Sampling in reproducing kernel Banach spaces on Lie groups

Jens Gerlach Christensen

Banff Saturday October 9 2010

Jens Gerlach Christensen Sampling in reproducing kernel Banach spaces on Lie groups

Idea: Some irregular sampling theorems for band limited functions use smoothness to obtain sampling results (for example Gröchenig and Pesenson). Extend these results to reproducing kernel Banach spaces on Lie groups.

Plan for talk:

- Reproducing kernel Banach spaces
- Smoothness of functions and sampling
- Smoothness of kernel and sampling
- Application to coorbit theory

Let G be a Lie group with left Haar measure dx. B is a solid Banach function space on G for which convergence in B implies convergence locally in measure. Denote the dual of B by B^* . Assume that $0 \neq \phi \in B \cap B^*$ satisfies

$$\phi * \phi(x) = \int \phi(y)\phi(y^{-1}x) \, dy = \phi(x)$$

then

$$B_{\phi} = \{ f \in B \mid f = f * \phi \}$$

is a reproducing kernel Banach subspace of B.

We will investigate approximation of $f \in B_{\phi}$ by sums of the type

$$\sum_{i} f(x_i) \psi_i$$

where $0 \le \psi_i \le 1_{x_i U}$ is a partition of unity. Fix a basis X_1, \ldots, X_n for g and define

$$U_{\epsilon} = \{ e^{t_1 X_1} \cdots e^{t_n X_n} \mid -\epsilon \leq t_k \leq \epsilon \}$$

Let x_i be such that $x_i U_{\epsilon}$ have the finite covering property of G and find a partition of unity $0 \le \psi_i \le 1_{x_i U_{\epsilon}}$.

Define right and left differentiation in the direction X as

$$R(X)f(x) = \frac{d}{dt}\Big|_{t=0} f(xe^{tX}) \qquad L(X)f(x) = \frac{d}{dt}\Big|_{t=0} f(e^{tX}x)$$

For $|\alpha| = m$ define

$$R^{\alpha}f = R_{X_{\alpha(1)}}R_{X_{\alpha(2)}}\cdots R_{X_{\alpha(m)}}f \qquad L^{\alpha}f = L_{X_{\alpha(1)}}L_{X_{\alpha(2)}}\cdots L_{X_{\alpha(m)}}f$$

Lemma: If $f \in B$ is smooth with right derivatives in B then

$$\|f - \sum_i f(x_i)\psi_i\|_B \leq C_\epsilon \sum_{|lpha| \leq \dim(G)} \|R^lpha f\|_B$$

where $C_{\epsilon} \rightarrow 0$ as $\epsilon \rightarrow 0$.

Proof for (ax + b)-group

Let X_1 and X_2 be such that

$$e^{tX_1} = \begin{pmatrix} e^t & 0 \\ 0 & 1 \end{pmatrix}$$
 and $e^{tX_2} = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$

Then for $x \in x_i U_{\epsilon}$ we have

$$\begin{aligned} |f(x) - f(x_i)| &= |f(x) - f(xe^{s_2X_2}e^{s_1X_1})| \\ &\leq |f(x) - f(xe^{s_2X_2})| + |f(xe^{s_2X_2}) - f(xe^{s_2X_2}e^{s_1X_1})| \\ &\leq \int_{-\epsilon}^{\epsilon} |R(X_2)f(xe^{tX_2})| \, dt + \int_{-\epsilon}^{\epsilon} |R(X_1)f(xe^{s_2X_2}e^{tX_1})| \, dt \\ &= \int_{-\epsilon}^{\epsilon} |R(X_2)f(xe^{tX_2})| \, dt + \int_{-\epsilon}^{\epsilon} |R(X_1)f(xe^{tX_1}e^{s_2e^{-t}X_2})| \, dt. \end{aligned}$$

since $e^{s_2X_2}e^{tX_1} = e^{tX_1}e^{s_2e^{-t}X_2}$ or $Ad_{e^{tX_1}}(X_2) = e^{-t}X_2$.

Proof for (ax + b)-group

$$\begin{aligned} |R(X_1)f(xe^{s_2X_2}e^{tX_1})| \\ &\leq |R(X_1)f(xe^{tX_1}e^{s_2e^{-t}X_2}) - R(X_1)f(xe^{tX_1})| + |R(X_1)f(xe^{tX_1})| \\ &\leq \int_{-\epsilon}^{\epsilon} e^{-t}|R(X_2)R(X_1)f(xe^{tX_1}e^{se^{-t}X_2})|\,ds + |R(X_1)f(xe^{tX_1})|. \end{aligned}$$

We finally get

$$\begin{split} |f(x) - f(x_i)| &\leq \int_{-\epsilon}^{\epsilon} |R(X_2)f(xe^{tX_2})| \, dt \\ &+ \int_{-\epsilon}^{\epsilon} \int_{-\epsilon}^{\epsilon} e^{-t} |R(X_2)R(X_1)f(xe^{sX_2}e^{tX_1})| \, dt \, ds \\ &+ \int_{-\epsilon}^{\epsilon} |R(X_1)f(xe^{tX_1})| \, dt \end{split}$$

If convolution with $\boldsymbol{\phi}$ is continuous we have

$$\|f - \sum_{i} f(x_{i})\psi_{i} * \phi\|_{B_{\phi}} \leq C_{\epsilon} \sum_{|\alpha| \leq (dim)(G)} \|R^{\alpha}f\|_{B}$$

where $C_{\epsilon} \rightarrow 0$ as $\epsilon \rightarrow 0$.

Theorem: If right differentiation $B_{\phi} \rightarrow B$ is continuous then by choosing ϵ small enough the operator

$$T_1f=\sum_i f(x_i)\psi_i*\phi$$

becomes invertible on B_{ϕ} .

Smoothness of the kernel

Evaluating the local oscillations of the kernel we can obtain sampling theorems involving derivatives of the kernel. **Theorem:** If $B \ni f \mapsto f * |R^{\alpha}\phi| \in B$ is continuous for $|\alpha| \leq \dim(G)$ then we can choose points x_i close enough that T_1 is invertible on B_{ϕ} .

By similar estimates we can discretize the reproducing formula $f = f * \phi$

Theorem: If $B \ni f \mapsto f * |L^{\alpha}\phi| \in B$ and $B \ni f \mapsto f * |R^{\alpha}\phi| \in B$ are continuous for $|\alpha| \leq \dim(G)$ then we can choose points x_i close enough that the following operator is invertible on B_{ϕ} .

$$T_2f=\sum_i c_i f(x_i)\ell_{x_i}\phi$$

Norbert Wiener Center for Harmonic Analysis and Applications

where $c_i = \int \psi_i$

Coorbits

Let π be a representation of G on a Fréchet space S which is weakly dense in its conjugate dual S^* . For a non-zero $u \in S$ define the wavelet transform

$$W_u(v)(x) = \langle v, \pi(x)u \rangle$$

lf

$$W_u(v) * W_u(u) = W_u(v) \quad \text{for all } v \in S^*, \text{ and}$$
(1)
$$B \times S \ni (F, v) \mapsto \int F(x) W_u(v)(x^{-1}) \, dx \in \mathbb{C} \text{ is continuous}$$
(2)

then

$$\operatorname{Co}_{S}^{u}B = \{v \in S^{*} \mid W_{u}(v) \in B\}$$

is a Banach space isometrically isomorphic to the reproducing kernel Banach space B_{ϕ} with $\phi(x) = \langle u, \pi(x)u \rangle$.

Let (π, H) be a square integrable representation and (S, H, S^*) a Gelfand triple such that (1) and (2) are satisfied. If $B \ni F \mapsto F * |W_u(u)| \in B$ is continuous, then any non-zero Gårding vector $\pi(g)u = \int g(x)\pi(x)u \, dx$ for $g \in C_c^{\infty}(G)$ defines the same coorbit space (norm equivalence)

$$\mathrm{Co}_{S}^{u}B = \mathrm{Co}_{S}^{\pi(g)u}B$$

Since $\phi(x) = W_{\pi(g)u}(\pi(g)u) = g * W_u(u) * g^*$ all the derivatives of ϕ satisfy the sampling theorems.

Theorem: If $B \ni f \mapsto F * |W_u(u)| \in B$ is continuous, then for any Gårding vector \tilde{u} it holds that $\psi \in \operatorname{Co}_S^{\tilde{u}} B$ can be reconstructed from the samples $W_{\tilde{u}}(\psi)(x_i)$ if x_i are chosen close enough.

In particular the operators $T_k : B_{\widetilde{u}} \to B_{\widetilde{u}}$ are invertible.

Thus $\pi(x_i)\tilde{u}$ provides both a frame and an atomic decomposition for $\operatorname{Co}_{S}^{\tilde{u}}B$ (and $\operatorname{Co}_{S}^{u}B$).

