

Wavelet transforms and Besov Spaces related to symmetric cones

Jens Gerlach Christensen* and Gestur Ólafsson

Department of Mathematics, Louisiana State University, Baton Rouge {vepjan,olafsson}@math.lsu.edu

Abstract

We present a general framework for construction of Banach spaces. This work is a generalization of the coorbit theory by Feichtinger and Gröchenig, and it unifies the coorbit theory with the theory for band-limited functions. The framework is then used to describe Besov spaces related to the forward light cone.

1. Introduction

In the 1980's Feichtinger and Gröchening [3, 4, 5] initiated the so-called coorbit-theory thus unifying the description of well-known Banach function spaces such as Besov spaces, Triebel-Lizorkin spaces and Bergman spaces. Not all Bergman spaces can be described using this theory, and the reason it fails is because of the non-integrability of a kernel function. Here we suggest an alternative coorbit-theory, which is able to account for a larger scale of Bergman spaces. This theory also includes the theory of band-limited functions, for which the kernel is also non-integrable. We present a wavelet description of Besov spaces related to the forward light cone in \mathbb{R}^2 .

2. Wavelets on the cone

For simplicity let $\Lambda \subseteq \mathbb{R}^2$ be the forward light cone

$$\Lambda = \{(x, y) \in \mathbb{R}^2 \mid y^2 - x^2 > 0, y > 0\}$$

Figure 1: The forward light cone in \mathbb{R}^2

The group

$$H = \mathbb{R}_{+}SO(1,1) = \left\{ A = \begin{pmatrix} a \cosh t & a \sinh t \\ a \sinh t & a \cosh t \end{pmatrix} \middle| a \in \mathbb{R}_{+}, t \in \mathbb{R} \right\}$$

acts transitively on Λ . Therefore we can define a representation of

$$G = H \rtimes \mathbb{R}^2$$

on $L^2_{\Lambda}=\{f\in L^2(\mathbb{R}^2)\,|\, \mathrm{supp}(\widehat{f})\subseteq \Lambda\}$ by

$$\pi(A,b)f(x) = \frac{1}{\sqrt{\det A}}f(A^{-1}(x-b))$$

Let $\psi \in \mathbb{S}_{\Lambda} = \mathbb{S}(\mathbb{R}^2) \cap L^2_{\Lambda}$ be such that

$$supp(\widehat{\psi}) \subseteq \{A(a,t) \mid (a,t) \in [1/2,3/2] \times [-1,1]\}$$

then the wavelet coefficients

$$W_{\psi}(f)(a,b) = \int_{\mathbb{R}^2} f(x) \overline{\pi(A,b)\psi(x)} \, dx$$

satisfy

$$|W_{\psi}(\psi)(a,t,b)| \le \frac{Ca^j}{(1+a)^j(1+\cosh^2t+\sinh^2t)^m(1+|b|^2)^n}$$
 (1)

so $W_{\psi}(\psi) \in L^1\left(\frac{da\ dt\ db}{a^3}\right)$ and therefore we can normalize ψ such that

$$W_{\psi}(f) * W_{\psi}(\psi) = W_{\psi}(f)$$

and

$$L^2_{\Lambda} \simeq L^2(G) * W_{\psi}(\psi)$$

3. Banach Spaces

3.1 Construction

Let S be a Fréchet space continuously included in its conjugate dual S^* with dual pairing $\langle \cdot, \cdot \rangle$. Let (π, S) be a representation of the group G and Y a left-invariant Banach function space on G. Define

$$W_{\psi}(\Phi)(x) = \langle \Phi, \pi(x)\psi \rangle$$

Assume that $\psi \in S$ is cyclic and

R1. $W_{\psi}(\phi) * W_{\psi}(\psi) = W_{\psi}(\phi)$

R2. $Y \ni F \mapsto F * W_{\psi}(\psi) \in Y$ is continuous

R3. if $F = F * W_{\psi}(\psi) \in Y$ then $\pi(F)\psi \in S^*$.

R4. $\pi(W_{\psi}(\psi))\psi \in S$

then we can define the space

$$\operatorname{Co}_{S}^{\psi}Y = \{ \Phi \in S^* \mid W_{\psi}(\Phi) \in Y \}$$

Main Theorem. 1. $\operatorname{Co}_S^{\psi}Y$ is a π -invariant Banach space

 $2. \ W_{\psi} : \mathrm{Co}_{S}^{\psi} Y o Y * W_{\psi}(\psi)$ is an isometric isomorphism

3. $\mathrm{Co}_S^\psi Y$ depends very little on ψ and S

3.2 Discretization

Given a nbh. U and points x_i assume that $\sum_i \psi_i = 1$ and $\operatorname{supp}(\psi_i) \subseteq x_i U$ (and that there is only finite overlap between $x_i U$). We investigate if the operator $T: Y*W_{\psi}(\psi) \to Y*W_{\psi}(\psi)$

$$TF = \sum_{i} F(x_i)\psi_i * W_{\psi}(\psi)$$

is close to I. If so it is invertible and

$$T^{-1} = \sum_{k=0}^{\infty} (I - T)^k$$

This enables us to reconstruct $\Phi \in \mathrm{Co}_S^{\psi}Y$ from samples of $W_{\psi}(\Phi)$. **Remark.** Feichtinger and Gröchenig showed that for integrable representations, we can always pick U small enough and matching $\{x_i\}$ such that T is invertible. However this can also be proven for the non-integrable discrete series representations of SU(1,1) as in [2] in the construction of Bergman spaces.

4. Besov Spaces

4.1 Definition

There are points $\{c_j\}$ and balls $B_r(c_j)$ of fixed radius r such that $B_{r/2}(c_j)$ do not overlap, yet $B_r(c_j)$ cover Λ . Let ϕ_j be functions such that $\operatorname{supp}(\widehat{\phi}_j) \subseteq B(c_j)$ and $\sum_j \widehat{\phi}_j = 1$.

Figure 2: Whitney cover of light cone in \mathbb{R}^2

Then define the Besov spaces on the cone as in [1] to be

$$B_s^{p,q} = \left\{ f \in \mathcal{S}_{\bar{\Lambda}}' / \mathcal{S}_{\partial \Lambda}' \, \middle| \, \|f\|_{B_s^{p,q}} = \left(\sum_j \Delta(c_j)^{-s} \|f * \psi_j\|_p^q \right)^{1/q} < \infty \right\}$$

4.2 As Coorbits

The estimate (1) ensures that for the space

$$L_s^{p,q} = \left\{ f \left| \left(\int_{\mathbb{R}_+} \int_{\mathbb{R}} \left(\int_{\mathbb{R}^2} |f(a,t,b)|^p \, db \right)^{q/p} a^{sq} \frac{dt \, da}{a^3} \right)^{1/q} < \infty \right\}$$

the conditions (R2) and (R3) are satisfied. Further it ensures that (R1) and (R4) are satisfied for $(S_{\Lambda})^* \simeq (S^*)_{\bar{\Lambda}}/S_{\partial\Lambda}$. Therefore we can define

$$\operatorname{Co}_{S}^{\psi} L_{s}^{p,q} = \{ \Phi \in (S_{\Lambda})^{*} \mid W_{\psi}(\Phi) \in L_{s}^{p,q} \}$$

It can then be shown that

$$B_s^{p,q} = \operatorname{Co}_S^{\psi} L_{s'}^{p,q}$$

with equivalent norms when s' = s + (1 + 3q)/2.

5. Further research

- Bergman spaces We aim to describe the Bergman spaces on $\mathbb{R}^2 + i\Lambda$ as coorbits and generalize to symmetric cones. Here the removal of integrability from the coorbit theory will be important.
- Quasi Banach spaces Show that the above theory can describe quasi Banach versions of both modulation, Besov and Bergman spaces.
- **Homogeneous space** There is already a coorbit theory on homogeneous space. We aim to remove integrability from it and treat nilpotent groups as special cases.

References

- [1] D. Békollé, A. Bonami, G. Garrigós, and F. Ricci. Littlewood-Paley decompositions related to symmetric cones and Bergman projections in tube domains. *Proc. London Math. Soc.* (3), 89(2):317–360, 2004.
- [2] J. G. Christensen and G. Ólafsson. Examples of coorbit spaces for dual pairs. *Acta Appl. Math.*, Online First, 2009.
- [3] H. G. Feichtinger and K. Gröchenig. A unified approach to atomic decompositions via integrable group representations. In *Function spaces and applications (Lund, 1986)*, volume 1302 of *Lecture Notes in Math.*, pages 52–73. Springer, Berlin, 1988.
- [4] H. G. Feichtinger and K. Gröchenig. Banach spaces related to integrable group representations and their atomic decompositions. i. *J. Funct. Anal.*, 86(2):307–340, 1989.
- [5] H. G. Feichtinger and K. Gröchenig. Banach spaces related to integrable group representations and their atomic decompositions. II. *Monatsh. Math.*, 108(2-3):129–148, 1989.