I've formulated actual algorithms that compute the so-called hyperbasveo functions. Their "definitions" can be found here: http://www.topix.net/forum/science/mathematics/TQO3VIEVJSF8IKTOE

Note that there is a problem with his definition - you can't define n as an input parameter, and then say "for $n=1 \ldots 10$. " Either it's a parameter or it isn't. I've gone ahead and stubstituted nmax instead of n.

```
In[1]:= Basveo[b_, nmax_, a_] := Module[{k, n, list},
    list = Range[nmax];
    For [n=1, n < 10, n++,
            k = Mod[n, b];
            If[Mod[k, 2] # 0, list[[n]] = n + a];
    ];
    list
    ]
In[2]:= Basveo[3, 10, 10]
Out[2]= {11, 2, 3, 14, 5, 6, 17, 8, 9, 20}
```

Notice that there is exactly one minor difference between Basveo and openBasveo, where the modulus m is subustituted for the modulus 2.

```
OpenBasveo[m_, b_, nmax_, (a_] := Module[{k, list},
    list = Range [nmax];
    For [n=1, n < 10, n ++,
        k = Mod [n,b];
        If[Mod[k,m] # 0, list[[n]] = n + a];
        ];
        list
    ]
```

In[5]:= OpenBasveo[2, 10, 10, 10]
OpenBasveo[3, 9, 10, 5]
Out $[5]=\{11,2,13,4,15,6,17,8,19,10\}$
Out $[6]=\{6,7,3,9,10,6,12,13,9,15\}$

Notice that here we just change the bounds on n. For that reason, nmax is no longer a parameter:

```
In[18]:= HyperBasveo[s_, t_, m_, b_, a_] := Module[{n, k, list},
    list = Range[s, t];
    For[n=s, n < t, n++,
        k = Mod[n, b] ;
        If[Mod[k,m] = 0, list[[n-s + 1]] = n + a];
    ];
    list
    ]
```

```
In[23]:= HyperBasveo[1, 10, 2, 10, 10]
    HyperBasveo[1, 10, 3, 9, 5]
    HyperBasveo[3, 8, 2, 7, 8]
Out[23]= {11, 2, 13, 4, 15, 6, 17, 8, 19, 10}
Out[24]= {6, 7, 3, 9, 10,6,12, 13, 9, 15}
Out[25]= {11, 4, 13, 6, 7, 16}
```

Now he asks us to set:
function(n)= HyperBasveo(n+1,1,n+1,i,n+1,n+1) - PrimeNumber(Nth)
Which actually wants the $n+1^{\text {st }}$ element of one of our properly-written HyperBasveo functions. He has substituted his counter i instead of n because n has been reused. We discard that undefined (and irrelevant) "parameter."

```
In[48]:= f1[n_] := HyperBasveo[1, n + 1, n + 1, n + 1, n + 1];
    f2[n_] := f1[n][[n+1]]
    f[n_] := f2[n] - Prime[n]
In[51]:= Table[f1[n], {n, 1, 10}] // TableForm
    Table[f2[n], {n, 1, 10}]
    Table[f[n], {n, 1, 10}]
```

Out[51]//TableForm=
32
$4 \quad 5 \quad 3$

5	6	7	4

6	7	8	9	5

7	8	9	10	11	6

8	9	10	11	12	13	7

9	10	11	12	13	14	15	8

10	11	12	13	14	15	16	17	9	
11	12	13	14	15	16	17	18	19	10

12	13	14	15	16	17	18	19	20	21	11

$\operatorname{Out}[52]=\{2,3,4,5,6,7,8,9,10,11\}$
Out [53] $=\{0,0,-1,-2,-5,-6,-9,-10,-13,-18\}$

It appears that none of this is very meaningful.

