
Contemporary Mathemati
sGroupoid Methods in Wavelet AnalysisMarius Iones
u and Paul S. MuhlyDedi
ated to the memory of George W. Ma
keyAbstra
t. We des
ribe how the Dea
onu-Renault groupoid may be used inthe study of wavelets and fra
tals.1. Introdu
tionThis note serves two purposes. First, we want to des
ribe investigations that weare undertaking whi
h are inspired in large part by work of Palle Jorgensen andhis 
ollaborators, parti
ularly Ola Bratteli, Dorin Dutkay and Steen Pedersen1. Intheir papers one �nds a ri
h theory of wavelets on the one hand and topi
s infra
tal analysis on the other. Further, the analysis in these papers is la
ed withrepresentations of the Cuntz relations - �nite families of isometries fSigni=1 su
hthat Pni=1 SiS�i = 1. Very roughly speaking, these authors show that mu
h ofthe analysis of wavelets and fra
tals that has appeared in re
ent years may beilluminated in terms of spe
ial representations of the Cuntz relations. Indeed, someof the most important advan
es are made by 
hoosing an appropriate representationfor these relations. Our motivation was to understand the extent to whi
h the useof the Cuntz relations is intrinsi
 to the situation under 
onsideration. We wantedto separate intrinsi
ally o

urring representations of the Cuntz relations from thosethat are imposed by spe
ial 
hoi
es. We hoped, thereby, to 
larify the degrees offreedom that go into the representations found in the work we are dis
ussing.As it turns out, the Cuntz isometries that arise in the work of Jorgensen et.al. may be expressed in terms of representations of the Dea
onu-Renault groupoidasso
iated to an appropriate lo
al homeomorphism of a 
ompa
t Hausdor� spa
e.Our se
ond purpose is to show how the C�-algebra of this groupoid is related toa number of other C�-algebras that one 
an atta
h to a lo
al homeomorphism.In parti
ular, we show that the C�-algebra may be realized as a Cuntz-Pimsner2000 Mathemati
s Subje
t Classi�
ation. Primary 22A22, 42C40, 28A80, 46L89, 46L08,46L55, 46L40; Se
ondary 58H99, 37F99, 32H50.Key words and phrases. groupoids, wavelets, fra
tals, C�-algebras, Cuntz relations.This work was partially supported by the National S
ien
e Foundation, DMS-0355443.1A number of relevant papers are 
ited in the referen
es to this paper, but for a more 
om-prehensive list, the reader should 
onsult the books [3℄ and [21℄. 
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194 MARIUS IONESCU AND PAUL S. MUHLYalgebra in two di�erent ways and that, in general, it is a quotient of 
ertain otherC�-algebras that one may build from the lo
al homeomorphism.Re
all that a wavelet is usually understood to be a ve
tor  in L2(R) su
h thatthe family fDjT k : j; k 2Zgis an orthonormal basis for L2(R), where T is the operator of translation by 1, i.e.,T�(x) = �(x� 1); � 2 L2(R); and where D is dilation by 2, i.e., D�(x) = p2�(2x).One of the prin
ipal problems in the study of wavelets is to 
onstru
t them withvarious pre-assigned properties. That is, one wants to \tune" the parameters thatenter into the analysis of wavelets so that the wavelet one 
onstru
ts exhibits thepres
ribed properties. So one's �rst task is to identify those parameters and tounderstand the relations among them.Fra
tals, on the other hand, are spa
es that possess some sort of s
aling. Thatis, as is 
ustomarily expressed, fra
tals exhibit the same features at all s
ales. Howto make this statement pre
ise and how to 
onstru
t su
h spa
es in useful waysare, of 
ourse, the obje
ts of 
onsiderable resear
h. Most of the known examples offra
tals are 
losely 
onne
ted to spa
es endowed with a lo
al homeomorphism thatis not inje
tive. This may seem like a banal oversimpli�
ation, but re
e
tion on itdoes lead to natural representations of the Cuntz relations, as we shall see, that areintrinsi
 to the geometry of the situation. Sin
e wavelets have a natural s
aling builtinto them, it is natural 
ontemplate the possibility of building natural wavelet-likeorthonormal bases in L2-spa
es ere
ted on fra
tals. This is indeed possible, andmu
h of the work by Jorgensen and his 
o-authors has been devoted to realizingthe possibilities.Our 
ontribution is to observe that the Dea
onu-Renault groupoid asso
iatedwith a lo
al homeomorphism of a 
ompa
t Hausdor� spa
e provides a natural en-vironment in whi
h to set up fra
tal analysis, and that the C�-algebras of thegroupoids 
arry natural, geometri
ally indu
ed families of isometries. The repre-sentations that Jorgensen and his 
ollaborators study 
ome from representations ofthis groupoid. Further, wavelets and other orthonormal bases on the fra
tals areseen to be artifa
ts of the representation theory of the groupoid. In short, groupoidshelp to 
larify 
onstru
tions of both fra
tals and wavelets and help to analyze theparameters involved. 2. The SetupThroughout this note, X will denote a �xed 
ompa
t Hausdor� spa
e and T : X !X will denote a surje
tive lo
al homeomorphism. One 
an relax these hypothesesin various ways and in various situations, but we shall not explore the possibilitieshere. The prin
ipal examples to keep in mind are the following.Example 2.1. Let X be the 
ir
le or torus T. The lo
al homeomorphism inthis 
ase is also an endomorphism of the abelian group stru
ture on T: T (z) = zN ;z 2 T, where N is a natural number. The 
ase when N = 2, provides a link to\
lassi
al" wavelets.Example 2.2. Let A be an n � n dilation matrix. That is, suppose A hasinteger entries and that the determinant of A has absolute value d (whi
h mustbe a positive integer) that is greater than 1. If we view the n-torus, Tn, as thequotient group Rn=Zn, then A indu
es a lo
al homeomorphism T : Tn ! Tn via



GROUPOID METHODS IN WAVELET ANALYSIS 195the formula T (x+Zn) = Ax+Zn, x+Zn 2Tn. It is not diÆ
ult to see that T isd-to-1.Example 2.3. In this example we 
onne
t our dis
ussion to the theory ofiterated fun
tion systems, whi
h is one of the main ways to 
onstru
t fra
tals [1℄.Assume X is a 
ompa
t spa
e endowed with a metri
, d say, and let ('1; : : : ; 'n)be a system of maps on X for whi
h there are 
onstants 
1 and 
2 su
h that0 < 
1 � 
2 < 1 and su
h that 
1d(x; y) � d('i(x); 'i(y)) � 
2d(x; y) for ea
hi. Then ea
h 'i is homeomorphism onto its range. Also, the family ('1; : : : ; 'n)indu
es a map � on the spa
e of non-empty 
losed (and hen
e 
ompa
t) subsets Kof X via the formula �(K) = [ni=1'i(K):It is then easy to see that � is a stri
t 
ontra
tion in the Hausdor� metri
 on thespa
e of nonempty 
losed subsets of X and so there is a unique nonempty 
ompa
tsubset K of X su
h that �(K) = K. This K is 
alled the invariant subset of thesystem. It is the fra
tal asso
iated with the system. We shall assume that X is theinvariant set. It is important to note that there may be overlap between 'i(X) and'j(X) for i 6= j. Consequently, the 'i need not be bran
hes of the inverse of a lo
alhomeomorphism. One way to \get around" this limitation is to lift the system inthe sense of [1, Page 155℄. For this purpose, let E1 the spa
e of in�nite wordsover the alphabet E = f1; : : : ; ng. Then in the produ
t topology E1 is 
ompa
tand we 
an give E1 a 
omplete metri
 su
h that the maps �i : E1 ! E1 de�nedby the formula �i(w) = (i; w1; w2; : : :), where w = (w1; w2; : : :), are 
ontra
tions ofthe same type as the 'i. The iterated fun
tion system on X � E1 , ( ~'1; : : : ; ~'n),de�ned by the formula ~'i(x;w) = ('i(x); �i(w))then has a unique nonempty 
losed invariant subset ~X of X � E1. That is[ni=1 ~'i( ~X) = ~X . The system ( ~'1; : : : ; ~'n) on ~X is 
alled the lifted system. Theranges of the ~'i are disjoint and so there is a lo
al homeomorphism T of ~X su
hthat the ~'i are the bran
hes of the inverse of T . As is dis
ussed in Se
tion 4.6 of[1℄, the systems('1; : : : ; 'n) and ( ~'1; : : : ; ~'n) share many features in 
ommon and,from some points of view, are inter
hangeable.3. The Dea
onu-Renault GroupoidThe Dea
onu-Renault groupoid asso
iated with the lo
al homeomorphismT : X !X is G = f(x; n; y) 2 X �Z�X : T k(x) = T l(y); n = k � lg:Two triples (x1; n1; y1) and (x2; n2; y2) are 
omposable if and only if x2 = y1 andin that 
ase, (x1; n1; y1)(x2; n2; y2) = (x1; n1 + n2; y2). The inverse of (x; n; y) is(y;�n; x). A basis for the topology on G is given by the setsZ(U; V; k; l) := f(x; k � l; y) 2 G : x 2 U; y 2 V g;where U and V are open subsets of X su
h that T kjU , T ljV are homeomorphismsand T k(U ) = T l(V ). Thus Z(U; V; k; l) is essentially the graph of (T ljV )�1 Æ (T kjU)and is a G-set in the sense of Renault [32℄. The G-sets form a pseudogroup G, viz.the pseudogroup of partial homeomorphisms generated by T . The sets Z(U; V; k; l)form a basis for G. The groupoid G is (isomorphi
 and homeomorphi
 to) thegroupoid of germs of G pre
isely when the lo
al homeomorphism T is essentially



196 MARIUS IONESCU AND PAUL S. MUHLYfree, meaning that for no m and n does Tm = Tn on any open subset of X [34,Proposition 2.8℄.The groupoid G is r-dis
rete or �etale and so admits a Haar system of 
ountingmeasures. Consequently, we may de�ne a �-algebra stru
ture on C
(G) as follows.For f; g 2 C
(G) we setf � g(x; k � l; y) = X f(x;m � n; z) � g(z; (n + k)� (m + l); y);where the sum ranges over all m, n, and z su
h that Tmx = Tnz, and Tn+kz =Tm+ly, and we de�ne f�(x; k � l; y) = f(y; l � k; x):The algebra C
(G) 
an be 
ompleted to form a C�-algebra, denoted C�(G), in thenorm kfk := sup k�(f)kwhere the supremum is taken over all �-homomorphisms of C
(G) into B(H�) thatare 
ontinuous with respe
t to the indu
tive limit topology on C
(G) and the weakoperator topology on B(H�), the algebra of operators on the Hilbert spa
e of �,H�. We will dis
uss the representations of C
(G) more fully later, but �rst we wantto 
all attention to some spe
ial 
lopen relations \on" X.For �xed positive integers m and n, we set Rn;m := f(x; n�m; y) 2 G : Tnx =Tmyg: Evidently, Rn;m is a union of the basi
 sets Z(U; V;m; n), and so is open inG.It is also 
losed, sin
e its 
omplement is open by virtue of being a union of sets of theform Z(U; V; k; l), with (k; l) 6= (m;n). The sets Rn;m, with m = n, are of spe
ialimportan
e: R0;0 may be identi�ed with the diagonal � in X �X, while for k > 0,Rk;k may be identi�ed with the relationX�TkX := f(x; y) : T k(x) = T k(x)g inX�X. The C�-algebra of Rk;k, C�(Rk;k), whi
h may be identi�ed with the 
losure ofC
(Rk;k) in C�(G), is the 
ross se
tional C�-algebra of a matrix bundle over X and,therefore, is a 
ontinuous tra
e C�-algebra. (See [24℄ for a dis
ussion of algebrasof the form C�(Rk;k).) The sequen
e of in
lusions R0;0 � R1;1 � R2;2 � � � �leads to the sequen
e of in
lusions C�(Rk;k) � C�(Rk+1;k+1), k = 0; 1; 2; : : :, and,
onsequently, we see that if R1 = f(x; 0; y) : Tnx = Tny for some ng = SRn;n ,then C�(R1) is the indu
tive limit lim�!C�(Rn;n). We note that R1 is the kernel ofthe fundamental homomorphism on G: (x; n; y)! n, whi
h implements the gaugeautomorphism group f
zgz2Tde�ned on C
(G) by the formula 
z(f)(x; n; y) =znf(x; n; y). The algebra C�(R1) is the �xed point algebra of f
zgz2T, also knownas the 
ore of C�(G). For these things, and more, we refer the reader to [8, 34℄.It is a straightforward 
al
ulation, performed �rst by Dea
onu [6℄, to see thatthe lo
al homeomorphism T on X indu
es a �-endomorphism � : C�(R1) !C�(R1) de�ned by the equation,(1) �(f)(x; 0; y) = 1pjT�1(Tx))jjT�1(Ty))jf(Tx; 0; T y);f 2 C
(R1). Further, a similar 
al
ulation shows that the fun
tion S in C
(G)de�ned by the equation(2) S(x;m � n; y) = ( 1pjT�1(Tx)j ; if m = 1; n = 0; Tx = y;0 otherwise,



GROUPOID METHODS IN WAVELET ANALYSIS 197is an isometry that implements � in the sense that(3) �(f) = SfS� ;f 2 C
(R1). In parti
ular, observe that(4) SS�(x; k� l; y) = 1jT�1(Tx)j1R1;1(x; k� l; y):As we shall see, S is the sour
e of all the isometries in the papers by Jorgensen et.al. It is an intrinsi
 feature of the C�-algebra that 
omes from the basi
 data: X andthe lo
al homeomorphism T . In fa
t, we have the following theorem, Theorem 3.1,that makes pre
ise the assertion that C�(G) is the universal C�-algebra generatedby C�(R1), �, and S. In fa
t, there are several di�erent perspe
tives from whi
hto see how C�(G) is 
onstru
ted from the spa
e X and lo
al homeomorphism T .We want to examine these and to 
ompare them with various approa
hes in theliterature. Therefore the proof will be given after further dis
ussion.Theorem 3.1. Let ~� : C�(G) ! B(H) be a C�-representation. De�ne � :C�(R1)! B(H) by � = ~�jC�(R1), and let S+ = ~�(S). Then(1) �(�(f)) = S+�(f)S�+ ; and(2) �(L(f)) = S�+�(f)S+ , where L(f) = S�fS is the transfer operator asso-
iated with �,(5) L(f)(x; 0; y) = 1pjT�1(x)jjT�1(y)j XTu=xTv=y f(u; 0; v):Conversely, given (�; S+), where � : C�(R1) ! B(H) is a C�-representation andS+ is an isometry on H su
h that 1. and 2. are satis�ed, then there is a uniquerepresentation ~� : C�(G) ! B(H) su
h that ~�(f) = �(f) for all f 2 C�(R1) and~�(S) = S+.Re
all, next, that if A is a C�-algebra, then a C�-
orresponden
e over A isan A-A-bimodule E su
h that EA is a Hilbert C�-module and the left a
tion isgiven by a C�-homomorphism � from A into the bounded adjointable operatorson E [28℄, L(E). We write K(E) for the spa
e of 
ompa
t operators on E, i.e.,K(E) is the 
losed linear span of the operators � 
 ��, �; � 2 E, de�ned by theformula � 
 ��(�) := �h�; �i, and we write J for the ideal ��1(K(E)) in A. ACuntz-Pimsner 
ovariant representation of E in a C�-algebra B is a pair (�;  ),where � is a C�-representation of A in B and  is a map from E into B su
h that(1)  (�(a)�b) = �(a) (�)�(b), for all a; b 2 A and all � 2 E:;(2) for all �; � 2 E,  (�)� (�) = �(h�; �i); and(3) for all a 2 J , ( ; �)(1)(�(a)) = �(a), where ( ; �)(1) is the representationof K(E) in B de�ned by the formula ( ; �)(1)(�
��) =  (�) (�)� , �
�� 2K(E).There is a C�-algebra O(E) and Cuntz-Pimsner representation (kA; kE) of E inO(E) that is universal for all Cuntz-Pimsner representations of E. That is, if(�;  ) is a Cuntz-Pimsner representation of E in a C�-algebra B, then there is aunique C�-representation � of O(E) in B su
h that �ÆkA = � and �ÆkE =  . Therepresentation � is often denoted �� . This was proved essentially by Pimsner in[31℄ and in the form stated here in [18, Proposition 1.3℄.



198 MARIUS IONESCU AND PAUL S. MUHLYDefinition 3.2. The Dea
onu C�-
orresponden
e X over the C�-algebra C(X)is the 
ompletion of C(X) under the inner produ
th�; �i(x) = 1jT�1(x)j XTy=x �(y)�(y);with the left and right a
tions of C(X) given by (a � � � b)(x) = a(x)�(x)b(Tx).The de�nition we have given is slightly di�erent from the one given in [7℄.He does not divide by jT�1(x)j. However, it is easy to see that the two C�-
orresponden
es are isomorphi
. The following theorem is due to Dea
onu [7,Propositions 3.1 and 3.3℄. The formulation we present is that of [8, Theorem7℄, whi
h is slightly more general. The proof in [8℄ is based on the gauge invariantuniqueness theorem found in [18, Theorem 4.1℄.Theorem 3.3. (Dea
onu) De�ne � : C(X)! C�(G), by the equation�(')(x; k � l; y) = '(x)1R0;0(x; k � l; y);and  : X ! C�(G), by the equation  (�) = �(�)S. Then (i;  ) is a faithful Cuntz-Pimsner 
ovariant representation of (C(X);X ) in C�(G), whose image generatesC�(G) and gives an isomorphism between C�(G) and O(X ).In [17℄, Exel introdu
ed a 
rossed produ
t asso
iated to an endomorphism � ofa C�-algebra A and transfer operator L for �. That is, L is a positive operator on Athat satis�es the equation L(a�(b)) = L(a)b for all a; b 2 A. Exel's 
rossed produ
t,denoted Ao�;LN 
an also be des
ribed as a relative Cuntz-Pimsner algebra, as wasa

omplished by Brownlowe and Raeburn in [4℄. We adopt their perspe
tive andassume also that A is unital, but we don't assume that � is unital. Let ML denotethe 
ompletion of A in the inner produ
t ha; bi := L(a�b), and giveML the right andleft a
tions of A de�ned by the formulae m � a := m�(a) and a �m = �(a)m = am.As a left A-moduleML is 
y
li
 and the image of 1 inML is a 
y
li
 ve
tor, whi
hwe denote by �0. If (�;  ) is a Cuntz-Pimsner representation ofML in a C�-algebraB, then the image of �0 in B,  (�0), is an isometry V , say. Then (�;  ) is 
ompletelydetermined by � and V in the following sense: Let � be a representation of A in aC�-algebra B, let V be an isometry in B, and de�ne  :ML ! B by the formula, (�(a)�0) = �(a)V , then (�;  ) is a Cuntz-Pimsner representations of ML in B ifand only if the following equations CP1., CP2. and CP3. are satis�ed:CP1. V �(a) = �(�(a))V for all a 2 A;CP2. V ��(a)V = �(L(a)) for all a 2 A; andCP3. �(a) = ( ; �)(1)(�(a)), for all a 2 J .Theorem 3.4. In the 
ontext of our groupoid, G, let A = C�(R1), let � be theendomorphism of A de�ned by equation (1), let L be the asso
iated transfer operator(5) and let ML be the 
orresponden
e over A de�ned by Brownlowe and Raeburnthat we just des
ribed. Then the identity representation � mapping C�(R1) intoC�(G) together with the isometry S de�ned by equation (2), determine a Cuntz-Pimsner representation (�;  ) of ML in C�(G) that implements an isomorphism ofO(ML) onto C�(G).Proof. Equation CP.1 follows from equation (3) and equation CP.2, whi
h isthe same as the se
ond equation of Theorem 3.1, is a straightforward 
al
ulation.We need to verify equation CP.3. Sin
e �0 is a 
y
li
 ve
tor for the left a
tion of Aon ML, K(ML) is the 
losed linear span of elements of the form �(a)�0 
 ��0�(b),



GROUPOID METHODS IN WAVELET ANALYSIS 199where a and b range over A. So, if �(a) is 
ompa
t, there is a sequen
e whose termsare of the form Pi �(ai)�0 
 ��0�(bi) that 
onverges to �(a) in K(ML). So, if weapply �(a) to an element of the form �(b)S =  (�(b)�0), then we may write thefollowing equation�(a)�(b)S =  (�(a)�(b)�0) = lim (Xi �(ai)�0 
 ��0�(bi)(�(b)�0))(6) = limXi �(ai)SS��(bi)�(b)S= limXi �(ai)S�(L(bib))= limXi �(ai)�(� Æ L(bib))S= limXi ( ; �)(1)(�(ai)�0 
 ��0�(bi))(�(b)S)= ( ; �)(1)(�(a))(�(b)S):By [18, Lemma 4.4.1℄(7)  (� 
 ��(�(b)�0)) = ( ; �)(1)(� 
 ��)(�(b)S);whi
h shows that for all T 2 K(ML); ( ; �)(1)(T ) is determined by its values onelements of the form �(b)S. Thus, equations (6) and (7) together show that ifa 2 J , then �(a) = ( ; �)(1)(�(a)). Thus (�;  ) is a Cuntz-Pimsner representation,the range of whi
h 
learly generates C�(G). So all we need to show is that � �  is inje
tive. But this is immediate from the inje
tivity of �, by the gauge-invariantuniqueness theorem [18, Theorem 4.1℄. �Proof of Theorem 3.1. The fa
t that 
onditions 1. and 2. of the theorem aresatis�ed is an easy 
al
ulation. The \
onverse" assertion follows from Theorem 3.4be
ause, as is easily seen, if (�; S+) are given, a
ting on a Hilbert spa
e H, say, thenwe obtain a Cuntz-Pimsner representation (�;  ) ofML by setting  (�) := �(�)S+ .This representation \integrates" to give a C�-representation of O(X ), whi
h byTheorem 3.3 is C�(G). �4. Filter BanksDefinition 4.1. A family fmigi=1;:::;N � X is 
alled a �lter bank if it is anorthonormal basis for X .This means that hmi;mji = 0 if i 6= j, and hmi;mii = 1. Note that this last
ondition is mu
h stronger than asserting that ea
h mi has norm 1. In general amodule X need not have an orthonormal basis. Even some modules built on Tnwith the map z ! Az may fail to have orthonormal bases. However, on T1 theyexist.Definition 4.2. If fmigi=1;:::;N is a �lter bank, we 
all m1 the low pass �lterand the rest high pass �lters.One problem of great importan
e is to de
ide when a fun
tion m in X satisfyinghm;mi = 1 
an be 
ompleted to an orthonormal basis, i.e., when 
an su
h a fun
tionm be viewed as a low pass �lter in a �lter bank. This depends to a great extent



200 MARIUS IONESCU AND PAUL S. MUHLYupon the underlying geometry of the situation under 
onsideration, as Pa
ker andRie�el have shown [29, 30℄.We note, too, that while we have been emphasizing the topologi
al situation,there is a Borel version of our analysis. In this situation Borel orthonormal basesalways exist and low pass �lters 
an be 
ompleted to a �lter bank.Theorem 4.3. De�ne � : C(X) ! C(X) by �(f) = f Æ T , f 2 C(X), andadopt the notation of Theorem 3.3. The following assertions are valid in C�(G) :(1) �(�(a))S = S�(a), for a 2 C(X):(2) If fm1; : : : ;mng is a �lter bank and if Si :=  (mi), then fSig is a Cuntzfamily of isometries in C�(G) su
h that�(�(a))Si = Si�(a):(3) For all a 2 C(X)(8) �(�(a)) = nXi=1 Si�(a)S�i :The proof of Theorem 4.3 is a straightforward 
al
ulation and so will be omit-ted. Nevertheless, there are several useful points to be raised about the result.Suppose, quite generally, that A is a C�-algebra and that � is an endomor-phism of A. Then the powers of � 
an be used to build an indu
tive system(fAng1n=0; f�m;ngm�n) in a familiar fashion: one takes An to be A for every nand sets �m;n := �m�n, when m � n. The indu
tive limit of this system, A1,exists, but may be zero. In the event the limit is not 0, then, as Sta
ey proves inProposition 3.2 of [37℄, there is, for ea
h positive integer n, a unique C�-algebraB and a pair (�; ftigni=1) 
onsisting of a �-homomorphism � : A ! B su
h that�(1M(A)) = 1M(B), where � denotes the extension of � to the multiplier algebra of A,M (A), and a family of isometries in the multiplier algebra of B, ftigni=1 � M (B),su
h that(1) ftigni=1 is a Cuntz family of isometries, i.e., t�i tj = Æij1M(B), for i; j =1; 2; : : : ; n, and Pni=1 tit�i = 1M(B). When n = 1, t = t1 is simply anisometry.(2) For all a 2 A, �(�(a)) =Pni=1 ti�(a)t�i .(3) If (�; fTigni=1) is a family 
onsisting of a C�-representation of A on aHilbert spa
e H and a Cuntz family of isometries fTigni=1 in B(H), thenthere is a nondegenerate representation (� � T ) of B on H so that (� �T ) Æ � = � and (�� T )(ti) = Ti, i = 1; 2 : : : ; n. (The family (�; fTigni=1) is
alled a Cuntz-
ovariant representation of order n of the system (A;�).)(4) B is the C�-algebra generated by �(A) and elements of the form �(a)ti,i = 1; 2; : : :; n and a 2 A.Definition 4.4. The C�-algebra B just des
ribed is 
alled the Sta
ey 
rossedprodu
t of order n determined by A and �, and is denoted A o�n N.Note that when n = 1, the endomorphism in a Sta
ey 
rossed produ
t of order1 
annot be unital if the embedding � is inje
tive. This happens if and only ifthere is a Cuntz-
ovariant representation (�; T ) of order 1 with a faithful �. Inthe setting of Theorem 3.1, it is 
lear that � is not unital by virtue of equation(3). Also, by virtue of equation 1. in the statement of that theorem it is naturalto spe
ulate about the relation between C�(G) and the Sta
ey 
rossed produ
t of



GROUPOID METHODS IN WAVELET ANALYSIS 201order 1 determined by C�(R1) and �. It turns out that the 
rossed produ
t thatExel would asso
iate to C�(R1), �, and L, in [17℄ and whi
h he would denote byC�(R1) o�;L N, is isomorphi
 to C�(R1) o�1 N by his [17, Theorem 4.7℄. On theother hand, Brownlowe and Raeburn show that Exel's algebra C�(R1) o�;L N isisomorphi
 to the relative Cuntz-Pimsner algebra determined the ideal A�(A)A\J ,where A = C�(R1)2. Now in this situation J 
oin
ides with A be
ause �(1) =�(P ), where P = SS� , and be
ause �(P ) = �0 
 ��0 . On the other hand, theideal A�(A)A is proper. Thus, the relative Cuntz-Pimsner algebra determinedby A�(A)A \ J has the Cuntz-Pimsner algebra O(ML) as a proper quotient, by[18, Proposition 3.14℄. So, in our setting, we see that C�(G) is a proper quotientof C�(R1) o�;L N ' C�(R1) o�1 N. On the other hand, Theorem 4.3 suggeststhat C�(G) may be the Sta
ey 
rossed produ
t C(X) o�n N, but we are unable todetermine the pre
ise 
ir
umstan
es under whi
h this may happen. Nevertheless, asTheorem 4.3 shows, C�(G) 
ontains a Cuntz 
ovariant representation of order n of(C(X); �), and therefore any C�-representation of C�(G) produ
es automati
allya Cuntz-
ovariant representation of (C(X); �). These are the starting point ofBratteli and Jorgensen's analysis [2, Proposition 1.1℄.5. Representations of C�(G)Renault worked out the stru
ture theory of the most general representation of anygroupoid C�-algebra in [33℄. We dis
uss here 
ertain aspe
ts of it in our spe
ialsetting that is relevant for appli
ations to wavelets. Let � : C�(G)! B(H) be a C�-representation, where G for the moment is an arbitrary lo
ally 
ompa
t groupoidwith Haar system f�ugu2G(0) . Then � determines and is determined by a triple(�;H; U ), where � is a quasi-invariant measure on G(0) = X; H is a (Borel) Hilbertbundle on X, and U is a representation of G on H. The relation between � andthe triple (�;H; U ) is expressed through the equation�(f)�(u) = ZGu f(
)(U (
)�(s(
)))� 12 (
) d�u(
);where � is an L2(�)-se
tion of the bundle H and � is the modular fun
tion of themeasure �: In more detail, let � = RG(0) �u d�(u) and let ��1 be the image of �under inversion. Then to say � is quasi-invariant is to say that � and ��1 aremutually absolutely 
ontinuous. In this 
ase, � is de�ned to be d��1d� .Spe
ializing now to the setting where our groupoid G is the Dea
onu-Renaultgroupoid asso
iated to the lo
al homeomorphismT on the 
ompa
t Hausdor� spa
eX, it is not diÆ
ult to see that the measure � is quasi-invariant in the fashion justdes
ribed if and only if � Æ T�1 � �. In this event, if we let D denote the Radon-Nikodym derivative d�ÆT�1d� , then the modular fun
tion � is given by the equation�(x;m� n; y) = D(x)D(Tx) � � �D(Tm�1x)D(y)D(Ty) � � �D(Tn�1y) :2If E is a C�-
orresponden
e over a C�-algebra A and if K is an ideal in J , then the relativeCuntz-Pimsner algebra determined byK, O(K;E), is the universalC�-algebra for representationsof E, (�;  ), that have all the properties of a Cuntz-Pimsner representation ex
ept that theequation �(a) = ( ; �)(1)(�(a)) is assumed to hold only for a 2 K. See [28℄ and [18℄, where thebasi
 theory of su
h algebras is developed.
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tion D de�nes also a transfer operator L�D :M (X)!M (X)by the equation(9) L�D(�)(f) := ZX XTy=xD(y)f(y) d�(x):The relevan
e of the transfer operator L�D to our situation was established by Re-nault in [36, Theorem 7.1℄ and [35, Proposition 4.2℄. We state a slightly modi�edversion of his results.Theorem 5.1. (Renault) Let � be a probability measure on X. Then � is quasi-invariant with respe
t to G and admits � as Radon-Nikodym derivative if and onlyif L�D(�) = �.In appli
ations to wavelets, i.e. to the settings where X = Tor X = Tn and Tis the power fun
tion z ! zN or x +Zn! Ax+Zn the measure that one usually
hooses is Lebesgue measure. Also, the bundle one 
hooses is the trivial line bundleH = T� C or H = Tn� C and the representation is the translation representation:U (
) : fs(
)g � C ! fr(
)g � C ,U (
)(s(
); 
) = (r(
); 
);
 2 G. But we note that some of the re
ent work of Dutkay and Roysland [15, 16℄
an be formulated in the setting we are des
ribing by taking more 
ompli
atedbundles and representations.6. An Example: Classi
al WaveletsWe dis
uss how the 
onstru
ts we have des
ribed 
an enter into analysis of 
lassi
alwavelets. In this setting, as we have indi
ated, X is the 
ir
le or 1-torusT, the lo
alhomeomorphism T is given by squaring: Tz = z2, the quasi-invariant measure � isLebesgue measure on T, the bundle H is the trivial one-dimensional bundle, andthe representation U is translation. The L2-se
tions of H is just L2(�) and if � isthe integrated form of the representation asso
iated to this data, then � representsC(X) (viewed as �(C(X)) in C�(G)) as multipli
ation operators on L2(�). Further,if fmigi=1;2 is a �lter bank and if S1 and S2 are the isometries it determines as inTheorem 4.3, then �(Si)�(z) = mi(z)�(z2), i = 1; 2. Thus (�(S1); �(S2)) is a Cuntzfamily on L2(�) su
h that�(�(�(f))) = �(S1)�(�(f))�(S1)�+ �(S2)�(�(f))�(S2)�;for all f 2 C(T), whi
h is equation (8). We note in passing that there are many�lter banks and that given any m1 in X su
h that hm1;m1i = 1, we obtain a �lterbank fm1;m2g if we take m2 to be the fun
tion de�ned by the equationm2(z) := zm1(�z):All other possibilities for m2 are obtained from this 
hoi
e by multiplying it by�(z2), where � is a 
ontinuous fun
tion of modulus 1.The key to building wavelets from the Cuntz relations is to build the minimalunitary extension of �(S1). This was observed by Bratteli and Jorgensen in [2℄.



GROUPOID METHODS IN WAVELET ANALYSIS 203However, we follow Larsen and Raeburn [25℄ who use the indu
tive limit approa
hadvan
ed by Douglas [9℄. Here is the basi
 setup: Form the indu
tive systemHn Sm;n�! Hmwhere Hn = L2(T) for every n and the \linking maps" Sm;n : Hn ! Hm, aresimply the powers of �(S1): Sm;n = �(S1)m�n. We let H1 denote the indu
tivelimit lim�!(fHng; fSm;ngg, and we let S1;n : Hn ! H1 denote the limit embeddings.Then there is a unique unitary U on H1 so thatUS1;n+1 = S1;n+1�(S1) = S1;n;for all n. This map U is the minimal isometri
 extension of �(S1). We want toun
over a bit more stru
ture in U .To this end, observe that for m;n � 0,(Sm;n�)(z) = 2(m�n)=2m1(z)m1(z2)� � � m1(z2(m�n)�1 )�(z2(m�n) ):Analysis of Dutkay and Jorgensen in [10℄ and [13, Proposition 2.2℄ leads to anexpli
it identi�
ation ofH1 with L2(T1; ~�), where T1 is the 2-adi
 solenoid and ~�is a measure built from Lebesgue measure onTand the transfer operator asso
iatedwith jm1j2: Lm1(f)(z) = 1jT�1(x)j Xw2=z jm1(w)j2f(w):The representation � of C(T) on L2(�) extends to a representation � of C(T) onL2(T1; ~�) via the formula�(f)�(z1 ; z2; : : :) = f(z1)�(z1; z2; : : :);where � 2 L2(T1; ~�), and where, re
all, points in T1 are sequen
es (z1; z2; : : :)su
h that zk = z2k+1, for all k � 1. Also, the measure ~� is quasi-invariant for theextension T1 of the map T on T, de�ned on T1 by the formula T1(z1; z2; : : :) =(z21 ; z1; z2; : : :), and U is given by the formulaU�(z1; z2; : : :) = �(z21 ; z1; z2; : : :)J 12 (z1; z2; : : :);where J is the Radon-Nikodym derivative with respe
t to ~� of the translate of ~�by T1 . The pair (�; U ) is a 
ovariant pair:�(f Æ T1) = U�(f)U�1;for all f 2 C(T). To build the wavelet asso
iated with the �lter bank, we needto get from L2(T1; ~�) to L2(R) in a unitary fashion that transforms U into D,whi
h re
all is given by the formula D�(x) = p2�(2x); and transforms � into therepresentation ~�(f)�(x) = f(e2�ix)�(x). This is a

omplished with the aid of afamous theorem of Mallat.Theorem 6.1. (Mallat [26, Theorem 2℄) Suppose m1, whi
h is a unit ve
torin the C�-
orresponden
e X , satis�es the additional two hypotheses:(1) The Fourier 
oeÆ
ients of m1are O((1 + k2)�1):(2) jm1(1)j = 1(3) For all x 2 [��2 ; �2 ℄, m1(eix) 6= 0.



204 MARIUS IONESCU AND PAUL S. MUHLYThen the produ
t Q1k=1m1(e2�i2�kt) 
onverges on Rand the limit, �, lies in L2(R).Further, for all x 2 R(1) �(2x) = m1(e2�ix)�(x)(2) Pk2Zj�(x+ k)j2 = 1.Remark 6.2. Mallat's hypotheses are labeled as equations (38){(41) on page76 of [26℄. Equation (38) is our hypothesis 1, equation (39) is our hypothesis 2.,and his equation (41) is our hypothesis 3. Equation (40) is the assertion that m1 isa unit ve
tor in X . We note, however, that there is a lot of \wiggle room" in thesehypotheses and a lot of work has been devoted to �nding their exa
t limits. In[5, Chapter 6℄, for example, Daube
hies dis
usses aspe
ts of this matter at lengthand exposes, in parti
ular, works of Cohen and Lawton whi
h give ne
essary andsuÆ
ient 
onditions for a unit ve
tor m1 to be a trigonometri
 polynomial andgenerate a wavelet. The point to keep in mind, for our purposes, is that a unitve
tor m1 2 X always generates an isometry S1. Further, the minimal unitaryextension of �(S1), U , lives on the spa
e L2(T1; ~�), where ~� is 
onstru
ted usingm1. These things do not depend on anything other than the fa
t that m1 is a unitve
tor in X . However, some hypotheses on m1 seem to be ne
essary to get fromL2(T1; ~�) to L2(R). Con
lusion 1. of Mallat's theorem is the stepping stone thattakes us from L2(T1; ~�) to L2(R). Con
lusion 2. does not play an immediate rolein the Larsen-Raeburn approa
h, but it implies, in parti
ular, that translates of �̂are orthonormal [26, Equation (50)℄.With the aid of � we may de�ne Rn : Hn ! L2(R) via the formula (Rn�)(x) :=2�n2 �(e2�i(2�nx))�(2�nx), � 2 Hn(= L2(T)). It then is a simple matter to 
he
kthat Rn is an isometry that satis�es the equation Rn+1�(S1) = Rn. By propertiesof indu
tive limits, we may 
on
lude that there is a unique Hilbert spa
e isometri
inje
tion R1 : H1 ! L2(R) so that R1S1;n = Rn. The problem now is to showthat R1 is surje
tive. For this purpose, de�ne Vn := RnHn = RnL2(T): Then, asMallat showed in the proof of the se
ond half of Theorem 2 in [26℄, we have:Lemma 6.3. (Mallat)(1) Vn � Vn+1.(2) \Vn = f0g.(3) WVn = L2(R).Thus R1 : H1 ! L2(R) is a Hilbert spa
e isomorphism.We want to remark that 
onditions 2. and 3. of the pre
eding lemma representtwo di�erent problems. Condition 2. is the assertion that the isometry �(S1) is apure isometry. Bratteli and Jorgensen provide a proof of this that is di�erent fromMallat's by noting that �(S1) is pure be
ause m1 does not have modulus one a.e.[2, Theorem 3.1℄. The 
ondition 3. also has alternate proofs. One that we �ndparti
ularly attra
tive, be
ause it works in the more general setting of waveletsbuilt on Tn using a dilation matrix A, may be found in Stri
hartz's survey [38,Lemma 3.1℄.Re
all that the \dilation by 2 operator", D, is de�ned on L2(R) by the formulaD�(x) = 21=2�(2x) and that D a unitary operator on L2(R).Lemma 6.4. R1UR�11 = D; and R1�(f)R�11 �(t) = f(e2�it)�(t) for all f 2C(T); all � in L2(R) and all t 2 R.



GROUPOID METHODS IN WAVELET ANALYSIS 205Proof. The �rst assertion requires only a simple 
al
ulation:D(R1(S1;n+1�))(x) = D(Rn+1�)(x) = 21=2(Rn+1�)(2x)= 21=22�(n+1)2 �(e2�i(2�(n+1)2x))�(2�(n+1)2x) = (Rn�)(x)= (R1S1;n�)(x) = (R1US1;n+1�)(x):The se
ond assertion is veri�ed similarly. �If we set Wn = Vn+1 	 Vn, then by Lemma 6.3:Mn2ZWn = L2(R):But then we �nd thatW0 = V1 	 V0 = R1L2(T)	 R0L2(T)(10) = R1L2(T)	 R1�(S1)L2(T)= R1(L2(T)	 �(S1)L2(T))= R1�(S2)L2(T);by the Cuntz relations. So if we set ek(z) = zk and set �k := R1�(S2)e�k. Thenf�kg is an orthonormal basis for W0 and�k(x) = 2�1=2(21=2m2(e(2�i2�1x))e�2�ikx)�(2�1x)= e�2�ikx�(x)where �(x) := m2(e�ix)�(2�1x):Thus, f�j;kg1j;k=�1 is an orthonormal basis for L2(R), where�j;k(x) = Dj�k(x)= 2j=2e(�2�ik2jx)�(2jx):Consequently, if  is the inverse Fourier transform of �, then  is a wavelet.This 
ompletes the proof of the following theorem as formulated by Bratteliand Jorgensen [2℄ and Larsen and Raeburn [25℄.Theorem 6.5. (Bratteli-Jorgensen, Larsen-Raeburn)The inverse Fourier transform ofm2(e�ix)�(2�1x)is the wavelet asso
iated with the �lter bank (m1;m2).7. Further Thoughts: Fra
tafoldsAs we have seen, the C�-algebra C�(G) always 
ontains an isometry S and a Cuntzfamily of isometries fSigni=1, provided X has an orthonormal basis. Further, we may
onstru
t the minimal unitary extension of either S or of any of the Si essentiallywithin C�(G). More a

urately, these obje
ts are 
onstru
ted in the multiplieralgebra of the C�-algebra of a Morita equivalent groupoid that we denote by G1.To 
onstru
t G1; we form an analogue of the 2-adi
 solenoid, viz., the proje
tivelimit spa
e X1 := fx := (x1; x2; : : :) : T (xk+1) = xkg, and we setG1 = f(x; n�m; y) : Tnx1 = Tmy1g:



206 MARIUS IONESCU AND PAUL S. MUHLYThen G1 is a groupoid with unit spa
e X1 that is Morita equivalent to G in thesense of [27℄. Note, however, that G1 is not r-dis
rete. It has many Haar systemsthat are not in any evident way equivalent. Ea
h transfer operator L�D asso
iatedwith a 
ontinuous fun
tion D as in equation (9) determines a natural Haar systemon G1 that re
e
ts spe
ial features of C�(G). In parti
ular, if D = jmj where mis a unit ve
tor in X (so in parti
ular if m is part of an orthonormal basis for X ),then the minimal unitary extension of S1 = �(m)S (in the notation of Theorem3.3) lives in the multiplier algebra of C�(G1), when G1 is endowed with the Haarsystem determined by jmj.We observe in passing that Dutkay and Jorgensen [13℄ asso
iate the C�-
rossedprodu
t C(X1) oZto the setting we have been dis
ussing (where Zis viewed asa
ting on X1 through the homeomorphism T1, whi
h is de�ned via the formulaT1(x1; x2; : : :) = (Tx1; x1; x2; : : :).) This 
rossed produ
t lies in the multiplieralgebra of C�(G1).Thus, our analysis shows that the study of wavelets 
an be broken into twopie
es. First, there are the stru
tures that are intrinsi
 to the geometri
 settingof a spa
e X with a lo
al homeomorphism T . These in
lude the groupoid G andits C�-algebra, the pseudogroup G, and the Dea
onu 
orresponden
e X . These arethe sour
e of isometries and the Cuntz relations - assuming X has an orthonor-mal basis. Ea
h 
hoi
e of orthonormal basis gives Cuntz isometries in C�(G) thatsatisfy equation (8). Even if X fails to have an orthonormal basis, X will al-ways 
ontain a (normalized tight) frame in the sense of Frank and Larson [19,De�nition 3.1℄ (also 
alled a quasi-basis in the sense of Watatani [40℄). This isa 
olle
tion of ve
tors f igni=1 su
h that for every � 2 X ; � = Pni=1  ih i; �iandh�; �i = Pni=1h�;  iih i; �i. Su
h a 
olle
tion may be 
onstru
ted easily with theaid of a partition of unity subordinate to an open 
over of X su
h that T is ahomeomorphism when restri
ted to ea
h element of the 
over. Mu
h of the analy-sis in C�(G) 
an be a

omplished with a frame for X . The parameters involved inrepresenting the Cuntz relations on Hilbert spa
e 
ome from the representation the-ory of C�(G). Even 
onstru
ting the minimal unitary extension of �(S1) involvesingredients intrinsi
 to our setting. The groupoid G1 is Morita equivalent to Gand 
arries a natural Haar system that may be \pegged" to S1 - more a

urately,a natural Haar system on G1 
an be 
onstru
ted from ea
h low pass �lter. Therewill result a natural multiresolution analysis in L2(X1; ~�).To make 
onta
t with wavelet basis in L2(Rn) for some n, whi
h is the se
-ond pie
e in the study of wavelets, one must have a me
hanism for passing fromL2(X1; ~�) to L2(Rn). This involves a di�erent set of tools. In the �nal analysis,there may not be any naturally 
onstru
ted wavelet-like bases in L2(Rn) 
omingfrom a parti
ular spa
e and lo
al homeomorphism. One should not despair at this.Rather, one should fo
us on building orthonormal bases in W0 (the wandering sub-spa
e in equation (10) and then push them around to form an orthonormal basisfor all of L2(X1; ~�) using the minimal unitary extension U of �(S1). After all,L2(X1; ~�) and the other spa
es we have been dis
ussing are the naturally o

ur-ring spa
es adapted to X and T . This e�e
tively is what Dutkay and Jorgensendid in [11℄ and is similar to what Jorgensen and Pedersen did in [22℄.We believe the proof of Theorem 6.5 that we presented, whi
h is due to Larsenand Raeburn [25℄, 
an be tweaked to show a bit more. The 2-adi
 solenoid T1is the dual group of the 2-adi
 numbers: the set of all rational numbers whose



GROUPOID METHODS IN WAVELET ANALYSIS 207denominators are powers of 2, positive and negative. Sin
e the 2-adi
 numbersform a dense subgroup of R, T1 
ontains a dense 
opy of R. We believe themeasure ~� is supported on this 
opy of R and is mutually absolutely 
ontinuouswith respe
t to Lebesgue measure transported there. The mapping R1 ought tobe, then, just multipli
ation by (the square root of) a suitable Radon-Nikodymderivative.In another dire
tion, whi
h we �nd very piquant, we 
an �nd Cuntz familiesin the C�-algebras or their multiplier algebras of other groupoids that are Moritaequivalent to G. This raises the prospe
t of 
arrying out groupoid-like harmoni
analysis using Cuntz families of isometries on other spa
es that Stri
hartz has 
alledfra
tafolds - i.e., spa
es that are lo
ally like fra
tals [39℄. The point is that underfavorable 
ir
umstan
es G is the groupoid of germs of the pseudogroup G of partialhomeomorphisms de�ned by T . We believe the pseudogroup of partial homeomor-phisms of a fra
tafold that is lo
ally like X will be Morita equivalent, in a sensedes
ribed by Renault in [34, Se
tion 3℄, to G. This sense is based on work ofKumjian [23℄ and Hae
iger [20℄. At this stage, however, there still is a lot of workto do to substantiate this belief. Referen
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