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Abstract

Let p be an odd prime and let q = pa, where a = 1 or a = 2. We show that there is
a one-to-one correspondence between Fq-isogeny classes of elliptic curves C over Fq
satisfying |C(Fq)| ∈ 4Z and (q+ 1)-regular Ramanujan graphs on two vertices. The
correspondence is obtained by matching the Hasse-Weil zeta function of the elliptic
curves with the Ihara zeta function of the Ramanujan graphs using the Honda-Tate
theorem.

1. Introduction

Let q be a positive integer and let X be a finite connected (q + 1)-regular graph.

The adjacency matrix A of X is symmetric and hence diagonalizable with real

eigenvalues. It is known (see [14, Proposition 7.2]) that the eigenvalues λ of A

satisfy |λ| ≤ q + 1 and that q + 1 is an eigenvalue with multiplicity one. Letting

λ(X) = max{|λ| : λ 6= q + 1},

recall that the graph X is called a Ramanujan graph if λ(X) ≤ 2
√
q (see for instance

[5, Definition 1.1]).

In [3], Ihara introduced what is now known as the Ihara zeta function of a

graph and showed that they are rational functions. He pointed out that these

zeta functions may or may not satisfy an analogue of the Riemann hypothesis and

he gave examples in [2]. For connections with modular curves, see for instance

[11]. The original situation considered by Ihara was in the context of a cocompact

discrete torsion-free subgroup Γ of PGL(2,Qp) acting on a certain tree Y associated

to PGL(2,Qp)/PGL(2,Zp) and generalizations thereof. The quotient X = Γ\Y is

a finite graph, and Serre suggested in [9] that the Ihara zeta function could be

interpreted in terms of X only. This was explicitly done by Sunada in [12].
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It turns out that a finite connected (q+1)-regular graph X is a Ramanujan graph

if and only if the Ihara zeta function associated to X satisfies an analogue of the

Riemann hypothesis (see [14, Theorem 7.4]). It follows that in the situation where

q is a power of a rational prime, one can associate a collection of Weil q-numbers to

Ramanujan graphs, where we recall that a Weil q-number is an algebraic integer α

satisfying

|ψ(α)| = q1/2,

for all embeddings ψ : Q(α)→ C.

Now, the Honda-Tate theorem (see [8] for instance) gives a classification of

isogeny classes of abelian varieties over finite fields precisely in terms of conju-

gacy classes of Weil q-numbers. So one may expect a connection between (some)

abelian varieties over finite fields and (some) (q + 1)-regular Ramanujan graphs in

the situation where q is a power of a rational prime.

Our goal here is to explore this connection in the simplest possible situation.

Since the adjacency matrix of a connected (q+1)-regular graph with one vertex has

a single eigenvalue, namely q + 1, the first interesting case to look at is the case of

connected (q + 1)-regular graphs on two vertices. Given two nonnegative integers l

and m satisfying 2l + m = q + 1, we let X(l,m) be the (q + 1)-regular graph that

consists of two vertices joined by m undirected edges and with l undirected loops

at each of the vertices. The purpose of this note is to show the following theorem.

Theorem A (Theorem 8). Let q = pa, where p is an odd prime number and a

is an integer satisfying a = 1 or a = 2. Let Ω be the set of Fq-isogeny classes of

elliptic curves C over Fq for which |C(Fq)| ∈ 4Z, and let R be the set of connected

(q + 1)-regular Ramanujan graphs on two vertices. The map Ω → R defined via

[C] 7→ X(l,m), where

l =
q + 1

2
− |C(Fq)|

4
and m =

|C(Fq)|
2

,

is a one-to-one correspondence between Ω and R.

Note that by the Hasse bound, l is a positive integer. The integer m is also a

positive integer, since C(Fq) 6= ∅ and is necessarily even because we are assuming

that |C(Fq)| ∈ 4Z. Our approach to proving this theorem is to establish a corre-

spondence between the Hasse-Weil zeta functions of elliptic curves whose isogeny

classes are in Ω and the Ihara zeta functions of the graphs in R suitably modified

to take into account some discrepancy factors. The correspondence then simply

follows from the Honda-Tate theorem which gives in particular a classification of

Fq-isogeny classes of elliptic curves defined over Fq. In the situation where q = pa

for some odd prime p and an arbitrary positive integer a, one can obtain a sim-

ilar correspondence if one restricts to ordinary elliptic curves and exclude a few

graphs from R. See Theorem 9 for the precise statement. The case where p = 2 is

formulated in Theorem 10.
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The paper is organized as follows. We gather several known results in Section

2. We collect what we need from graph theory in Section 2.1 and what we need

from the theory of abelian varieties over finite fields in Section 2.2. We remind

the reader about basic graph terminology in Section 2.1.1, about the Ihara zeta

function of a graph in Section 2.1.2, about regular Ramanujan graphs in Section

2.1.3, and we specialize everything to the simple situation of graphs with only two

vertices in Section 2.1.4. In Section 2.2.1, we gather together the results we need

from the theory of abelian varieties over finite fields, we remind the reader about

the Honda-Tate theory in Section 2.2.2, and also about the Hasse-Weil zeta function

of curves over finite fields in Section 2.2.3. Then, we formulate and prove our main

result in Section 3.

2. Preliminaries

2.1. Graphs

2.1.1. Basic Notation and Terminology

Recall that a graph X in the sense of [9] (see also [13]) consists of a collection of

vertices VX , a collection of directed edges EX , an inversion map EX → EX denoted

by e 7→ ē and an incidence map inc : EX → VX × VX denoted by e 7→ inc(e) =

(o(e), t(e)) satisfying ē 6= e, ¯̄e = e and o(ē) = t(e) for all e ∈ EX . Identifying e with

ē gives the set of undirected edges which will be denoted by EX . Note that loops

and multiple edges are allowed. Throughout this paper, by a graph we will always

mean a finite graph. In other words, we always assume that both VX and EX are

finite sets. Given v ∈ VX , one defines

EX,v = {e ∈ EX | o(e) = v},

and the valency (also known as the index, the degree, etc) of v is defined to be

val(v) = |EX,v|. A graph X is called k-regular for some positive integer k if val(v) =

k for all v ∈ VX .

Let us introduce a labeling of the vertices of X, say VX = {v1, . . . , vr}. The

adjacency matrix of X is the r × r matrix A = (aij), where aij is the number of

directed edges between vi and vj for i = 1, . . . , r. The valence (or degree) matrix

of X is the diagonal r × r matrix D = (dij), where dii = val(vi) for i = 1, . . . , r.

A path c in a graph X consists of a sequence of directed edges c = e1 · . . . · en
satisfying t(ei) = o(ei+1) for i = 1, . . . , n− 1. We let o(c) = o(e1) and t(c) = t(en).

A graph X is called connected if for every two distinct vertices v1, v2 ∈ VX , there

exists a path c satisfying o(c) = v1 and t(c) = v2.

A path c is called closed if o(c) = t(c). The concatenation of two paths c1 and

c2 satisfying t(c1) = o(c2) will be denoted by c1 · c2. Using concatenation, closed
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paths can be raised to positive integers. In other words, if c is a closed path and m

is a positive integer, then cm will mean c concatenated with itself m times.

The length of a path c = e1 · . . . · en is defined to be n and is denoted by len(c).

The path c is called a geodesic if ei 6= ēi+1 for all i = 1, . . . , n− 1. In other words, a

geodesic is a path that has no backtracks. If c is a closed geodesic for which e1 6= ēn,

then c will be called a reduced closed path. Reduced closed paths are precisely the

closed paths with neither backtracks nor tails. If c = e1 · . . . · en is a reduced closed

path and k is an integer satisfying 0 ≤ k ≤ n−1, then the k-shift of c is the reduced

closed path

c(k) = ek+1 · . . . en · e1 · . . . · ek.

If c1 and c2 are two reduced closed paths of the same length n, then the relation

c1 ∼ c2 if c
(k)
1 = c2 for some k satisfying 0 ≤ k ≤ n − 1 is an equivalence relation.

An equivalence class [c] is called a cycle and the cycle is called primitive or prime

if c is not of the form cm0 for some reduced closed path c0 and some integer m > 1.

Prime cycles will typically be denoted by a symbol such as c. Note that if c = [c] is

a prime cycle, then its length len(c) := len(c) is well-defined and does not depend

on the choice of a representative c.

One can associate two homology groups H0(X,Z) and H1(X,Z) to any graph.

See [13, Section 4]. The Euler characteristic of a graph X is defined to be

χ(X) = rankZH0(X,Z)− rankZH1(X,Z).

If X is connected, then [13, Section 4.4] shows that

χ(X) = |VX | − |EX |.

2.1.2. Ihara Zeta Function

Our main references for this subsection are [14] and [4]. Let X be a connected graph

satisfying val(v) ≥ 2 for all v ∈ VX . Its Ihara zeta function is defined to be

ζX(u) =
∏
c

(1− ulen(c))−1,

where the product is taken over all prime cycles in the graph X. This product can

be shown to converge when u is small enough (see [4] and [14, Theorem 8.1]). From

now on, given a positive integer k, let Nk(X) be the number of reduced closed paths

of length k in X. Then, [14, page 29] shows that

ζX(u) = exp

( ∞∑
k=1

Nk(X)
uk

k

)
. (1)

Furthermore, there is another useful expression for the Ihara zeta function which

we record in the following theorem (see [4]).
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Theorem 1 (Ihara determinant formula). With the notation as above, one has

ζX(u)−1 = (1− u2)−χ(X)det(I −Au+ (D − I)u2) ∈ Z[u],

where I is the identity matrix, A the adjacency matrix of X, and D the valency

matrix of X.

From now on, we let

hX(u) = det(I −Au+ (D − I)u2) ∈ Z[u].

2.1.3. Regular Ramanujan Graphs

Let q be an integer satisfying q ≥ 2 and let X be a connected (q+ 1)-regular graph.

Let Spec(X) be the collection of the eigenvalues of the adjacency matrix A of X.

It is known that Spec(X) ⊆ [−(q + 1), q + 1] and that q + 1 is an eigenvalue with

multiplicity 1 (see for instance [14, Proposition 7.2]). Let

λ(X) = max{|λ| : λ 6= q + 1}.

Recall that a connected (q+1)-regular graph is called a Ramanujan graph if λ(X) ≤
2
√
q. (We remark that some authors relax this definition to include bipartite graphs

that is graphs for which −(q + 1) is an eigenvalue.)

Note that from Theorem 1, one has

ζX(u)−1 = (1− u2)−χ(X)(1− (q + 1)u+ qu2) · PX(u),

where

PX(u) =
hX(u)

(1− u)(1− qu)
= 1 + a1u+ . . .+ qr−1u2r−2 ∈ Z[u], (2)

so that in particular, PX(u) has constant coefficient 1, leading coefficient qr−1 and

degree 2r − 2. Furthermore,

PX(u) =
∏

λ6=q+1

(1− λu+ qu2),

where the product is over all eigenvalues in Spec(X) different than q+ 1. Consider

the function

QX(s) = ζX(q−s)−1

of a complex variable s. The zeros of

(1− q−2s)−χ(X)(1− (q + 1)q−s + q1−2s)

are all on either the line Re(s) = 0 or the line Re(s) = 1. We will refer to those

zeros as the trivial zeros of QX(s). The other zeros, namely the zeros of

PX(q−s) =
∏

λ6=q+1

(1− λq−s + q1−2s),
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will be referred to as the non-trivial zeros of QX(s). The proof of the following

theorem can be found in [14, Theorem 7.4].

Theorem 2. Assume that q ≥ 2 and let X be a connected (q+ 1)-regular graph for

which |VX | ≥ 2. The graph X is a Ramanujan graph if and only if all the non-trivial

zeros of QX(s) are on the line Re(s) = 1/2.

Assume now that q is a power of a rational prime p, say q = pa for some positive

integer a. Recall that an algebraic integer α is called a Weil q-number if

|ψ(α)| = q1/2,

for all embeddings ψ : Q(α) → C (see for instance [8, Definition 1.1]). It is known

that if α is a Weil q-number, then the number field Q(α) is either totally real or a

CM -field (see [8, Proposition 2.2]).

Proposition 1. Assume as above that q = pa for some rational prime p and some

positive integer a. If X is a connected (q + 1)-regular Ramanujan graph, write

PX(u) =

2r−2∏
i=1

(1− αiu),

for some αi ∈ C. Then, αi is a Weil q-number for all i = 1, . . . , 2r − 2.

Proof. Consider the reciprocal polynomial P ∗X(u) = u2r−2PX(1/u). By Equation

(2), we have that

P ∗X(u) =

2r−2∏
i=1

(u− αi)

is a monic polynomial with integer coefficients. It follows that the αi are algebraic

integers. If ψ : Q(αi) → C is any embedding, then P ∗X(ψ(αi)) = 0 and thus

ψ(αi) = αj for some j = 1, . . . , 2r − 2. But Theorem 2 implies that |αk| =
√
q for

all k = 1, . . . , 2r − 2 and the result follows.

2.1.4. Graphs on Two Vertices

We shall denote by X(l1,m, l2) the graph on two vertices v1, v2 for which there are

li undirected loops at vi for i = 1, 2 and m undirected edges between v1 and v2.

One has

val(vi) = 2li +m,

for i = 1, 2. A graph X(l1,m, l2) is regular if and only if l1 = l2 in which case it will

be denoted simply by X(l,m). The graph X(l,m) is (2l + m)-regular. The graph

X(l,m) is disconnected if and only if m = 0 and bipartite if and only if l = 0.
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Let q ≥ 2 be an integer and let m, l be positive integer such that q+ 1 = 2l+m.

The adjacency matrix A of X(l,m) is

A =

(
2l m
m 2l

)
and its characteristic polynomial is

χA(t) = t2 − 4lt+ 4l2 −m2 = (t− (2l −m))(t− (q + 1)).

Thus, the Ihara zeta function of X = X(l,m) is given by

ζX(u)−1 = (1− u2)−χ(X)(1− (q + 1)u+ qu2)PX(u),

where

PX(u) = 1− (2l −m)u+ qu2 ∈ Z[u]. (3)

2.2. Abelian Varieties over Finite Fields

2.2.1. Basic Notation, Terminology and Results

All the facts and results in Section 2.2.1 can be found in [6]. Let q = pa where p is

a rational prime and a is a positive integer. Recall that an abelian variety over a

finite field Fq is a geometrically irreducible projective algebraic group over Fq. It is

known that an abelian variety is a commutative algebraic group and is necessarily

non-singular. An abelian variety A over Fq is called Fq-simple if its only abelian

subvarieties over Fq are 0 and A.

Let A,B be abelian varieties over Fq. A Fq-morphism of abelian varieties A →
B is called a Fq-isogeny if it is surjective and has finite kernel. This defines an

equivalence relation on the collection of abelian varieties over Fq. We shall write

A ∼ B if A and B are Fq-isogenous. Any abelian abelian variety over Fq is Fq-
isogenous to a product of Fq-simple abelian varieties and this decomposition is

unique up to Fq-isogeny.

If A is an abelian variety over Fq, then we denote the ring of Fq-endomorphisms

of A by EndFq
(A) and we let

D = Q⊗Z EndFq
(A). (4)

If A is Fq-simple, then D is a finite dimensional division algebra over Q. The ring

EndFq
(A) is without Z-torsion and therefore we have an inclusion

EndFq
(A) ↪→ D.

Let now ` be another rational prime satisfying ` 6= p. For a positive integer k, let

A[`k](Fq) be the kernel of the multiplication-by-`k map on the Fq-rational points

A(Fq), and consider the Tate module

T`A = lim←−
k≥1

A[`k](Fq).
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It is known to be a free Z`-module of rank 2 · dim(A). Consider also the Q`-vector

space

V`A = Q` ⊗Z`
T`A.

If we denote by πA ∈ EndFq
(A) the Frobenius endomorphism, then we let fA(u)

denote the characteristic polynomial of πA acting on V`A. It is known to have the

form

fA(u) = u2·dim(A) + . . .+ qdim(A) ∈ Z[u].

We also let

LA(u) = u2·dim(A)fA(1/u) = 1 + · · ·+ qdim(A)u2·dim(A) ∈ Z[u] (5)

be the reciprocal polynomial of fA(u).

If A is an abelian variety over Fq that is Fq-simple, then its Frobenius endomor-

phism πA is in the center of EndFq (A) and since D is a division algebra over Q,

πA is an algebraic integer and Q(πA) is a number field. Furthermore, the Riemann

hypothesis for abelian varieties over finite fields (see [6, Theorem 1.1]) implies that

πA is a Weil q-number. In this case, we let L = Q(πA) which is either a totally real

number field or a CM -field.

2.2.2. The Honda-Tate Theorem

First, we have the following theorem whose proof can be found in [8, Theorem 5.3].

Theorem 3 (Tate). Two abelian varieties A and B defined over Fq are Fq-isogenous

if and only if

fA(u) = fB(u).

Further, if the abelian variety is simple, then we have the following result (see

[8, Theorem 5.3] and [8, Theorem 5.4]).

Theorem 4 (Tate). Let A be a simple abelian variety over Fq, let L = Q(πA) be

as above, and let D be the division algebra over Q defined in Equation (4) above.

1. The center of D is L.

2. One has

fA(u) = mA(u)d,

where d =
√

[D : L] ∈ Z and mA(u) is the minimal polynomial of πA.

3. One has

2 · dim(A) = [L : Q] ·
√

[D : L].
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4. The central simple L-algebra D does not split at every real place of L, does

split at every finite place not above p, and for a discrete valuation v lying

above p, the Hasse invariant of D at v is given by

invv(D) ≡ v(πA)

v(q)
· [Lv : Qp] (mod Z),

where Lv is the local field obtained from L by completing at v. Moreover

invv(D) + invv◦ρ(D) ≡ 0 (mod Z),

where ρ is the complex conjugation on the CM -field L. (If L is totally real,

then ρ is the trivial automorphism.)

Remark 1. If A is a simple abelian variety over Fq, then we know by Theorem 4

that fA(u) = mA(u)d, where d =
√

[D : L]. The number d can be calculated as

follows (see [8, Facts 17.4]). It is the least common multiple of the denominators

of the Hasse invariants invv(D) written as quotients with coprime numerator and

denominator, where v runs over all the places of L.

Recall that two Weil q-numbers α, β ∈ Q are conjugates of one another if there

exists σ ∈ GQ = Gal(Q/Q) such that ασ = β. In this case, we write α ∼ β, and this

defines an equivalence relation on the collection of Weil q-numbers. The following

result can be found in [8, Theorem 1.2].

Theorem 5 (Honda-Tate). Fix a finite field Fq. The assignment A 7→ πA induces

a bijection between the Fq-isogeny classes of simple abelian varieties defined over Fq
and the conjugacy classes of Weil q-numbers.

As a consequence of Theorems 3, 4 and 5, one has the following precise description

of isogeny classes of elliptic curves over finite fields. Fix again a finite field Fq and

write q = pa for some rational prime p and some positive integer a. By Theorem

3, two elliptic curves C1 and C2 defined over Fq are Fq-isogenous if and only if

fC1(u) = fC2(u). Given an elliptic curve C over Fq, write

fC(u) = u2 − βu+ q,

for some β ∈ Z. In this way, one associates to every Fq-isogeny class of elliptic

curves over Fq a rational integer β ∈ Z. This correspondence is well-defined and

injective by Theorem 3. It remains to describe the possible β which is the content

of the following theorem (see [15, Theorem 4.1]).

Theorem 6. The Fq-isogeny classes of elliptic curves defined over Fq are in one-

to-one correspondence with the rational integers β satisfying |β| ≤ 2
√
q and one of

the following conditions:
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1. (β, p) = 1,

2. If a is even: β = ±2
√
q,

3. If a is even and p 6≡ 1 (mod 3): β = ±√q,

4. If a is odd and p = 2 or 3: β = ±p a+1
2 ,

5. If either (i) a is odd or (ii) a is even and p 6≡ 1 (mod 4): β = 0.

2.2.3. Hasse-Weil Zeta Functions of Curves

Let C be a geometrically irreducible non-singular projective algebraic curve defined

over a finite field Fq. Its Hasse-Weil zeta function is defined to be

ZC(u) = exp

( ∞∑
k=1

|C(Fqk)|u
k

k

)
. (6)

The Hasse-Weil zeta function satisfies several properties and we record the ones

we shall need in the following theorem (see for instance [7, Theorem 3.2] and [7,

Theorem 3.3]).

Theorem 7 (Weil). One has

ZC(u) =
LC(u)

(1− u)(1− qu)
,

for some polynomial LC(u) ∈ Z[u]. The constant coefficient of LC(u) is 1, its

leading coefficient is qg and the degree of LC(u) is 2g, where g is the genus of the

curve C. Moreover, if one writes

LC(u) =

2g∏
i=1

(1− αiu),

for some αi ∈ C, then one has

|αi| =
√
q,

for all i = 1, . . . , 2g.

Remark 2. Let C be a geometrically irreducible non-singular projective algebraic

curve defined over a finite field Fq of genus g and consider its Jacobian variety J

which is an abelian variety over Fq of dimension g. Then, one has LJ(u) = LC(u)

(see for instance [6, Corollary 11.4]). Furthermore, if C is an elliptic curve over Fq,
then C = J (see [6, page 86]). So the notation for the L-polynomial of an elliptic

curve is consistent with Equation (5).

We have the following well known corollaries which we will use later.
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Corollary 1. Let C be an elliptic curve defined over Fq. If one writes

LC(u) = 1− βu+ qu2,

for some β ∈ Z, then

β = q + 1− |C(Fq)|.

Proof. From Theorem 7, one has

LC(u) = (1− u)(1− qu)ZC(u). (7)

Write LC(u) = (1 − α1u)(1 − α2u) for some α1, α2 ∈ C necessarily satisfying β =

α1 + α2. Applying the logarithm to Equation (7) leads to the equality of power

series

−
∞∑
k=1

(αk1 + αk2)
uk

k
=

∞∑
k=1

(|C(Fqk)| − 1− qk)
uk

k
.

Thus, if k = 1 we have β = q + 1− |C(Fq)|.

Corollary 2. Two elliptic curves C1 and C2 defined over Fq are Fq-isogenous if

and only if

|C1(Fq)| = |C2(Fq)|.

Proof. This follows from Corollary 1 combined with Theorem 3 and Remark 2.

3. Elliptic Curves over Finite Fields and Ramanujan Graphs on Two
Vertices

Let us start with the following observation.

Proposition 2. Let p be a rational prime and let q = pa for some positive integer

a. Assume that X is a connected (q + 1)-regular Ramanujan graph and that C is a

geometrically irreducible non-singular projective algebraic curve over Fq for which

PX(u) = LC(u).

Then, one has

χ(X)((−1)k+1 − 1)−Nk(X) + 1 + qk = |C(Fqk)| − 1− qk,

for all positive integer k.
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Proof. On one hand, it follows from Theorem 7 that

LC(u) = (1− u)(1− qu)ZC(u). (8)

On the other hand, it follows from Theorem 1 that

PX(u) = (1− u)χ(X)(1 + u)χ(X)(1− u)−1(1− qu)−1ζX(u)−1. (9)

If PX(u) = LC(u), then taking the logarithm of both Equations (8) and (9), and

using Equations (6) and (1), lead to the equality of power series

∞∑
k=1

(
χ(X)((−1)k+1 − 1)−Nk(X) + 1 + qk

) uk
k

=

∞∑
k=1

(
|C(Fqk)| − 1− qk

) uk
k
,

from which the result follows.

For instance, if q = pa with p an odd prime, C is a geometrically irreducible

non-singular projective curve of genus zero over Fq such as P1 over Fq, and X is the

bouquet graph with (q + 1)/2 loops, then one has

PX(u) = 1 = LC(u),

and thus counting points on a curve of genus zero over Fq amounts to counting the

number of reduced closed paths in X via Proposition 2. The next case to study is

the case of graphs on two vertices and this leads to the following theorem which is

Theorem A from the introduction.

Theorem 8. Let q = pa, where p is an odd prime and a = 1 or a = 2. Let Ω be

the set of Fq-isogeny classes of elliptic curves C over Fq for which |C(Fq)| ∈ 4Z,

and let R be the set of connected (q+ 1)-regular Ramanujan graphs on two vertices.

The map φ : Ω→ R defined via [C] 7→ φ([C]) = X(l,m), where

l =
q + 1

2
− |C(Fq)|

4
and m =

|C(Fq)|
2

,

is a one-to-one correspondence.

Proof. First, note that by Corollary 2, two elliptic curves C1 and C2 defined over

Fq are Fq-isogenous if and only if |C1(Fq)| = |C2(Fq)|. This shows that φ is well-

defined and does not depend on the choice of the representative of the isogeny

class provided we show that the corresponding graph X = X(l,m) = φ([C]) is a

Ramanujan graph. The first thing to note is that the number of reduced closed

paths of length one is N1(X) = 4l. Thus, we have

N1(X)− q − 1 = q + 1− |C(Fq)|. (10)
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Consider the polynomial PX(u) = 1− λu+ qu2 from Equation (3), where

λ = 2l −m = N1(X)− q − 1

is the unique eigenvalue in Spec(X) different than q+1. On the other hand, consider

the L-polynomial of C, namely LC(u) = 1− βu+ qu2 where

β = q + 1− |C(Fq)|

by Corollary 1. Thus, it follows from Equation (10) that

LC(u) = PX(u). (11)

The Hasse bound for C implies, in turn, that X is a Ramanujan graph. The fact

that the map φ is injective follows from Theorem 3.

Let now X = X(l,m) be a (q+1)-regular graph on two vertices and assume that

it is a Ramanujan graph. In order to show the surjectivity of φ, remembering that

N1(X) = 4l, we have to find an elliptic curve C over Fq that satisfies

|C(Fq)| = 2(q + 1)−N1(X). (12)

Consider the polynomial PX(u) = 1 − λu + qu2 from Equation (3) above, where

λ = 2l −m ∈ Z. Note that if (λ, p) = 1, then this is case (1) of Theorem 6. Since

λ = q + 1− 2m,

one has (λ, p) 6= 1 if and only if

2m ≡ 1 (mod p).

Note also that m = q+1−2l is even. Since we are assuming that X is a Ramanujan

graph, we necessarily have

q + 1− 2
√
q ≤ 2m ≤ q + 1 + 2

√
q.

Thus, if a = 1, we have that (λ, p) 6= 1 if and only if

2m = 1 + p and p ≡ 3 (mod 4),

in which case λ = 0. This is case (5) of Theorem 6. If a = 2, then we have that

(λ, p) 6= 1 if and only if

2m = (p− 2)p+ 1, p2 + 1, (p+ 2)p+ 1.

Since 2m is divisible by four, 2m 6= p2 + 1. Thus, λ = ±2p and this is case (2) of

Theorem 6. Thus, if a = 1 or 2, there exists an elliptic curve C over Fq for which

LC(u) = PX(u).
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Proposition 2 implies, in particular for k = 1, that we have

−N1(X) + 1 + q = |C(Fq)| − 1− q,

which is exactly the equality (12) we needed to obtain in order to show the surjec-

tivity of φ.

If q = pa for some odd prime p and some integer a ≥ 3, then not every (q + 1)-

regular Ramanujan graph on two vertices corresponds to an elliptic curve over

Fq. For instance, if p = 5 and a = 3, so that q = 53, then consider the graph

X = X(l,m), where

l = 34 and m = 58.

The graph X is 126-regular, and

PX(u) = 1− 10u+ 125u2.

Since 10 ≤ 10 ·
√

5, we have that X is a Ramanujan graph. But Theorem 6 shows

that there is no elliptic curve C defined over Fq for which LC(u) = PX(u). The

multiplicative inverses of the roots of PX(u) are

α1 = 5 + 10i and α2 = 5− 10i,

which are both Weil q-numbers that are conjugate to one another. Therefore, by

Theorem 5 there exists a simple abelian variety over Fq, say A, corresponding to

the conjugacy class of α1. Note that p1 = (1 + 2i) and p2 = (1 − 2i) are the two

distinct prime ideals of Q(i) lying above the split prime 5. Therefore, in Q(i) we

have the prime ideal factorization

(α1) = p21 · p2.

Thus, the non-trivial Hasse invariants of D = End0(A) are given by

invp1
(D) ≡ 2

3
(mod Z) and invp2

(D) ≡ 1

3
(mod Z).

It follows from Theorem 4 and Remark 1 that dim(A) = 3 and that

LA(u) = PX(u)3.

On the other hand, if we exclude the supersingular elliptic curves and the Ra-

manujan graphs X(l,m) on two vertices for which 2m ≡ 1 (mod p), then we have

the following theorem.

Theorem 9. Let q = pa, where p is an odd prime number and a is an arbitrary

positive integer. Let Ωo be the set of Fq-isogeny classes of ordinary elliptic curves

C over Fq for which |C(Fq)| ∈ 4Z, and let R1 be the set of connected (q+1)-regular
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Ramanujan graphs X(l,m) on two vertices for which 2m 6≡ 1 (mod p). The map

φ : Ωo → R1 defined via [C] 7→ φ([C]) = X(l,m), where

l =
q + 1

2
− |C(Fq)|

4
and m =

|C(Fq)|
2

,

is a one-to-one correspondence.

Proof. It suffices to recall that an elliptic curve C over Fq is supersingular if and

only if (β, p) 6= 1 (see [10, page 154]). The proof is then identical to the one for

Theorem 8.

In [1], it was shown that any elliptic curve C defined over a finite field Fq (where

q = pa for an odd prime p) satisfying |C(Fq)| ∈ 4Z is Fq-isogenous to a Legendre

elliptic curve with one possible exception. Recall that a Legendre elliptic curve C

over Fq is the projective closure of an affine curve given by an equation of the form

y2 = x(x− 1)(x− δ)

for some δ ∈ Fq r {0, 1}. For instance, if we take q = 3 and the elliptic curve C

corresponding to the affine curve

y2 = x(x− 1)(x− 2)

over F3, then we have |C(F3)| = 4. Thus, the corresponding graph X is

and counting points in C(F3k) essentially amounts to counting reduced closed paths

of length k on X via Proposition 2.

The situation when p = 2 can be studied similarly. The precise statement is the

following one and the proof is identical to the one for Theorem 8.

Theorem 10. Let q = 2a where a is any positive integer. Let Ω be the set of Fq-
isogeny classes of elliptic curves C over Fq for which |C(Fq)| ≡ 2 (mod 4), and let

R be the set of connected (q + 1)-regular Ramanujan graphs on two vertices. The

map φ : Ω→ R defined via [C] 7→ φ([C]) = X(l,m), where

l =
q + 1

2
− |C(Fq)|

4
and m =

|C(Fq)|
2

,

is a one-to-one correspondence.
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Note that an elliptic curve over F2a satisfying |C(F2a)| ≡ 2 (mod 4) is necessarily

ordinary.

Let us end this paper with the following example involving a graph with more

than two vertices. Let q = 2, and consider X = K4, the complete graph on four

vertices. The graph X is 3-regular and Spec(X) = {3,−1,−1,−1}; thus,

PX(u) = (1 + u+ 2u2)3,

and X is a 3-regular Ramanujan graph. Theorem 6 implies the existence of an

elliptic curve C over F2 for which

LC(u) = 1 + u+ 2u2.

Letting A be the non-simple abelian variety A = C3 over F2, one has

PX(u) = LA(u).

We point out that A cannot be the Jacobian variety of a curve C over F2. Indeed,

if this were the case, then by Remark 2 we would have

LC(u) = LA(u) = (1− α1u)3(1− α2u)3,

where

α1, α2 =
−1±

√
−7

2
.

Thus, we would have

ZC(u)(1− u)(1− 2u) = (1− α1u)3(1− α2u)3.

Applying the logarithm to both sides and equating the coefficients would give

|C(F2k)| = 1 + 2k − 3(αk1 + αk2),

which, in turn, would lead to

|C(F2)| = 6, |C(F4)| = 14, and |C(F8)| = −6, . . .

But this is impossible.
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