n ∈ N, (III)

(14)

is a commutative infinite group with elements in Q.
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Proof. Firstly, we verify that the operation (14) is a binary operation on P , that is,

(ad)2 + (bf + ec)2 = (cf + eb)2. (15)

From this, we obtain

a2d2 + e2(c2 − b2) = f2(c2 − b2)

and

d2 + e2 = f2.

Moreover, we need to verify that, for all

(
a

c
,
b

c

)
and

(
d

f
,
e

f

)
∈ P , it also follows

that |ad|, |bf + ec|, and |cf + eb| are coprime. Since the Pythagorean triple (15)

must be satisfied, it is sufficient to verify that |bf + ec| and |cf + eb| are coprime.

In fact, if there exists k ∈ Z − {0} such that cf + eb = k(bf + ec), we obtain

f(c− kb) = e(kc− b). Since |f | and |e| are coprime, it follows that f = kc− b and

e = c− kb, that is,

k =
f + b

c
and k =

c− e

b

from which

b(f + b) = c(c− e).

From the previous equation, given that |b| and |c| are coprime, it follows that

b = c − e and c = f + b. Consequently, f = e, which is an absurdity. As a result,(
ad

cf + eb
,
bf + ec

cf + eb

)
∈ P and therefore the operation (14) is a binary one on P .

To prove the second axiom, we define the identity element as

(
1

1
,

0

1

)
. Obviously,(

1

1
,

0

1

)
∈ P . Let us now verify that, for all

(
a

c
,
b

c

)
∈ P , the equation

(
a

c
,
b

c

)
·
(

1

1
,

0

1

)
=

(
1

1
,

0

1

)
·
(
a

c
,
b

c

)
=

(
a

c
,
b

c

)
(16)

holds true. By using the condition (I) in the operation (14) on the first two members

of equation (16), we obtain(
a1

c1 + 0b
,
b1 + 0c

c1 + 0b

)
=

(
1a

1c + b0
,

0c + b1

1c + b0

)
,

that is, (
a

c
,
b

c

)
=

(
a

c
,
b

c

)
.

Therefore, the second axiom is proved.
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To check the validity of the third axiom for all

(
a

c
,
b

c

)
∈ P , we define the inverse

element as

(
a

c
,−b

c

)
. Obviously,

(
a

c
,−b

c

)
∈ P . Let us now verify that, for all(

a

c
,
b

c

)
∈ P , the equation

(
a

c
,
b

c

)
·
(
a

c
,−b

c

)
=

(
a

c
,−b

c

)
·
(
a

c
,
b

c

)
=

(
1

1
,

0

1

)
(17)

holds true. By using the condition (I) in the operation (14) on the first two members

of equation (17), we obtain(
aa

cc + (−b)b
,
bc + (−b)c
cc + (−b)b

)
=

(
aa

cc + b(−b)
,
bc + c(−b)
cc + b(−b)

)
,

that is, (
a2

c2 − b2
,

0

c2 − b2

)
=

(
a2

c2 − b2
,

0

c2 − b2

)
.

Moreover, since c2− b2 = a2, according to the condition (II) in the operation (14),

we obtain (
1

1
,

0

1

)
=

(
1

1
,

0

1

)
and consequently, the third axiom is proved.

We observe that the inclusion of condition (II) in the operation (14) eliminates

the possibility of getting all trivial elements

(
a2

a2
,

0

a2

)
such that a2+02 = a2, which

do not belong to P . For this same reason, whenever we have a product of elements

in P that includes both

(
a

c
,
b

c

)
and

(
a

c
,−b

c

)
, it is necessary to divide both the

numerator and denominator of the fractions in the final result of the product by

a2. This ensures that we still obtain elements belonging to P . Otherwise, we would

end up with elements

(
a2ad

a2(cf + eb)

)
,

(
a2(bf + ec)

a2(cf + eb)

)
such that (a2ad)2 + (a2(bf +

ec))2 = (a2(cf + eb))2, which do not belong to P . Obviously, if both elements(
a

c
,
b

c

)
and

(
a

c
,−b

c

)
appear n times, then it is necessary to divide by a2n. Now,

the conditions (II) and (III) in operation (14) have been fully justified.

To prove the first axiom, let us now verify that the condition[(
a

c
,
b

c

)
·
(
d

f
,
e

f

)]
·
(
g

i
,
h

i

)
=

(
a

c
,
b

c

)
·
[(

d

f
,
e

f

)
·
(
g

i
,
h

i

)]
(18)

holds true for all

(
a

c
,
b

c

)
,

(
d

f
,
e

f

)
and

(
g

i
,
h

i

)
∈ P with

(
d

f
,
e

f

)
6=
(
a

c
,−b

c

)
and
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d

f
,
e

f

)
6=
(
g

i
,−h

i

)
. To this aim, by applying first the condition (I) in the opera-

tion (14) to the terms within the square brackets in (18), we get(
ad

cf + eb
,
bf + ec

cf + eb

)
·
(
g

i
,
h

i

)
=

(
a

c
,
b

c

)
·
(

dg

fi + hl
,
ei + hf

fi + hl

)
,

and by re-applying it to the obtained result, we end up with(
adg

(cf + eb)i + h(bf + ec)
,

(bf + ec)i + h(cf + eb)

(cf + eb)i + h(bf + ec)

)

=

(
adg

c(fi + hl) + (ei + hf)b
,
b(fi + he) + (ei + hf)c

c(fi + hl) + (ei + hf)b

)
,

which is easily verified to be an identity in Q. As a result, the requirement of

associativity (18) holds. On the other hand, if the condition(
d

f
,
e

f

)
=

(
a

c
,−b

c

)
holds true, we have[(

a

c
,
b

c

)
·
(
a

c
,−b

c

)]
·
(
g

i
,
h

i

)
=

(
a

c
,
b

c

)
·
[(

a

c
,−b

c

)
·
(
g

i
,
h

i

)]
;

that is, (
1

1
,

0

1

)
·
(
g

i
,
h

i

)
=

(
a

c
,
b

c

)
·
(

ag

ci− hb
,
−bi + hc

ci− hb

)
.

Consequently, we obtain(
g

i
,
h

i

)
=

(
a2g

c(ci− hb) + (−bi + hc)b
,
b(ci− hb) + (−bi + hc)c

c(ci− hb) + (−bi + hc)b

)
from which (

g

i
,
h

i

)
=

(
a2g

i(c2 − b2)
,
h(c2 − b2)

i(c2 − b2)

)
.

Moreover, since c2 − b2 = a2, we have(
g

i
,
h

i

)
=

(
a2g

ia2
,
ha2

ia2

)
and, for the condition (III) in the operation (14), we obtain an identity even in

the case

(
d

f
,
e

f

)
=

(
a

c
,−b

c

)
. Analogously, the same conclusion can be achieved if(

d

f
,
e

f

)
=

(
g

i
,−h

i

)
. Therefore, the first axiom is proved.



INTEGERS: 24 (2024) 11

To prove that the group is commutative for all

(
a

b
,
b

c

)
and

(
d

f
,
e

f

)
∈ P , we

verify that (
a

b
,
b

c

)
·
(
d

f
,
e

f

)
=

(
d

f
,
e

f

)
·
(
a

b
,
b

c

)
. (19)

Using the condition (I) in the operation (14) on both sides of equation (19), we

obtain (
ad

cf + eb
,
bf + ec

cf + eb

)
=

(
da

fc + be
,
ec + bf

fc + be

)
,

which is an identity in Q. Therefore, the group is commutative. Consequently,

Theorem 4 is proved.

Now, let us introduce the following theorem.

Theorem 5. The set of all primitive Pythagorean triples is a commutative infinite

group with elements in Z.

Proof. We define the set

S =

{
(a, b, c) with a, b, c ∈ Z such that

(
a

c
,
b

c

)
∈ P

}
,

that is, the set of Pythagorean triples. We also consider the function f : S → P

such that
f(a, b, c) =

(
a

c
,
b

c

)
f [(a, b, c) · (d, e, f)] =

(
a

c
,
b

c

)
·
(
d

f
,
e

f

)
=

(
ad

cf + eb
,
bf + ec

cf + eb

)
.

(20)

Additionally, we introduce the function g : P → S such that

g

[(
ad

cf + eb
,
bf + ec

cf + eb

)]
= (ad, bf + ec, cf + eb).

Now, we can define the composite function

h = g ◦ f : S → S

such that

h[(a, b, c)·(d, e, f)] =


(ad, bf + ec, cf + eb), if (d, e, f) 6= (a,−b, c)

(1, 0, 1), if (d, e, f) = (a,−b, c)(
a2nad, a2n(bf + ec), a2n(cf + eb)

)
=
(
ad, bf + ec, cf + eb

)
, for all n ∈ N,

(21)
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which is a binary operation on S.

We note that for (d, e, f) = (a,−b, c), if we first apply the function f

f [(a, b, c) · (a,−b, c)] =

(
a

c
,
b

c

)
·
(
a

c
,−b

c

)
=

(
1

1
,

0

1

)
and then the function g

g

[(
1

1
,

0

1

)]
= (1, 0, 1),

we effectively obtain

h[(a, b, c) · (a,−b, c)] = (1, 0, 1).

Obviously, the binary operation is commutative with the identity element (1, 0, 1)

and the inverse element (a,−b, c).
On the other hand, if we apply the composite function h directly, for (d, e, f) =

(a,−b, c), we obtain (a2, 0, a2) /∈ S. Therefore, to avoid ambiguity, in operation

(21) we use (1, 0, 1) if (d, e, f) = (a,−b, c). For the same reason, if the triples

(a, b, c) and (a,−b, c) appear n times, we set (a2nad, a2n(bf + ec), a2n(cf + eb)) =

(ad, bf + ec, cf + eb) in the operation (21), for all n ∈ N. Consequently, Theorem 5

is proved.

At last, more generally, it is possible to obtain a commutative infinite group for

the set M of all Pythagorean triples. To this aim, let us introduce the following

operation i, for all (a, b, c) and (d, e, f) ∈M , defined as follows:

i : M →M

and

i[(a, b, c)·(d, e, f)] =


(ad, bf + ec, cf + eb), if (d, e, f) 6= (a,−b, c)

(1, 0, 1), if (d, e, f) = (a,−b, c)(
a2nad, a2n(bf + ec), a2n(cf + eb)

)
=
(
ad, bf + ec, cf + eb

)
, for all n ∈ N,

(22)

which is a binary operation on M . Obviously, the above binary operation is com-

mutative, with the identity element (1, 0, 1) and the inverse element (a,−b, c). As

a consequence of that, let us state the following corollary.

Corollary 2. The set M , together with the binary operation (22) defined on M , is

a commutative infinite group with elements in Z.

We have not used the composite function h to define the binary operation on M ,

for all (a, b, c) and (d, e, f) ∈M . In fact, by using the definition of f given in (20),
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the quantities |ad|, |bf + ec| and |cf + eb| are not always coprime. For this reason,

the fractions in (
ad

cf + eb
,
bf + ec

cf + eb

)
may or may not be simplified, and in turn, the uniqueness of result in the binary

operation may be not guaranteed.

As a consequence of Corollary 2, we obtain that the group (P, h) is a subgroup

of (M, i).

3. Conclusion and Remarks

In this manuscript, we reinforced the results obtained in previous work by em-

phasizing that the parametrizations and relationships among Pythagorean triples

depend on d ∈ C(x), which plays a fundamental role in characterizing the results.

This approach could be employed to study further relationships among Pythagorean

triples. For instance, it might be used to find a scalar multiplication which could

allow us, in turn, to define a vector space of Pythagorean triples.
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