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Abstract. This is a survey about invariant integration on locally
compact groups and its uses. The existence of a left invariant reg-
ular Borel measure on locally compact Hausdorff groups is proved.
It is also proved that this measure is unique in some sense. A few
examples of interesting locally compact groups are given.

Introduction

An important property of the Lebesgue measure on Rn is that it is
translation invariant. This means that translation of a measurable set
does not change the value of its measure.

Invariant measures are important tools in many areas of mathe-
matics. For example the uncertainty principle related to Lie groups
presented in [1] does not include any statements about an invariant
measure, but the measure plays an important role in proving the the-
orem. On a Lie group we can construct an invariant measure from the
Lebesgue measure on the Lie algebra. As will be shown in this paper
the group structure also gives rise to an invariant measure. That these
two measures are essentially the same then follows from the uniqueness
statement also to be found in the present paper.

It is interesting to see how the Lebesgue measure on Rn can be
generalised to groups.

I would like to thank my supervisor Prof. Gestur Ólafsson for his
proofreading and guidance.

1. Locally compact groups

In this section we introduce the notion of locally compact groups and
regular measures.

Definition 1.1. If G is a group and T is a topology on G such that
(x, y) 7→ x−1 · y is a continuous map from G×G → G then G is called
a topological group.
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The topology T is locally compact if every open set contains a com-
pact set with non-empty interior. It is called Hausdorff if for all x 6= y
there are disjoint open sets U and V such that x ∈ U and y ∈ V .

Example 1.2. The following are examples of locally compact topolog-
ical groups.

(1) Let T be the topology given by the usual metric d(x, y) = |x−y|
on Rn, then Rn with addition is a locally compact Hausdorff
group.

(2) Let T |R+ be the topology above restricted to R+ then R+ with
multiplication is a locally compact Hausdorff group.

(3) The general linear group GLn(R) with the topology it inherits

from Rn2
is a locally compact toplogical group. The same holds

for all subgroups of GLn(R).
(4) The (ax + b)-group is the group of affine transformations of R.

It can be viewed as the subgroup of GL2(R) given by

G =

{(
a b
0 1

)
|a > 0 and b ∈ R

}
It is a group with many applications one of which is wavelet
theory (for more references on this see [7]).

(5) The subgroup of GLn+2(R) consisting of elements of the form1 xt z
0 1 y
0 0 1


where x, y ∈ Rn and z ∈ R is called the Heisenberg group. This
group is used in harmonic analysis as can be seen in [4].

Notice that the first two groups are abelian while the last three groups
are not abelian.

Now follows a basic separation result for locally compact Hausdorff
groups, which will be used later in the text.

Theorem 1.3. If C and D are disjoint compact subsets of a locally
compact Hausdorff group G then there are disjoint open sets U and V
such that C ⊆ U and D ⊆ V .

Proof. Let x ∈ C and y ∈ D. Since G is Hausdorff there are disjoint
open sets U and V such that x ∈ Uxy and y ∈ Vxy. A finite amount of
Vxy cover D so the finite intersection Ux = ∩yUxy is open and contains
x. U does not intersect Vx = ∪yVxy. Now pick a finite number of Ux to
cover C. Then the set U = ∪xUx does not intersect V = ∩xVx, and it
holds that C ⊆ U and D ⊆ V . �
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Now let us look at a few definitions regarding measures. I assume
the reader has very basic knowledge of measure theory.

Definition 1.4. A Borel measure µ on a locally compact space is called
regular when it holds that

(1) every compact set is µ-measurable;
(2) if A is measurable then µ(A) = inf{µ(U)|A ⊆ U , U open};
(3) µ(U) = sup{µ(C)|C ⊆ U , C compact} for each open set U .

Definition 1.5. A regular Borel measure µ on a locally compact group
G is called a left Haar measure if

(1) µ is not the zero measure;
(2) the measure of a compact set is finite;
(3) for every x ∈ G and all measurable sets E the left translate xE

is measurable and µ(xE) = µ(E).

2. Existence and uniqueness of invariant measure

From now on let G denote a locally compact Hausdorff group. In
this section we show the existence of a left Haar measure on G. This
proof follows the development in [6]. Haar first showed this result for
second countable locally compact groups, and A. Weil later generalised
to locally compact groups. The main result is the following

Theorem 2.1 (Main result). For every locally compact Hausdorff
group there exists a left Haar measure. If µ and ν are two left Haar
measures on G then there is a c > 0 such that ν = cµ.

Let C be compact and N an open neighborhood of the identity e.
Then C ⊆ ∪x∈CxN is an open covering of C. The set C is compact so
a finite covering exists and we can therefore talk about a smallest such
covering

(1) (C : N) = the smallest amount of tranlates of N covering C

Now let C0 be a compact neighborhood of e, we then get a measure for
how many copies of C0 we need to cover C by

(2) τN(C) =
(C : N)

(C0 : N)

Lemma 2.2. Let C0 be a compact neighborhood of e and N an open
neighorhood of e. If C and D are compact then we have

(1) τN(xC) = τN(C) for x ∈ G;
(2) 0 ≤ τN(C) < ∞;
(3) if C ⊆ D then τN(C) ≤ τN(D);
(4) τN(C ∪D) ≤ τN(C) + τN(D);
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(5) τN(C ∪D) = τN(C) + τN(D) if; CN−1 ∩DN−1 = ∅.

Apart from the last property τN is very close to being what is called
a content (defined on p. 348 [8]).

Proof. The first property is due to the fact that a covering of C can
be translated by x to cover xC. A covering of xC covers C after
translation by x−1. Thus (xC : N) = (C : N). The second and third
property are easily verified by the definition of τN . A covering of C
and a covering of D together cover C ∪ D and so the fourth propery
follows. If CN−1 ∩ DN−1 = ∅ then xN ∩ D = ∅ for x ∈ C. Thus
no covering set of C can be used to cover D. The same holds for the
covering sets of D. Therefore (C : N) + (D : N) = (C ∪D : N) which
proves the fifth and last property. �

The next step is to eliminate the use of the open set N . To do this
we need the following

Lemma 2.3. Given a compact neighbourhood C0 of e and a compact
set C there is a compact interval [0, kC ] such that τN(C) ∈ [0, kC ] for
all neighborhoods N of e.

Proof. Let kC be the smallest amount of translations of C◦
0 covering C.

For every open neighbourhood N of e the amount of translates of N
covering C is less than kC(C0 : N). Therefore (C : N) ≤ kC(C0 : N)
which proves the claim. �

This shows why it was important to define τN using the compact set
C0. From now on let C0 be a fixed compact neighbourhood of e and let
K denote the set of all compact subsets of G. By Tychonoffs theorem
([5, Theorem 37.3]) the product space

(3) P = ΠC∈K[0, kC ]

is compact in the product topology. Define the subset TN of P by

TN = {τM |M ⊆ N and M is an open neighborhood of e}
If M1, . . . ,Mn are open neighborhoods of e then M = ∩n

i=1Mi is again
open so TM ∈ ∩n

i=1TMi
. Thus TN is closed under finite intersections so

T̄N are closed sets which have the finite intersection property. Theorem
26.9 in [5] then gives that ∩N T̄N 6= ∅. Choose a τ0 in ∩N T̄N .

Theorem 2.4. With τ0 chosen as above and C and D compact it holds
that

(1) τ0(C ∪D) ≤ τ0(C) + τ0(D)
(2) τ0(C ∪D) = τ0(C) + τ0(D) if C ∩D = ∅
(3) If C ⊆ D then τ0(C) ≤ τ0(D)
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(4) τ0(xC) = τ0(C) for every x ∈ G
(5) τ0(C0) = 1

Proof. Let P be given as in (3). The topology on P is defined such
that for every compact set C the mapping fC : P → R given by
fC(σ) = τ(C) is continuous. The set A1 = {σ : σ(C ∪ D) ≤ σ(C) +
σ(D), C,D compact} is closed since it is equal to g−1([0,∞[) for g =
fC + fD − fC∩D. By 4 in Lemma 2.2 it follows that τN ∈ A1 for every
neighbourhood N of e. So TN ⊆ A1 for every N and since A1 is closed
T̄N ⊆ A1. τ0 is in T̄N for all N and so τ0 ∈ A1.

Let A2 = {σ : σ(C ∪D) = σ(C) + σ(D)C, D disjoint } which is the
closed set g−1({0}). For disjoint C and D there is an neighbourhood
N0 such that CN−1

0 ∩DN−1
0 = ∅. Thus T̄N0 ⊆ A2 and τ0 ∈ T̄N0 .

Let A3 = {σ : σ(C) ≤ σ(D), C ⊆ D} then TN ⊆ A3 for every N . A3

is closed since it is g−1([0,∞[) for g = fD − fC . So τ0 ∈ T̄N ⊆ A3.
A4 = {σ : σ(xC) = σ(C)} = g−1({0}) for g = fxC − fC is closed. An

argument similar to the previous shows that τ0 ∈ A4.
A5 = {σ : σ(C0) = 1} = g−1({1}) for g = fC0 . Note that τC◦

0
(C0) = 1

so T̄C◦
0
⊆ A5. Thus τ0 ∈ A5. �

To obtain a regular measure the following will be of great importance.

(4) τ(U) = sup{τ0(D)|D ⊆ U,D is compact}

Lemma 2.5. If U and V are open sets then τ(U ∪ V ) ⊆ τ(U) + τ(V ).

Proof. Let E ⊆ U ∪ V be a compact. The sets E \ U and E \ V
are disjoint and compact (they are closed subsets of E). Therefore by
Theorem 1.3 there are open disjoint sets O1 and O2 such that E \U ⊆
O1 and E \ V ⊆ O2. Then it holds that E \ O1 ⊆ U and E \ O2 ⊆ V
and moreover (E \O1) ∪ (E \O2) = E. From this it follows that

τ0(E) ≤ τ0(E \O1) + τ0(E \O2) ≤ τ(U) + τ(V ).

This holds for all compact subsets E of U ∪V and so the claim follows
when we take the supremum over such E. �

After this we can define an outer measure µ∗ by

(5) µ∗(A) = inf
{∑

τ(Ui)|A ⊆ ∪∞i=1Ui, Ui ∈ T
}

for every subset A of G.
A set B is called µ∗-measurable if

(6) µ∗(A) ≥ µ∗(A ∩B) + µ∗(A \B)

for all subsets A of G. The importance of µ∗-measurable sets is ex-
plained in the following theorem.
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Theorem 2.6. The set function µ∗ as defined above is an outer mea-
sure. The set M of µ∗-measurable sets is a σ-algebra and µ∗ restricted
to M is a measure in G.

Proof. Since ∅ is open it follows that µ∗(∅) = τ(∅) = 0. Also from the
definition of τ it is easy to see that if A ⊆ B then µ∗(A) ≤ µ∗(B) since
a compact covering of B also covers A. µ∗ is countably sub additive
i.e.

µ∗(∪∞i=1Ai) ≤
∞∑
i=1

µ∗(Ai),

since if U j
i is a countable covering of Ai then ∪i,jU

j
i will also be a

countable covering of ∪iAi.
The last claim of the theorem is called Caratheodory’s Theorem

which is the Theorem on page 289 in [8].
�

Lemma 2.7. If C is compact then µ∗(C) ≥ τ0(C).

Proof. Let ∪∞i=1Ui be an open cover of C and let ∪n
j=1Uij be a subcover.

Since

τ(∪n
j=1Uij = sup{τ0(D)|D ⊆ ∪n

j=1Uijwhere D is compact }
it is true that τ0(C) ≤ τ(∪n

j=1Uij). From lemma 2.5 we get

τ(∪n
j=1Uij) ≤

n∑
j=1

τ(Uij) ≤
∑

i

τ(Ui)

and thus τ0(C) ≤ µ∗(C). �

Theorem 2.8. Every closed set is µ∗-measurable and µ∗ restricted to
the Borel sets is thus a regular Borel measure. The measure is left
invariant Haar measure.

Proof. To show that every closed set F is µ∗-measurable we start by
showing that

µ∗(U) ≥ µ∗(F \ U) + µ∗(F ∩ U)

for all open sets U . Pick compact sets D and E such that D ⊆ F \ U
and E ⊆ F ∩ U . Then D and E are disjoint and so

µ∗(U) ≥ µ∗(D ∪ E) ≥ τ0(D ∪ E) = τ0(D) + τ0(E)

Let D be given and take the supremum over compact E with E ⊆ U \D
we get µ∗(U) ≥ τ0(D)+ τ(U \D) and since U \D is open and contains
U ∩ F we have

µ∗(U) ≥ τ0(D) + µ∗(U ∩ F )
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by the definition of µ∗. Next take the supremum over compact sets D
with D ⊆ U \ F to

µ∗(U) ≥ τ(U \ F ) + µ∗(U ∩ F ) ≥ µ∗(U \ F ) + µ∗(U ∩ F )

Now let A be any subset of G. If µ∗(A) = ∞ the inequality (6) clearly
holds. So assume that µ∗(A) < ∞. For each ε > 0 the definition of the
outer measure ensures that there is an open covering A ⊆ ∪∞i=1Ui such
that µ∗(A) + ε >

∑∞
i=1 τ(Ui). Then it follows that

µ∗(A) + ε >

∞∑
i=1

τ(Ui) ≥
∞∑
i=1

µ∗(Ui) ≥
∞∑
i=1

µ∗(Ui \ F ) + µ∗(Ui ∩ F )

≥ µ∗((∪∞i=1Ui) \ F ) + µ∗((∪∞i=1Ui) ∩ F )

≥ µ∗(A \ F ) + µ∗(A ∩ F ).

This holds for any ε > 0 which proves that F is µ∗-measurable.
Next I have to check that the restriction of µ∗ to the Borel sets (σ-

algebra generated by the closed sets) is a regular measure. Let A be
µ-measurable with µ(A) < ∞. For ε > 0 choose a countable open
covering ∪i∈IUi such that µ(A) + ε >

∑
i∈I τ(Ui). The subadditivity of

µ then gives µ(A) + ε > µ(∪i∈IUi) and since ∪i∈IUi is open it follows
that µ(A) + ε > inf{µ(U) : U open and A ⊆ U}. This shows the outer
regularity of µ. If C is a compact subset of an open set U , then µ(C) ≤
µ(U) and so µ(U) ≥ sup{µ(D) : compact D ⊆ U}. Also τ0(C) ≤ µ(C)
and µ(U) ≤ τ(U) so

µ(U) ≤ τ(U) = sup{τ0(D) : compact D ⊆ U}
≤ sup{µ(D) : compact D ⊆ U}

This shows that µ is inner regular.
Since µ(C0) ≥ τ0(C0) = 1 µ is not the zero measure. By the definition

of τ0 it follows that τ0(C) is finite for all compact sets C. If D is a
compact set then it can be covered by a finite number of translates
xiD

◦. The set C = ∪xiD is compact and D ⊆ ∪xiD
◦ ⊆ C◦. It then

holds that
µ(D) ≤ τ(C◦) ≤ τ0(C) < ∞

where we use that τ(C◦) ≤ τ0(C), which is true since for compact
E ⊆ C◦ ⊆ C and then τ0(E) ≤ τ0(C).

The left invariance of µ follows from the left invariance of τ0. �

Thus the existence of a left Haar measure has been proved for locally
compact Hausdorff groups.

Remark 2.9. Assume that G is not Hausdorff and let H = {e}. Then
H is a closed normal subgroup of G and so G/H is a Hausdorff group
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and thus has a left Haar measure µ. Let κ : G → G/H be the canonical
homomorphism. If we set µ̄(A) = µ(κ(A)) for all Borel sets A then we
obtain a left Haar measure µ̄ on G.

The following theorem gives the precise statement for uniqueness of
a left Haar measure on G.

Theorem 2.10. Let G be a locally compact Hausdorff group and let
µ and ν be left Haar measures on G. Then there is a c > 0 such that
ν = cµ.

Proof. Let g be a non-zero function in Cc(G) with g(x) ≥ 0 for all
x ∈ G and let f ∈ Cc(G).

First note that
∫

gdµ > 0. Let U be a non-empty open set. By the
definition of a left Haar measure there is a compact set C with positive
measure. Let ∪n

i=1xiU be a finite covering of C. Then 0 < µ(K) ⊆∑n
i=1 µ(xiU) = nµ(U) which shows that µ(U) > 0. So since g ≥ 0 is

not the zero-function it follows that
∫

gdµ > 0.

Also note that
∫

fdµ∫
gdµ

does not depend on the measure µ. This is seen

by defining

h(x, y) =
f(x)g(yx)∫
g(zx)dν(z)

which has compact support since
∫

g(zx)dν(z) > 0. Integration gives∫
f(x)dµ(x) =

∫∫
f(x)g(yx)∫
g(zx)dν(z)

dν(y)dµ(x)

=

∫∫
f(y−1x)g(x)∫
g(zy−1x)dν(z)

dµ(x)dν(y)

=

∫∫
f(y−1)g(x)∫
g(zy−1)dν(z)

dµ(x)dν(y)

=

∫
g(x)dµ(x)

∫
f(y−1)∫

g(zy−1)dν(z)
dν(y)

The first equality is verified by calculation, the second follows from use
of Fubini’s theorem (see [8] p. 307) and the substitution x 7→ y−1x.
The third equality is also due to Fubini’s theorem and the substitution

y 7→ xy. It shows that the fraction
∫

fdµ∫
gdµ

does not depend on µ. So

we can conclude that
∫

fdµ∫
gdµ

=
∫

fdν∫
gdν

. So for all f ∈ Cc(G) it holds that∫
fdν = c

∫
fdµ. It can be shown that for regular measures µ the

following is true µ(U) = sup{
∫

fdµ : f ∈ Cc(G), 0 ≤ f ≤ 1U} for open
sets U . See the proof of the Riesz-Markov theorem on page 352 in [8]
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for further details. Thus it follows that ν = cµ on all open sets and
thus on all Borel sets. �
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