
CONVOLUTION ON Lp.

JENS GERLACH CHRISTENSEN

1. Introduction.

This paper will look in depth at the Lp-conjecture and Young’s in-
equality. It’s based on an article from 1990 by Sadahiro Saeki. I chose
to write it in english to get some practise in written english. Unfortu-
nately the article is very thorough and precise, so it’s been very hard
to get my personal style through. It might sometimes look like I’m just
retyping the article. But on to more important things.

The Lp-conjecture concerns general locally compact groups. It states
that if Lp(G) is closed under convolution for a p ∈]0,∞[, then G is
compact. Young’s inequality (1) is well known, but I haven’t seen it
before in my studies so I prove it here. The proof is taken from (20.18)
in [2].

(1) ‖f ∗ g‖r ≤ ‖f‖p‖g‖q.
The last part looks at the sharpness of Young’s inequality for locally
compact abelian groups (LCA). The commutativity enables us to use
some classifications of LCA-groups that will not be proved here. I
investigate the indices p, q, r for which Young’s inequality holds.

2. Introductory results.

Theorem 2.1. If inf ∆(G) > 0, then G is unimodular.

Proof. Assume G is not unimodular. Let a ∈ G has ∆(a) < 1. Such
an a exists for if ∆(a) > 1 (there exists an ∆(a) 6= 1 since G is not uni-
modular) we can choose a−1. But then ∆(an) → 0, which contradicts
the fact that inf ∆(G) > 0. �

∞∑

k=2

1

k log2 k
<∞

since ∫ ∞

2

1

k log2 k
dk =

∫ ∞

log 2

x−2dx = [x−1]∞log 2 =
1

log 2
<∞
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Also
∞∑

k=3

log−2q k =∞

by the following:

∫ ∞

3

log−2q kdk =

∫ ∞

log 3

y−2qeydy =∞ since y−2qey →∞.

Theorem 2.2. Let G be a locally compact group. If G is not compact
there exists a sequence of symmetric sets Wn with e ∈ Wn such that
λ(Wn)→∞.

Proof. Let U ⊆ G be compact with e ∈ U . There exists a compact
symmetric set V such that V V ⊆ U (see bachelorproject). Choose
g1 ∈ G \ U . Then g1V ∩ V = ∅. Let V1 = g1V ∪ V and U1 = g1U ∪ U .
Next let g2 ∈ G \ U1. Again g2V1 ∩ V1 = ∅. Defining V2 = g1V1 ∪ V1

and so on it’s seen that

λ(Vn) =

n∑

k=0

λ(V ) = (n+ 1)λ(V ).

Since G is not compact it’s always possible to find a new gn. Therefore
λ(Vn) → ∞. Choosing Wn = Vn ∪ V −1

n we get a sequence of compact
symmetric subsets of G with λ(Wn)→∞. �

3. The Lp-conjecture.

Let me start by stating the theorem:

Theorem 3.1. Let G be a locally compact Hausdorff group. If there
exists a p ∈]1,∞[ such that f ∗ g ∈ Lp(G) for all symmetric functions
f, g ∈ Lp(G), then G is compact.

Building up to the proof we need some lemmas, but first an introduc-
tion to the notation used. A function f is symmetric if f(x) = f(x−1)
for all x ∈ G. The Haar measure on G is λ and the measure of a mea-
surable set A is λ(A). 1A is the characteristic function for any subset
A of G.

Lemma 3.2. For a compact symmetric subset A of G and m,n ≥ 1,
we have

(2) λ(A)2λ(Am+n) ≤ λ(A4)λ(Am)λ(An).
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Proof. Let m ≥ 1. For k, l ≥ 0, k ≤ m and x ∈ Al+2k. (this means
that x = abc with a, b ∈ Ak and c ∈ Al, with A0 = {e}), follows :

1Am ∗ 1Am+l(x) =

∫
1Am(y) ∗ 1Am+l(x− y)dy

= λ(Am ∩ xAm+l) since A = A−1

= λ(Am ∩ abcAm+l)

≥ λ(Am ∩ abAm)

= λ(a−1Am ∩ bAm) λ is a Haar-measure

≥ λ(Am−k)

It was twice used, that aAm ⊇ Am−k for all a ∈ Ak. This is true
because Am = ∪a∈AkaAm−k, which means that a−1Am ⊇ Am−k for all
a ∈ Ak and at last note that A = A−1. Integrating over Al+2k gives

λ(Am−k)λ(Al+2k) ≤
∫

Al+2k

1Am ∗ 1Am+l(x)dx

≤
∫

G

1Am ∗ 1Am+l(x)dx = λ(Am)λ(Am+l).

With k = m− 1 this is:

(3) λ(A)λ(Al+2m−2) ≤ λ(Am)λ(Am+l).

Inserting m = 4 into (3) gives λ(A)λ(Al+6) ≤ λ(A4)λ(Al+4). Since
l ≥ 1 substitution with j ≥ 6 gives

(4) λ(A)λ(Aj) ≤ λ(A4)λ(Aj−2).

The inequality obviously holds for j = 3 adn j = 4. For j = 5 look
at (3) with m = 3 and l = 1. Since the inequality in question clearly
holds for m = n = 1, we can now look at m+ n ≥ 3 with m ≤ n:

λ(A)2λ(Am+n) ≤ λ(A)λ(A4)λ(Am+n−2) by (4)

= λ(A)λ(A4)λ(A2m+l−2) l = n−m
≤ λ(A4)λ(Am)λ(An) by (3).

�

From now on we use p′ = p/(p− 1). With p′ = 1 if p =∞.
Lemma 3.3. Let p, q, r ∈ [1,∞] be such that p−1 + q−1 + r−1 6= 1. If
Lps ∗Lqs ⊆ Lr (f ∗ g ∈ Lr for all f ∈ Lp, g ∈ Lq), then G is unimodular,
Lp ∗ Lq ⊆ Lr and there is a C0 > 0 such that

(5) ‖f ∗ g‖r ≤ C0‖f‖p‖g‖q for f ∈ Lp and g ∈ Lq.
Proof. Let f ∈ Lps and g ∈ Lqs. Since Tf : g 7→ f ∗ g is linear and
‖Tf‖ = sup{‖f ∗ g‖r|‖g‖q ≤ 1} <∞ , there is a Cf such that ‖Tfg‖ =
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‖f ∗ g‖r ≤ Cf‖g‖q. If ‖f‖p = 0 then ‖Tf‖ = 0. By inserting C =
Cf/‖f‖p the following holds

(6) ‖f ∗ g‖r ≤ C‖f‖p‖g‖q, with C <∞.

for all symmetric f, g.
First notice that for f ∈ Lr, the calcule applies

f ∗ δb(x) =

∫
f(y)δb(y

−1x)dy

=

∫
∆(y−1)f(y−1)δb(yx)dy

=

∫
∆(y−1x)f(xy−1)δb(y)∆(x−1)dy

=

∫
∆(y−1)f(xy−1)δb(y)dy

= f(xb−1)∆(b−1)

and therefore

‖f ∗ δb‖rr = ∆(b−p)

∫
‖f(xb−1)‖rdx

= ∆(b−p)∆(b)

∫
‖f(x)‖rdx = ∆(b)1−p‖f‖rr

By similar calculations it is seen that

∆(a)1/r′‖f ∗ g‖r = ‖f ∗ g ∗ δb‖r
= ‖(δa ∗ f ∗ δb) ∗ (δa ∗ g ∗ δb)‖r
≤ C‖δa ∗ f ∗ δb‖p‖δa ∗ g ∗ δb‖q
= C∆(a)1/p′‖f‖p∆(a)1/q′‖g‖q

Since f ∗ g is a possitive function and 1/r′ 6= 1/p′+ 1/q′ it follows that
∆(a) ≥ ε > 0 for all a ∈ G. By Theorem 2.1 G is unimodular, and
thus ‖f‖p = ‖f̌‖p and ‖g‖q = ‖ǧ‖q for f ∈ Lp and g ∈ Lq. Therefore

‖f ∗ g‖r ≤ ‖|f | ∗ |g|‖r ≤ ‖(|f |+ |f̌ |) ∗ (|g|+ |ǧ|)‖r
≤ C‖|f |+ |f̌ |‖p‖|g|+ |ǧ|‖q ≤ 4C‖f‖p‖g‖q.

Take C0 = 4C and the lemma is proved. �

Lemma 3.4. Let p, q, r and C0 be as in Lemma 3.3 then for all compact
A,B ⊆ G the following holds

(7) (λ(A)λ(B))1/p′+1/q′ ≤ C2
0λ(AB)2/r′ .
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Proof.

λ(A)λ(B) =

∫
1A ∗ 1B(x)dx

=

∫
1AB(x)1A ∗ 1B(x)dx since 1A ∗ 1B = 0 off AB

≤ λ(AB)1/r′‖1A ∗ 1B‖r Hölder’s inequality

≤ C0λ(AB)1/r′‖1A‖p‖1B‖q Lemma3.3

= C0λ(AB)1/r′λ(A)1/pλ(B)1/q

This gives

(8) λ(A)1/p′λ(B)1/q′ ≤ C0λ(AB)1/r′.

Since G is unimodular the following holds for f ∈ Lq and g ∈ Lp

‖f ∗ g‖r = ‖(f ∗ g)̌ ‖r = ‖f̌ ∗ ǧ‖r
≤ C0‖ǧ‖p‖f̌‖q = C0‖f‖q‖g‖p

That gives

(9) λ(A)1/q′λ(B)1/p′ ≤ C0λ(AB)1/r′.

By multiplying (8) and (9) the proof is complete. �

Proof of the Lp-conjecture. Assume that 1 < p <∞ and Lps ∗Lps ⊆ Lp.
This is a proof by contradiction, so let us assume that G is not compact.
By lemma 3.3 with p = q = r the group G is unimodular, Lp ∗Lp ⊆ Lp

and there exists a C0 > 0:

‖f ∗ g‖p ≤ C0‖f‖p‖g‖p for f, g ∈ Lp.
Lemma 3.4 tells us, that for all compact A,B ⊆ G,

λ(A)λ(B) ≤ Cp′
0 λ(AB).

From now on let q = p′. Since G is not compact there exists a compact
and symmetric A ⊆ G with e ∈ A, with

λ(A) > 1 and Cq
0/λ(A) < 2−(p+q).

For each n ≥ 2 define

an = (nlog2nλ(An))−1/p,

bn = (nlog2nλ(An))−1/q,

f(x) =
∞∑

n=2

an1An(x),

g(x) =
∞∑

n=2

bn1An(x).
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I will now show, that f ∈ Lp:
apn+1

apn
=

nlog2nλ(An)

(n+ 1)log2(n+ 1)λ(An+1)
≤ λ(An)

λ(An+1)
≤ Cq

0/λ(A) < 2−p

This gives:
∞∑

n=k

an ≤ 2

∞∑

n=k

(an − an+1) = 2ak,

since an − an+1 = an(1 − an+1/an) ≥ an/2. I now want to rewrite f
into a sum of orthogonal functions. f is in the vectorspace with basis
{1An}n≥2. An orthogonal basis is easily found: {1An−1An−1}n≥3∩{1A2}.
Name it {un}n≥2, an calculate the inner products with f :

(f, u2) =

∞∑

k=2

ak and (f, un)n≥3 =

∞∑

k=n

ak,

and therefore

f = (

∞∑

k=2

ak)1A2 +

∞∑

n=3

(

∞∑

k=2

ak)(1An − 1An−1).

It then follows, that

‖f‖pp = (
∞∑

k=2

ak)
pλ(A2) +

∞∑

n=3

(
∞∑

k=2

ak)
p(λ(An)− λ(An−1))

≤ 2p(ap2λ(A2) +
∞∑

n=3

apnλ(An))

= 2p
∞∑

n=2

(n log2 n)−1 <∞.

The same sort of calculations can be done for g and this shows, that
f ∈ Lp and g ∈ Lq. I will now show, that f ∗ g ∈ Lq. Let h ∈ Lp, then

|
∫
h(x)(f ∗ g)(x)dx| = |

∫
h(x)

∫
f(y)g(y−1x)dydx|

= |
∫
g(y−1)

∫
h(x)f(x−1y)dxdy|

= |
∫

(h ∗ f)(y)g(y−1)dy|

leq‖h ∗ f‖p‖g‖q
≤ C0‖h‖p‖f‖p‖g‖q

Theorem 6.16 in [3] then tells us that f ∗ g ∈ Lq. The last part of
the proof will show that ‖f ∗ g‖q = ∞ therefore yielding the desired
contradiction. For m, k ≥ 1 and x ∈ Ak

1Am ∗ 1Am+k(x) = λ(Am ∩ xAm+k) ≥ λ(Am).
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which gives the following

(f ∗ g)(x) =

∞∑

m=2

∞∑

n=2

ambn(1Am ∗ 1An)(x)

≥
∞∑

k=2

∞∑

m=2

ambm+k(1Am ∗ 1Am+k)(x)

≥
∞∑

k=2

∞∑

m=2

ambm+kλ(Am)1Ak(x).

Therefore

‖f ∗ g‖qq ≥
∞∑

k=2

(
∞∑

m=2

ambm+kλ(Am))q
∫

1Ak(x)dx

=

∞∑

k=2

(

∞∑

m=2

ambm+kλ(Am))qλ(AK).(10)

Since λ(A) > 1 lemma 3.2 gives

λ(Am+k) ≤ λ(A4)λ(Am)λ(Ak), for m, k ≥ 1.

Pick only pairs (m, k) such that 3 ≤ k ≤ m ≤ 2k, then

(m + k) log2(m+ k) ≤ 3k log2(3k) ≤ 3k(2log(k))2 = 12k log2 k.

This means, that

bm+k ≥ (12λ(A4)λ(Am)λ(Ak)k log2 k)−1/q

and by similar calculations

am ≥ (8λ(Am)k log2 k)−1/p ≥ (12λ(Am)k log2 k)−1/p

which helps us establish:

ambm+k ≥ (12λ(A4)λ(Am)λ(Ak)1/qk log2 k)−1

With C−1 = 12λ(A4) and combining with (10)

‖f ∗ g‖qq ≥
∞∑

k=3

(

2k∑

m=k

Cλ(Am)

λ(Am)k log2 kλ(Ak)1/q
)qλ(Ak)

= Cq
∞∑

k=3

(log k)−2q =∞

�
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4. Young’s inequality.

Theorem 4.1 (Young’s inequality). Let G be a locally compact group.
Let p, q ∈]1,∞[ such that 1/p+1/q > 1 and define r by 1/p+1/q−1/r =
1. for all f ∈ Lp(G) and g ∈ Lq(G) weh have

(a) f ∗ g ∈ Lr(G)
(b) ‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

Lemma 4.2. If f1, . . . , fn ∈ L1 and a1, . . . , an are positive, then
fa1

1 · · · fann ∈ L(a1+···+an)−1
and

‖f a1
1 · · · fann ‖(a1+···+an)−1 ≤ ‖f1‖a1

1 · · · ‖fn‖an1 .

Proof. This will be proved by induction. First notice, that if f ∈ L1 and
x > 0 then fx ∈ Lx−1

and ‖fx‖x−1 = ‖f‖x1, since
∫
|fx|x−1

dλ = ‖f‖1.
Now assume that the claim holds for n− 1.

(11)

∫
|fa1

1 · · · fann |(a1+···+an)−1

dλ =

∫
|f b11 · · · f bn−1

n−1 ||f bnn |dλ

where bi = ai/(a1 + · · ·+an). By induction f b11 · · ·f bn−1

n−1 ∈ L(a1+···+an)−1

and fn ∈ Lb
−1
n . Since b1 + · · ·+ bn = 1 Hölder’s inequality gives

∫
|f b11 · · · f bn−1

n−1 ||f bnn |dλ ≤ ‖f b11 · · · f bn−1

n−1 ‖−1
b1+···+bn−1

‖f bnn ‖bn
≤ ‖f1‖b11 · · · ‖fn‖bn1 by induction

= (‖f1‖a1
1 · · · ‖fn‖an1 )(a1···an)−1

(12)

The expressions (11) and (12) show that

‖f a1
1 · · · fann ‖(a1+···+an)−1 ≤ ‖f1‖a1

1 · · · ‖fn‖an1

as desired. �

Proof of Young’s inequality. Let f ∈ Lp and g ∈ Lq. Let us first show,
that f ∗ g exists and is finite λ-almost everywhere. Given an x ∈ G we
rewrite∫

|f(xy)g(y−1)|dy

=

∫
(|f(xy)|p|g(y−1)|q)1/r|f(xy)|1−p/r|g(y−1)|1−q/rdy

=

∫
(|f(xy)|p|g(y−1)|q)1/r(|f(xy)|p)1/p−1/r(|g(y−1)|q)1/q−1/rdy.

Using the previous lemma with a1 = 1/r, a2 = 1/p − 1/r and a3 =
1/q − 1/r tells us that
∫
|f(xy)g(y−1)|dy ≤ (

∫
|f(xy)g(y−1)|dy)1/r(‖f‖pp)1/p−1/r(‖g‖qq)1/q−1/r
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which leads to

(13) (

∫
|f(xy)g(y−1)|dy)r ≤ ‖f‖r−pp ‖g‖r−qq

∫
|f(xy)|p|g(y−1)|qdy

Since f, g are measurable and the integral is a continous function (and
therefore measurable) f ∗ g is also measurable. Let F = |f |p and
G = |g|q then F,G ∈ L1. Also let fn, gn ∈ Cc be given such that
fn → F and gn → G. By (Stetkrs noter) F ∗ G ∈ L1 and therefore
fn ∗ gn → F ∗G. By Fubini’s theorem

‖fn ∗ gn‖1 =

∫ ∫
|fn(xy)gn(y−1)|dydx

=

∫
∆(y−1)‖fn‖1|g(y−1)|dy

= ‖fn‖1‖gn‖1.

Since ‖F ∗G‖1 exists ‖fn ∗ gn‖1 → ‖F ∗G‖1. Also ‖fn‖1 → ‖F‖1 and
‖gn‖1 → ‖G‖1 which shows that ‖F ∗ G‖1 = ‖F‖1‖G‖1 = ‖f‖pp‖g‖qq.
Thus we can integrate bot sides of (13) obtaining∫

|f ∗ g(x)|rdx ≤
∫

(

∫
|f(xy)g(y−1)|dy)rdx

≤ ‖f‖r−pp ‖g‖r−qq ‖f‖pp‖g‖qq
= ‖f‖rp‖g‖rq.

This is Young’s inequality. �

5. Sharpness of Young’s inequality.

An interesting thing is to investigate for which r Young’s inequality
holds. I will prove the following theorem:

Theorem 5.1. Let p, q, r ∈ [1,∞] and p > 1. Suppose that G is an
infinite locally compact abelian group and that Lp ∗ Lq ⊆ Lr.

(a) If G is discrete then 1/r ≤ 1/p+ 1/q − 1.
(b) If G is compact then 1/r ≥ 1/p+ 1/q − 1.
(c) If G is neither discrete nor compact then 1/r = 1/p+ 1/q − 1.

To prove this we need some lemmas. Also define

‖f‖pu = max{‖f‖p, ‖f‖u}, for f ∈ Lp ∩ C(G) with p > 1.

The article by Saeki [1] uses C0 in place of C, but that must be the
same.

Lemma 5.2. Let G be a locally compact group. Suppose that p, q, r ∈
[1,∞] and p > 1. If (Lp ∩ C0) ∗ (Lq ∩ C0) ⊆ Lr, then G is unimodular
and there exists a finite positive constant C1 such that

‖f ∗ g‖r ≤ C1‖f‖pu‖g‖pu for f ∈ Lp ∩ C0 and g ∈ Lq ∩ C0.

If G is also noncompact, then r ≥ max{p, q}.
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Proof. The constant C1 is found like in beginning og the proof of
Lemma 3.3. Pick nonzero and positive f, g ∈ Cc(G) and any a ∈ G.
With b = a−1 the following holds:

‖f ∗ g‖r = ‖f ∗ δb ∗ δa ∗ g‖r
≤ C1‖f ∗ δb‖pu‖δa ∗ g‖qu
= C1 max{∆(a)1/p′‖f‖p,∆(a)‖f‖u}‖g‖qu.

Since p′ <∞ G must be unimodular.
Now assume that G is noncompact. With f, g as before f ∗ g is in

Cc(G). Since G is noncompact we can find a1, . . . , an ∈ G such that all
the functions δak ∗ f and δak ∗ f ∗ g have disjoint supports. Then

n1/r‖f ∗ g‖r =

∥∥∥∥∥
n∑

k=1

δak ∗ f ∗ g
∥∥∥∥∥
r

≤ C1

∥∥∥∥∥
n∑

k=1

δak ∗ f
∥∥∥∥∥
pu

‖g‖qu

= C1 max{n1/p‖f‖p, ‖f‖u}‖g‖qu
for any n ≥ 1. From a certain n the part n1/p‖f‖p will dominate. Since
f, g are nonzero functions ‖f ∗g‖r > 0, and the inequality holds for any
n it follows that r ≥ p. G is unimodular so p, q can be interchanged
(see the proof of Lemma 3.4) similarily giving r ≥ q. �
Lemma 5.3. Let G, p, q, r and C1 be as in Lemma 5.2. Then

(λ(A)λ(B))1/p′+1/q′ ≤ C2
1λ(AB)2/r′

for all compact subsets A,B of G with λ(A), λ(B) ≥ 1.

Proof. The proof is very similar to the proof of Lemma 3.4. �
Lemma 5.4. Let G be a noncompact group and p ∈]1,∞[. If for each
given ε > 0 exists a compact subset A of G , with λ(A) sufficiently
large, such that

(14) lim inf
n→∞

(n−1 log log λ(A2n)) < ε,

for all r, q ∈ [1,∞] satisfying

1

r
>

1

p
+

1

q
− 1.

there exists f ∈ Lps ∩ C+
0 (G) such that

f ∗ Lqs 6⊆ Lr

Remark 5.5. To see what “sufficiently large” means you have to look
at the proof. It involves a constant C3 and the requirement is, that
log logC3λ(A) is defined. The reason this can’t be included in the
lemma is that it is proved by contradiction. Since we will use the lemma
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on discrete groups (the measure is counting) it’s enough for us to show,
that we can always find a bigger A such that (14) holds. Then we won’t
have to worry about the constant C3.

Remark 5.6. Also the lemma is a bit weaker than the Theorem 2 in
[1], since this is all that’s necessary to prove Theorem 5.1. In the article
[1] is shown that it’s possible to find a single f for all p, q, r for which

1

r
>

1

p
+

1

q
− 1.

Proof of Lemma 5.4. This is proved by contradiction. Let p, q, r be
given such that 1/r > 1/p+ 1/q. Now assume that

(Lps ∩ C0) ∗ (Lqs ∩ C0) ⊆ Lr.

Like the proof of Lemma 3.3 this means that

(Lp ∩ C0) ∗ (Lq ∩ C0) ⊆ Lr.

By the two previous lemmas there is a C1 > 0 such that for all compact
A,B ⊆ G with lambda(A), λ(B) > 1 the following holds

(λ(A)λ(B))1/p′+1/q′ ≤ C2
1λ(AB)2/r′

Since p′ < ∞ and G is noncompact, the left hand side can be chosen
bigger than C2

1 , but then r′ <∞. Hence we can define

β = r′(1/p′ + 1/q′)

and notice that the restrictions on p, q, r is equivalent with β > 1. Let
C2 = Cr′

1 and A = B then λ(A)β ≤ C2λ(A2) for all compact A with
λ(A) > 1. Recursive use of this inequality gives

λ(A)β
n ≤ Cβn−1+βn−2+···+1

2 λ(A2n) = C
(βn−1)/(β−1)
2 λ(A2n)

letting C3 = C
1/(1−β)
2 this is equivalent with

(C3λ(A))β
n ≤ C3λ(A2n).

As mentioned in Remark 5.5 let us assume that λ(A) is sufficiently
large, then we get

log log(C3λ(A2n) ≥ n log β + log log(C3λ(A)).

But that contradicts the requirement in the theorem. Thereby showing
that

(Lps ∩ C0) ∗ (Lqs ∩ C0) 6⊆ Lr

for all q, r ≥ 1 with 1/r > 1/p + 1/q − 1, and thus completing the
proof. �
Lemma 5.7. Let G0 be a subgroup of G. If Lp(G) ∗ Lq(G) ⊆ Lr(G)
then Lp(G/G0) ∗ Lq(G/G0) ⊆ Lr(G/G0) with respect to the induced
Haar meassure on G/G0.
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Proof. Let κ be the canonical homomorphism κ : G → G/G0 = A.
Define the measure λA by:∫

f(a)dλA(a) =

∫
f ◦ κ(b)dλG(b).

This meassure is both positive and linear. It’s also left-invariant, since∫
f ◦ Lx(a)dλA(a) =

∫
f ◦ Lx ◦ κ(b)dλG(b)

=

∫
f ◦ κ(x′b)dλG(b) κ(x′) = x since κ is onto

=

∫
f ◦ κ(b)dλG(b) λG is Haar

=

∫
f ◦ Lx(a)dλA(a).

What we show for this meassure is therefore equivalent to showing it
for the normalised Haar-meassure on G/G0.

Let f ∈ Lp(A) and g ∈ Lq(A). Define f̃ = f ◦ κ and g̃ = g ◦ κ. Since
∫
|f ◦ κ(x)|pdλG(x) =

∫
|f(y)|pdλA(y)

by definition, f̃ ∈ Lp(G) and g̃ ∈ Lq(G). Also if f ∗ g ◦ κ ∈ Lr(G) then
f ∗ g ∈ Lr(A). But that follows from:

Lr(G) 3 f̃ ∗ g̃(x) =

∫
f(κ(y−1x))g(κ(y))dλG(y)

=

∫
f(κ(y)−1κ(x))g(κ(y))dλG(y)

=

∫
f(a−1κ(x))g(a)dλA(a)

= f ∗ g ◦ κ(x).

�
Proof of Theorem 5.1. (a) Assume G is a torsion group (all elements
have finite order). Then it’s no problem finding A “big enough” and
A2n has a limited size (from a certain n). Therefore Lemma 5.4 can be
used for p <∞. If G is not a torsion group, then there is a g ∈ G such
that < g >∼= Z, where < g > is the cyclic subgroup of G created by g.
Choose A = [0, m]∩Z, then A2n = [0, 2nm]∩Z, and λ(A2n) = 2nm+1.
This A satisfies Lemma 5.4 with p < ∞. If p = ∞ then q = 1 and
r =∞ follows by inserting f = 1G ∈ L∞(G) in f ∗ g.

(b) If G is compact, then G is eihter totally disconnected (if the
dual of G is a torsion group, Theorem 2.5.6 [4]) or contains a compact
subgroup G0 such that G/G0

∼= T. The last follows by setting G0 =
ker φ where φ is a character for which φ(G) is infinite (one such exists
according to (24.26) in [2]). Since G/G0

∼= φ(G) is a compact subset
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of T, G/G0 must be T. In the following we can assume r > 1 for
if r = 1 then it will always be true that 1/r ≥ 1/p + 1/q + 1 since
p, q ≥ 1. We can also assume that 1/r 6= 1/p+ 1/q+ 1, cause otherwise
it would simply be a special case of what we want to show. Let C0 be
the constant from Lemma 3.3. For all compact A Lemma 3.4 yields

λ(A)1/p′+1/q′ ≤ C0λ(A2)1/r′ .

Since G is not discrete (and infinite) and r′ < ∞ the right hand side
can be smaller than 1, which tells us that 1/p′ + 1/q′ > 0. Defining
β = r′(1/p′ + 1/q′) and C2 = Cr′

0 this can be written as

(15) λ(A)β ≤ C2λ(A2).

If G is totally disconnected, then every neghborhood of e contains
a compact-open subgroup A (Theorem 2.4.4 in [4]). Then A can be
chosen arbitrarily small and (15) is therefore only possible when β ≥ 1.

If G is not totally disconnected it contains a compact subgroup G0

such that G/G0
∼= T. Lemma 5.7 then tells us, that Lp ∗Lq ⊆ Lr on T.

Using A = [0, t] in (15) then gives tβ ≤ 2C2t for all t ∈ [0, π] (the article
[1] says [0, 2π], but the torus “wraps” at 2π). Again this is only possible
when β ≥ 1. In both cases it therefore follows that 1/r ≥ 1/p+ 1/q.

(c) G is compact and infinite. As before we can suppose that p <∞,
since otherwise q = 1 and r = ∞. Consider the case when G contains
an open subgroup of the form R × H where H is a locally compact
group. Then Lp(R) ∗ Lq(R) ⊆ Lr(R), since it holds for G. As in (b)

λ(A)1/p′+1/q′ ≤ C0λ(A2)1/r′ , for all compact A ⊆ R
Using A = [0, t] for all t ∈ R tells us that 1/p+ 1/q − 1 = 1/r.

Assume G has no subgroup of the above form. LettingG′ = ∪∞n=1(U∪
U−1)n where U is a compact open neighbourhood of e, makes G′ an
open compactly generated subgroup of G. By (9.8) in [2] G′ is topolog-
ically isomorphic with Za×F for some nonnegative integer a and some
compact abelian group F. Since {0} is open in Z and F is open in F ,
F = 0 × F is open in Za × F = G′. This means that F is also open
in G. G is nondiscrete so (b) applied to F gives 1/p + 1/q − 1 ≤ 1/r.
Since F is open in G, (5.21) in [2] tells us that G/F is discrete. Also
G is noncompact so G/F must be infinite (if G/F is finite, G can be
expressed as finite union of xF where x ∈ G/F contradicting the fact
that G is noncompact). Thus (a) gives 1/p+ 1/q − 1 ≥ 1/r.

This means that 1/p + 1/q − 1 = 1/r if G is neither discrete nor
compact. �
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