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Abstract

In 1992, Erdős and Hegyvári showed that for any prime p, there exist infinitely
many length 3 weakly prime-additive numbers divisible by p. In 2018, Fang and
Chen showed that for any positive integer m, there exist infinitely many length 3
weakly prime-additive numbers divisible by m if and only if 8 does not divide m.
Assuming the existence of a prime in certain arithmetic progressions with prescribed
primitive root, which is true under the Generalized Riemann Hypothesis (GRH),
we show that for any positive integer m, there exist infinitely many length 4 weakly
prime-additive numbers divisible by m. We also present another related result
analogous to the length 3 case shown by Fang and Chen.

1. Introduction

A number n with at least 2 distinct prime divisors is called prime-additive if

n =
∑
p|n p

ap for some ap > 0. If additionally, pap < n ≤ pap+1 for all p|n,

then n is called strongly prime-additive. In 1992, Erdős and Hegyvári [2] stated a

few examples and conjectured that there are infinitely many strongly prime-additive

numbers. However, this problem was and is still far from being solved. For exam-

ple, not even the infinitude of prime-additive numbers is known. Therefore they

introduced the following weaker version of prime-additive numbers.

Definition 1. A positive integer n is said to be weakly prime-additive if n has at

least 2 distinct prime divisors, and there exists distinct prime divisors p1, ..., pt of n

and positive integers a1, ..., at such that n = pa11 + · · ·+ patt . The minimal value of

such t is defined to be the length of n, denoted as κn.

Note that if n is a weakly prime-additive number, then κn ≥ 3. So we call

a weakly prime-additive number with length 3 a shortest weakly prime-additive

number.
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Erdős and Hegyvári [2] showed that for any prime p, there exist infinitely many

weakly prime-additive numbers divisible by p. In fact, they showed that these

weakly prime-additive numbers can be taken to be shortest weakly prime-additive

in their proof. They also showed that the number of shortest weakly prime-additive

numbers up to some integer N is at least c(logN)3 for a sufficiently small constant

c > 0.

In 2018, Fang and Chen [3] showed that for any positive integer m, there exist

infinitely many shortest weakly prime-additive numbers divisible by m if any only

if 8 does not divide m. This is Theorem 5 stated in this paper. They also showed

that for any positive integer m, there exist infinitely many weakly prime-additive

numbers with length κn ≤ 5 that are divisible by m. In the same paper, Fang and

Chen posted four open problems. The first one inquires whether, for any positive

integer m, there are infinitely many weakly prime-additive numbers n with m|n and

κn = 4. In Theorem 1 of this paper, we confirm this is true, assuming the existence

of a prime in certain arithmetic progressions with prescribed primitive root (see

assumption (∗) on p.2). This assumption is known to hold under the Generalized

Riemann Hypothesis (GRH).

Finally, it was also shown in [3] that for any distinct primes p, q, there exists a

prime r and infinitely many a, b, c such that pqr|pa + qb + rc. In Theorem 2, we

extend this result analogously to four distinct primes, subject to mild congruence

conditions, assuming the same assumption as mentioned above.

2. Main Results

Assumption (∗). Let 1 ≤ a ≤ f be positive integers with (a, f) = 1 and 4|f . Let

g be an odd prime dividing f such that
(
g
a

)
= −1 with

( ·
·
)

being the Kronecker

symbol. Then there exists a prime p such that p ≡ a (mod f) and g is a primitive

root of p.

It is known that (∗) is a consequence of the Generalized Riemann Hypothesis

(GRH), see Corollary 1 in the next section for details. Under the assumption (∗),
we have the following.

Theorem 1. Assume (∗). For any positive integer m, there exist infinitely many

weakly prime-additive numbers n with m|n and κn = 4.

Note that if a positive integer n can be expressed in the form of n = pa+qb+rc+sd

for some distinct primes p, q, r, s, and positive integers a, b, c, d such that p, q, r, s|n,

then p, q, r, s are all odd primes. We have the following theorem as a partial converse.

Theorem 2. Assume (∗). For any distinct odd primes p, q, r with one of them

≡ 3 or 5 (mod 8), there exist infinitely many prime s and infinitely many positive
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integers a, b, c, d such that

pqrs|pa + qb + rc + sd.

This is analogous to Theorem 1.4 in [3], which says that for any given distinct

primes p, q, there exists a prime r > max{p, q} and infinitely many triples (a, b, c)

of positive integers such that pqr|pa + qb + rc.

3. Preliminaries

Lemma 1 ([4, Thm 72]). (The Fermat-Euler Theorem) Let a, n be coprime positive

integers. Then

aφ(n) ≡ 1 (mod n),

where φ is the Euler totient function.

We will use the Kronecker Symbol ( ·· ), which is a generalization of the Legendre

symbol. Precisely, this is defined as follows. Let a, b be integers. If b = 0 or b = ±1,

we define (a
0

)
=

{
1 if a = ±1

0 otherwise
and

(
a

±1

)
=

{
±1 if a < 0

1 if a ≥ 0.

For the remaining cases, let b = ±pe11 · · · p
ek
k be the prime factorization of b. We

then define (a
b

)
=

(
a

±1

) k∏
i=1

(
a

pk

)ek
,

where for any prime p,

(
a

p

)
=


1 if a is a quadratic residue modulo p and a 6= 0 (mod p)

−1 if a is a quadratic nonresidue modulo p

0 if a ≡ 0 (mod p)

is the Legendre symbol.

Whenever we write (ab ) for some integers a, b, it refers to the Kronecker symbol.

We will need the following properties of the Kroncecker symbol. See, for example,

[1, p. 289-290] for a proof.

Lemma 2. Let a, b, c be any nonzero integers, and p, q be any odd primes. Let a′,

b′ be the odd part of a and b, respectively. Then we have:

1.

(
ab

c

)
=
(a
c

)(b
c

)
unless c = −1;



INTEGERS: 24 (2024) 4

2.
(a
b

)
= (−1)

a′−1
2

b′−1
2

(
b

a

)
;

3.

(
−2

p

)
=

{
1 if p ≡ 1, 3 (mod 8)

−1 if p ≡ 5, 7 (mod 8);

4.

(
a

p

)
≡ a

p−1
2 (mod p);

5.

(
p

q

)
=

(
q

p

)
unless p ≡ q ≡ 3 (mod 4);

6. If p ≡ q ≡ 3 (mod 4),

(
p

q

)
= −

(
q

p

)
.

On primes in arithmetic progressions, we have the celebrated Dirichlet’s theorem.

See, for example, [1, Chapter 1] for a proof.

Theorem 3. (Dirichlet’s Theorem) If a, d are coprime positive integers, then there

are infinitely many primes p such that p ≡ a (mod d).

Under GRH, we have the following generalization.

Theorem 4 ([5, Thm 1.3]). Let 1 ≤ a ≤ f be positive integers with (a, f) = 1. Let g

be an integer that is not equal to −1 or a square, and let h ≥ 1 be the largest integer

such that g is an hth power. Write g = g1g
2
2 with g1 square free, and g1, g2 ∈ Z.

Let

β =
g1

(g1, f)
and γ1 =

{
(−1)

β−1
2 (f, g1) if β is odd;

1 otherwise.

Let πg(x; f, a) be the number of primes p ≤ x such that p ≡ a (mod f) and g is a

primitive root (mod p). Then, assuming GRH, we have

πg(x; f, a) = δ(a, f, g)
x

log x
+Of,g

(
x log log x

log2 x

)
,

where

δ(a, f, g) =
A(a, f, h)

φ(f)

1−
(γ1
a

) µ(|β|)∏
p|β
p|h

(p− 1)
∏
p|β
p-h

(p2 − p− 1)


if one of the following holds:

• g1 ≡ 1 (mod 4),

• g1 ≡ 2 (mod 4) and 8|f

• g1 ≡ 3 (mod 4) and 4|f .
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Otherwise, we have

δ(a, f, g) =
A(a, f, h)

φ(f)
.

Here µ is the Möbius function,
( ·
·
)

is the Kronecker symbol, and

A(a, f, h) =
∏

p|(a−1,f)

(
1− 1

p

)∏
p-f
p|h

(
1− 1

p− 1

)∏
p-f
p-h

(
1− 1

p(p− 1)

)

if (a− 1, f, h) = 1, and A(a, f, h) = 0 otherwise.

Corollary 1. Assume GRH. Let a, f, g be as above and
(
g
a

)
= −1. There exists a

prime p such that p ≡ a (mod f) and g is a primitive root of p. In other words,

assumption (∗) holds true under GRH.

Proof. This corresponds to a special case of Theorem 4, with our specific conditions

on a, f, g, β = h = 1, γ1 = g. Notice that

δ(a, f, g) =
2

φ(f)

∏
p|(a−1,f)

(
1− 1

p

)∏
p-f

(
1− 1

p(p− 1)

)
> 0.

Remark 1. This shows that our result also follows from GRH, which is a much

stronger assumption than (∗).

Theorem 5 ([3, Cor 1.1]). For any positive integer m, there exist infinitely many

shortest weakly prime-additive numbers n with m|n if and only if 8 does not divide

m.

4. Proof of Theorem 1

We first prove the following weaker version of Theorem 1.

Theorem 6. Assume (∗). For any positive integer m, there exist infinitely many

weakly prime-additive numbers n with m|n and κn ≤ 4.

Proof. Let m be a positive integer. Write m = 2km1 with (m1, 2) = 1 and k ≥ 0 ∈
Z. Without loss of generality, we assume k ≥ 3. In fact, if the theorem holds when

m is replaced by 2max{3,k}m, then the theorem holds for m. We will construct

a family of distinct primes p, q, r, s and positive integers a, b, c such that each of

m, p, q, r, s divides n, where n := pa + qb + rc + s.
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Let p be an odd prime such that (p,m) = 1. By the Chinese Remainder Theorem

and Theorem 3, there exists an odd prime q such that

q ≡ 1 (mod 2kp) and q ≡ −1 (mod m1).

Similarly, we can use the same two theorems to conclude that there exists an odd

prime r such that

r ≡ 3 (mod 2k) and r ≡ 1 (mod pqm1).

Applying the Chinese Remainder Theorem again, there exists a unique integer s0
such that 1 ≤ s0 ≤ pqrm and

s0 ≡ −5 (mod 2k)

s0 ≡ −1 (mod m1)

s0 ≡ −2 (mod pqr).

Note that (s0, pqrm) = 1.

Since k ≥ 3, we have r ≡ 3 (mod 2k) and s0 ≡ −5 (mod 2k). This implies that

r ≡ 3 (mod 8) and s0 ≡ 3 (mod 8). Using Lemma 2, we observe that(
r

s0

)
=
(s0
r

)
(−1)

s0−1
2

r−1
2 = −

(s0
r

)
= −

(
−2

r

)
= −1.

Here we used s0 ≡ −2 (mod r) as s0 ≡ −2 (mod pqr). Therefore, applying Corollary

1 with a = s0, f = pqrm and g = r, there exists an odd prime s such that

s ≡ s0 (mod pqrm), and r is a primitive root of s. Consequently, s satisfies all

the previously mentioned congruence relations satisfied by s0. Furthermore, there

exists a positive integer c0 such that

rc0 ≡ −2 (mod s).

Note that by construction, p, q, r, s are all distinct odd primes.

Now for any positive integer c′, take

c = (p− 1)(q − 1)(r − 1)φ(m)c′ + c0.

For any positive odd integer b′, take

b =
1

4
(r − 1)(s− 1)b′.

Since r ≡ 3 (mod 2k) and s ≡ −5 (mod 2k), we have r, s ≡ 3 (mod 4), ensuring

that b is odd. For any positive integer a′, take

a = (q − 1)(r − 1)(s− 1)φ(m)a′,
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where φ is the Euler totient function. Finally, let

n = pa + qb + rc + s.

Note that we have the following congruence conditions:

1. As q ≡ r ≡ 1 (mod p), s ≡ −2 (mod p), we have

n ≡ pa + qb + rc + s ≡ 0 + 1 + 1− 2 ≡ 0 (mod p).

2. Since q − 1|a, Lemma 1 implies that pa ≡ 1 mod q. Hence we have

n ≡ pa + qb + rc + s ≡ 1 + 0 + 1− 2 ≡ 0 (mod q).

3. Similarly, pa ≡ 1 (mod r) as r − 1|a. Since q ≡ 1 (mod 2kp), we have

q ≡ 1 (mod 8). Applying Lemma 2 with r ≡ 3 (mod 8) and r ≡ 1 (mod q),

qb ≡ (q
1
2 (r−1))

1
2 (s−1)b

′
≡
(q
r

) 1
2 (s−1)b

′

≡
(
r

q

)
≡
(

1

q

)
≡ 1 (mod r).

So we have

n ≡ pa + qb + rc + s ≡ 1 + 1 + 0− 2 ≡ 0 (mod r).

4. Similarly, pa ≡ qb ≡ 1 (mod s). As rc ≡ −2 (mod s), we have

n ≡ pa + qb + rc + s ≡ 1 + 1− 2 + 0 ≡ 0 (mod s).

5. As φ(m)|a, Lemma 1 gives us pa ≡ 1 (mod m). Since b is odd and q ≡
−1 (mod m1), we get qb ≡ −1 (mod m1). Together with r ≡ 1 (mod m1) and

s ≡ −1 (mod m1), we have

n ≡ pa + qb + rc + s ≡ 1− 1 + 1− 1 ≡ 0 (mod m1).

6. Since pa ≡ 1 (mod m), q ≡ 1 (mod 2k), r ≡ 3 (mod 2k) and s ≡ −5 (mod 2k),

we have

n ≡ pa + qb + rc + s ≡ 1 + 1 + 3− 5 ≡ 0 (mod 2k).

As a result, n = pa + qb + rc + s is weakly prime additive and is divisible by m.

Since a′, c′ can be any positive integers, b′ can be any positive odd integer and p

can be any arbitrary odd prime that is coprime to m, we have constructed infinitely

many weakly prime-additive n with length at most 4.

Remark 2. In the above construction, s can be raised to any d-th power for any

positive integer d ≡ 1 (mod φ(pqrm)).
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Together with Theorem 5, we can now prove Theorem 1.

Proof of Theorem 1. Let m be a positive integer. By Theorem 6, there exist in-

finitely many weakly prime-additive numbers with length ≤ 4 such that they are

divisible by 8m. Since 8|8m, Theorem 5 implies that these numbers cannot be short-

est weakly prime-additive, and hence they are all weakly prime-additive numbers

with length 4.

5. Proof of Theorem 2

Let p, q, r be distinct odd primes, with one of them, WLOG say r, satisfying r ≡ 3 or

5 (mod 8). Let k be the positive integer such that (p−1)(q−1)
2k

is odd. We denote this

value as A = (p−1)(q−1)
2k

and set f = 8Apqr. By the Chinese Remainder Theorem,

there exists a unique integer s0 such that 1 ≤ s0 ≤ f and

s0 ≡ 3 (mod 8)

s0 ≡ −2 (mod Apqr).

Using Lemma 2 and the condition that r ≡ 3 or 5 (mod 8), we have(
r

s0

)
= (−1)

r−1
2

s0−1
2

(s0
r

)
= (−1)

r−1
2

(
−2

r

)
= −1.

Applying Theorem 3 with the above a, f , and g = r, there exists an odd prime s

such that

s ≡ s0 (mod 8Apqr) and r is a primitive root of s. In other words, r generates

(Z/(sZ))∗ and hence there exists 0 < c0 < s− 1 such that

rc0 ≡ −2 (mod s).

Since s ≡ 3 (mod 8), we have
(−2
s

)
= 1, implying that c0 must be even.

Now by the Chinese Remainder Theorem, take any positive integer c such that

c ≡ c0 (mod
s− 1

2
)

c ≡ 0 (mod (p− 1)(q − 1)).

This is feasible because s ≡ 3 (mod 8) and s ≡ −2 (mod A), ensuring that ( s−12 , (p−
1)(q − 1)) = 1. Since c0 is even and s−1

2 is odd, this makes c ≡ c0 (mod s − 1).

Thus, we obtain rc ≡ −2 (mod s) and rc ≡ 1 (mod pq).
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Finally, for any positive integers a, b, d such that (q − 1)(r − 1)(s − 1)|a, (p −
1)(r − 1)(s− 1)|b, d ≡ 1 (mod (p− 1)(q − 1)(r − 1)), we have the following:

pa + qb + rc + sd ≡ 0 + 1 + 1− 2 ≡ 0 (mod p)

pa + qb + rc + sd ≡ 1 + 0 + 1− 2 ≡ 0 (mod q)

pa + qb + rc + sd ≡ 1 + 1 + 0− 2 ≡ 0 (mod r)

pa + qb + rc + sd ≡ 1 + 1− 2 + 0 ≡ 0 (mod s)

Therefore, for any positive integers a, b, c, d as above, we have

pqrs|pa + qb + rc + sd.
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