
Contemporary MathematisGroupoid Methods in Wavelet AnalysisMarius Ionesu and Paul S. MuhlyDediated to the memory of George W. MakeyAbstrat. We desribe how the Deaonu-Renault groupoid may be used inthe study of wavelets and fratals.1. IntrodutionThis note serves two purposes. First, we want to desribe investigations that weare undertaking whih are inspired in large part by work of Palle Jorgensen andhis ollaborators, partiularly Ola Bratteli, Dorin Dutkay and Steen Pedersen1. Intheir papers one �nds a rih theory of wavelets on the one hand and topis infratal analysis on the other. Further, the analysis in these papers is laed withrepresentations of the Cuntz relations - �nite families of isometries fSigni=1 suhthat Pni=1 SiS�i = 1. Very roughly speaking, these authors show that muh ofthe analysis of wavelets and fratals that has appeared in reent years may beilluminated in terms of speial representations of the Cuntz relations. Indeed, someof the most important advanes are made by hoosing an appropriate representationfor these relations. Our motivation was to understand the extent to whih the useof the Cuntz relations is intrinsi to the situation under onsideration. We wantedto separate intrinsially ourring representations of the Cuntz relations from thosethat are imposed by speial hoies. We hoped, thereby, to larify the degrees offreedom that go into the representations found in the work we are disussing.As it turns out, the Cuntz isometries that arise in the work of Jorgensen et.al. may be expressed in terms of representations of the Deaonu-Renault groupoidassoiated to an appropriate loal homeomorphism of a ompat Hausdor� spae.Our seond purpose is to show how the C�-algebra of this groupoid is related toa number of other C�-algebras that one an attah to a loal homeomorphism.In partiular, we show that the C�-algebra may be realized as a Cuntz-Pimsner2000 Mathematis Subjet Classi�ation. Primary 22A22, 42C40, 28A80, 46L89, 46L08,46L55, 46L40; Seondary 58H99, 37F99, 32H50.Key words and phrases. groupoids, wavelets, fratals, C�-algebras, Cuntz relations.This work was partially supported by the National Siene Foundation, DMS-0355443.1A number of relevant papers are ited in the referenes to this paper, but for a more om-prehensive list, the reader should onsult the books [3℄ and [21℄. 0000 (opyright holder)193



194 MARIUS IONESCU AND PAUL S. MUHLYalgebra in two di�erent ways and that, in general, it is a quotient of ertain otherC�-algebras that one may build from the loal homeomorphism.Reall that a wavelet is usually understood to be a vetor  in L2(R) suh thatthe family fDjT k : j; k 2Zgis an orthonormal basis for L2(R), where T is the operator of translation by 1, i.e.,T�(x) = �(x� 1); � 2 L2(R); and where D is dilation by 2, i.e., D�(x) = p2�(2x).One of the prinipal problems in the study of wavelets is to onstrut them withvarious pre-assigned properties. That is, one wants to \tune" the parameters thatenter into the analysis of wavelets so that the wavelet one onstruts exhibits thepresribed properties. So one's �rst task is to identify those parameters and tounderstand the relations among them.Fratals, on the other hand, are spaes that possess some sort of saling. Thatis, as is ustomarily expressed, fratals exhibit the same features at all sales. Howto make this statement preise and how to onstrut suh spaes in useful waysare, of ourse, the objets of onsiderable researh. Most of the known examples offratals are losely onneted to spaes endowed with a loal homeomorphism thatis not injetive. This may seem like a banal oversimpli�ation, but reetion on itdoes lead to natural representations of the Cuntz relations, as we shall see, that areintrinsi to the geometry of the situation. Sine wavelets have a natural saling builtinto them, it is natural ontemplate the possibility of building natural wavelet-likeorthonormal bases in L2-spaes ereted on fratals. This is indeed possible, andmuh of the work by Jorgensen and his o-authors has been devoted to realizingthe possibilities.Our ontribution is to observe that the Deaonu-Renault groupoid assoiatedwith a loal homeomorphism of a ompat Hausdor� spae provides a natural en-vironment in whih to set up fratal analysis, and that the C�-algebras of thegroupoids arry natural, geometrially indued families of isometries. The repre-sentations that Jorgensen and his ollaborators study ome from representations ofthis groupoid. Further, wavelets and other orthonormal bases on the fratals areseen to be artifats of the representation theory of the groupoid. In short, groupoidshelp to larify onstrutions of both fratals and wavelets and help to analyze theparameters involved. 2. The SetupThroughout this note, X will denote a �xed ompat Hausdor� spae and T : X !X will denote a surjetive loal homeomorphism. One an relax these hypothesesin various ways and in various situations, but we shall not explore the possibilitieshere. The prinipal examples to keep in mind are the following.Example 2.1. Let X be the irle or torus T. The loal homeomorphism inthis ase is also an endomorphism of the abelian group struture on T: T (z) = zN ;z 2 T, where N is a natural number. The ase when N = 2, provides a link to\lassial" wavelets.Example 2.2. Let A be an n � n dilation matrix. That is, suppose A hasinteger entries and that the determinant of A has absolute value d (whih mustbe a positive integer) that is greater than 1. If we view the n-torus, Tn, as thequotient group Rn=Zn, then A indues a loal homeomorphism T : Tn ! Tn via



GROUPOID METHODS IN WAVELET ANALYSIS 195the formula T (x+Zn) = Ax+Zn, x+Zn 2Tn. It is not diÆult to see that T isd-to-1.Example 2.3. In this example we onnet our disussion to the theory ofiterated funtion systems, whih is one of the main ways to onstrut fratals [1℄.Assume X is a ompat spae endowed with a metri, d say, and let ('1; : : : ; 'n)be a system of maps on X for whih there are onstants 1 and 2 suh that0 < 1 � 2 < 1 and suh that 1d(x; y) � d('i(x); 'i(y)) � 2d(x; y) for eahi. Then eah 'i is homeomorphism onto its range. Also, the family ('1; : : : ; 'n)indues a map � on the spae of non-empty losed (and hene ompat) subsets Kof X via the formula �(K) = [ni=1'i(K):It is then easy to see that � is a strit ontration in the Hausdor� metri on thespae of nonempty losed subsets of X and so there is a unique nonempty ompatsubset K of X suh that �(K) = K. This K is alled the invariant subset of thesystem. It is the fratal assoiated with the system. We shall assume that X is theinvariant set. It is important to note that there may be overlap between 'i(X) and'j(X) for i 6= j. Consequently, the 'i need not be branhes of the inverse of a loalhomeomorphism. One way to \get around" this limitation is to lift the system inthe sense of [1, Page 155℄. For this purpose, let E1 the spae of in�nite wordsover the alphabet E = f1; : : : ; ng. Then in the produt topology E1 is ompatand we an give E1 a omplete metri suh that the maps �i : E1 ! E1 de�nedby the formula �i(w) = (i; w1; w2; : : :), where w = (w1; w2; : : :), are ontrations ofthe same type as the 'i. The iterated funtion system on X � E1 , ( ~'1; : : : ; ~'n),de�ned by the formula ~'i(x;w) = ('i(x); �i(w))then has a unique nonempty losed invariant subset ~X of X � E1. That is[ni=1 ~'i( ~X) = ~X . The system ( ~'1; : : : ; ~'n) on ~X is alled the lifted system. Theranges of the ~'i are disjoint and so there is a loal homeomorphism T of ~X suhthat the ~'i are the branhes of the inverse of T . As is disussed in Setion 4.6 of[1℄, the systems('1; : : : ; 'n) and ( ~'1; : : : ; ~'n) share many features in ommon and,from some points of view, are interhangeable.3. The Deaonu-Renault GroupoidThe Deaonu-Renault groupoid assoiated with the loal homeomorphismT : X !X is G = f(x; n; y) 2 X �Z�X : T k(x) = T l(y); n = k � lg:Two triples (x1; n1; y1) and (x2; n2; y2) are omposable if and only if x2 = y1 andin that ase, (x1; n1; y1)(x2; n2; y2) = (x1; n1 + n2; y2). The inverse of (x; n; y) is(y;�n; x). A basis for the topology on G is given by the setsZ(U; V; k; l) := f(x; k � l; y) 2 G : x 2 U; y 2 V g;where U and V are open subsets of X suh that T kjU , T ljV are homeomorphismsand T k(U ) = T l(V ). Thus Z(U; V; k; l) is essentially the graph of (T ljV )�1 Æ (T kjU)and is a G-set in the sense of Renault [32℄. The G-sets form a pseudogroup G, viz.the pseudogroup of partial homeomorphisms generated by T . The sets Z(U; V; k; l)form a basis for G. The groupoid G is (isomorphi and homeomorphi to) thegroupoid of germs of G preisely when the loal homeomorphism T is essentially



196 MARIUS IONESCU AND PAUL S. MUHLYfree, meaning that for no m and n does Tm = Tn on any open subset of X [34,Proposition 2.8℄.The groupoid G is r-disrete or �etale and so admits a Haar system of ountingmeasures. Consequently, we may de�ne a �-algebra struture on C(G) as follows.For f; g 2 C(G) we setf � g(x; k � l; y) = X f(x;m � n; z) � g(z; (n + k)� (m + l); y);where the sum ranges over all m, n, and z suh that Tmx = Tnz, and Tn+kz =Tm+ly, and we de�ne f�(x; k � l; y) = f(y; l � k; x):The algebra C(G) an be ompleted to form a C�-algebra, denoted C�(G), in thenorm kfk := sup k�(f)kwhere the supremum is taken over all �-homomorphisms of C(G) into B(H�) thatare ontinuous with respet to the indutive limit topology on C(G) and the weakoperator topology on B(H�), the algebra of operators on the Hilbert spae of �,H�. We will disuss the representations of C(G) more fully later, but �rst we wantto all attention to some speial lopen relations \on" X.For �xed positive integers m and n, we set Rn;m := f(x; n�m; y) 2 G : Tnx =Tmyg: Evidently, Rn;m is a union of the basi sets Z(U; V;m; n), and so is open inG.It is also losed, sine its omplement is open by virtue of being a union of sets of theform Z(U; V; k; l), with (k; l) 6= (m;n). The sets Rn;m, with m = n, are of speialimportane: R0;0 may be identi�ed with the diagonal � in X �X, while for k > 0,Rk;k may be identi�ed with the relationX�TkX := f(x; y) : T k(x) = T k(x)g inX�X. The C�-algebra of Rk;k, C�(Rk;k), whih may be identi�ed with the losure ofC(Rk;k) in C�(G), is the ross setional C�-algebra of a matrix bundle over X and,therefore, is a ontinuous trae C�-algebra. (See [24℄ for a disussion of algebrasof the form C�(Rk;k).) The sequene of inlusions R0;0 � R1;1 � R2;2 � � � �leads to the sequene of inlusions C�(Rk;k) � C�(Rk+1;k+1), k = 0; 1; 2; : : :, and,onsequently, we see that if R1 = f(x; 0; y) : Tnx = Tny for some ng = SRn;n ,then C�(R1) is the indutive limit lim�!C�(Rn;n). We note that R1 is the kernel ofthe fundamental homomorphism on G: (x; n; y)! n, whih implements the gaugeautomorphism group fzgz2Tde�ned on C(G) by the formula z(f)(x; n; y) =znf(x; n; y). The algebra C�(R1) is the �xed point algebra of fzgz2T, also knownas the ore of C�(G). For these things, and more, we refer the reader to [8, 34℄.It is a straightforward alulation, performed �rst by Deaonu [6℄, to see thatthe loal homeomorphism T on X indues a �-endomorphism � : C�(R1) !C�(R1) de�ned by the equation,(1) �(f)(x; 0; y) = 1pjT�1(Tx))jjT�1(Ty))jf(Tx; 0; T y);f 2 C(R1). Further, a similar alulation shows that the funtion S in C(G)de�ned by the equation(2) S(x;m � n; y) = ( 1pjT�1(Tx)j ; if m = 1; n = 0; Tx = y;0 otherwise,



GROUPOID METHODS IN WAVELET ANALYSIS 197is an isometry that implements � in the sense that(3) �(f) = SfS� ;f 2 C(R1). In partiular, observe that(4) SS�(x; k� l; y) = 1jT�1(Tx)j1R1;1(x; k� l; y):As we shall see, S is the soure of all the isometries in the papers by Jorgensen et.al. It is an intrinsi feature of the C�-algebra that omes from the basi data: X andthe loal homeomorphism T . In fat, we have the following theorem, Theorem 3.1,that makes preise the assertion that C�(G) is the universal C�-algebra generatedby C�(R1), �, and S. In fat, there are several di�erent perspetives from whihto see how C�(G) is onstruted from the spae X and loal homeomorphism T .We want to examine these and to ompare them with various approahes in theliterature. Therefore the proof will be given after further disussion.Theorem 3.1. Let ~� : C�(G) ! B(H) be a C�-representation. De�ne � :C�(R1)! B(H) by � = ~�jC�(R1), and let S+ = ~�(S). Then(1) �(�(f)) = S+�(f)S�+ ; and(2) �(L(f)) = S�+�(f)S+ , where L(f) = S�fS is the transfer operator asso-iated with �,(5) L(f)(x; 0; y) = 1pjT�1(x)jjT�1(y)j XTu=xTv=y f(u; 0; v):Conversely, given (�; S+), where � : C�(R1) ! B(H) is a C�-representation andS+ is an isometry on H suh that 1. and 2. are satis�ed, then there is a uniquerepresentation ~� : C�(G) ! B(H) suh that ~�(f) = �(f) for all f 2 C�(R1) and~�(S) = S+.Reall, next, that if A is a C�-algebra, then a C�-orrespondene over A isan A-A-bimodule E suh that EA is a Hilbert C�-module and the left ation isgiven by a C�-homomorphism � from A into the bounded adjointable operatorson E [28℄, L(E). We write K(E) for the spae of ompat operators on E, i.e.,K(E) is the losed linear span of the operators � 
 ��, �; � 2 E, de�ned by theformula � 
 ��(�) := �h�; �i, and we write J for the ideal ��1(K(E)) in A. ACuntz-Pimsner ovariant representation of E in a C�-algebra B is a pair (�;  ),where � is a C�-representation of A in B and  is a map from E into B suh that(1)  (�(a)�b) = �(a) (�)�(b), for all a; b 2 A and all � 2 E:;(2) for all �; � 2 E,  (�)� (�) = �(h�; �i); and(3) for all a 2 J , ( ; �)(1)(�(a)) = �(a), where ( ; �)(1) is the representationof K(E) in B de�ned by the formula ( ; �)(1)(�
��) =  (�) (�)� , �
�� 2K(E).There is a C�-algebra O(E) and Cuntz-Pimsner representation (kA; kE) of E inO(E) that is universal for all Cuntz-Pimsner representations of E. That is, if(�;  ) is a Cuntz-Pimsner representation of E in a C�-algebra B, then there is aunique C�-representation � of O(E) in B suh that �ÆkA = � and �ÆkE =  . Therepresentation � is often denoted �� . This was proved essentially by Pimsner in[31℄ and in the form stated here in [18, Proposition 1.3℄.



198 MARIUS IONESCU AND PAUL S. MUHLYDefinition 3.2. The Deaonu C�-orrespondene X over the C�-algebra C(X)is the ompletion of C(X) under the inner produth�; �i(x) = 1jT�1(x)j XTy=x �(y)�(y);with the left and right ations of C(X) given by (a � � � b)(x) = a(x)�(x)b(Tx).The de�nition we have given is slightly di�erent from the one given in [7℄.He does not divide by jT�1(x)j. However, it is easy to see that the two C�-orrespondenes are isomorphi. The following theorem is due to Deaonu [7,Propositions 3.1 and 3.3℄. The formulation we present is that of [8, Theorem7℄, whih is slightly more general. The proof in [8℄ is based on the gauge invariantuniqueness theorem found in [18, Theorem 4.1℄.Theorem 3.3. (Deaonu) De�ne � : C(X)! C�(G), by the equation�(')(x; k � l; y) = '(x)1R0;0(x; k � l; y);and  : X ! C�(G), by the equation  (�) = �(�)S. Then (i;  ) is a faithful Cuntz-Pimsner ovariant representation of (C(X);X ) in C�(G), whose image generatesC�(G) and gives an isomorphism between C�(G) and O(X ).In [17℄, Exel introdued a rossed produt assoiated to an endomorphism � ofa C�-algebra A and transfer operator L for �. That is, L is a positive operator on Athat satis�es the equation L(a�(b)) = L(a)b for all a; b 2 A. Exel's rossed produt,denoted Ao�;LN an also be desribed as a relative Cuntz-Pimsner algebra, as wasaomplished by Brownlowe and Raeburn in [4℄. We adopt their perspetive andassume also that A is unital, but we don't assume that � is unital. Let ML denotethe ompletion of A in the inner produt ha; bi := L(a�b), and giveML the right andleft ations of A de�ned by the formulae m � a := m�(a) and a �m = �(a)m = am.As a left A-moduleML is yli and the image of 1 inML is a yli vetor, whihwe denote by �0. If (�;  ) is a Cuntz-Pimsner representation ofML in a C�-algebraB, then the image of �0 in B,  (�0), is an isometry V , say. Then (�;  ) is ompletelydetermined by � and V in the following sense: Let � be a representation of A in aC�-algebra B, let V be an isometry in B, and de�ne  :ML ! B by the formula, (�(a)�0) = �(a)V , then (�;  ) is a Cuntz-Pimsner representations of ML in B ifand only if the following equations CP1., CP2. and CP3. are satis�ed:CP1. V �(a) = �(�(a))V for all a 2 A;CP2. V ��(a)V = �(L(a)) for all a 2 A; andCP3. �(a) = ( ; �)(1)(�(a)), for all a 2 J .Theorem 3.4. In the ontext of our groupoid, G, let A = C�(R1), let � be theendomorphism of A de�ned by equation (1), let L be the assoiated transfer operator(5) and let ML be the orrespondene over A de�ned by Brownlowe and Raeburnthat we just desribed. Then the identity representation � mapping C�(R1) intoC�(G) together with the isometry S de�ned by equation (2), determine a Cuntz-Pimsner representation (�;  ) of ML in C�(G) that implements an isomorphism ofO(ML) onto C�(G).Proof. Equation CP.1 follows from equation (3) and equation CP.2, whih isthe same as the seond equation of Theorem 3.1, is a straightforward alulation.We need to verify equation CP.3. Sine �0 is a yli vetor for the left ation of Aon ML, K(ML) is the losed linear span of elements of the form �(a)�0 
 ��0�(b),



GROUPOID METHODS IN WAVELET ANALYSIS 199where a and b range over A. So, if �(a) is ompat, there is a sequene whose termsare of the form Pi �(ai)�0 
 ��0�(bi) that onverges to �(a) in K(ML). So, if weapply �(a) to an element of the form �(b)S =  (�(b)�0), then we may write thefollowing equation�(a)�(b)S =  (�(a)�(b)�0) = lim (Xi �(ai)�0 
 ��0�(bi)(�(b)�0))(6) = limXi �(ai)SS��(bi)�(b)S= limXi �(ai)S�(L(bib))= limXi �(ai)�(� Æ L(bib))S= limXi ( ; �)(1)(�(ai)�0 
 ��0�(bi))(�(b)S)= ( ; �)(1)(�(a))(�(b)S):By [18, Lemma 4.4.1℄(7)  (� 
 ��(�(b)�0)) = ( ; �)(1)(� 
 ��)(�(b)S);whih shows that for all T 2 K(ML); ( ; �)(1)(T ) is determined by its values onelements of the form �(b)S. Thus, equations (6) and (7) together show that ifa 2 J , then �(a) = ( ; �)(1)(�(a)). Thus (�;  ) is a Cuntz-Pimsner representation,the range of whih learly generates C�(G). So all we need to show is that � �  is injetive. But this is immediate from the injetivity of �, by the gauge-invariantuniqueness theorem [18, Theorem 4.1℄. �Proof of Theorem 3.1. The fat that onditions 1. and 2. of the theorem aresatis�ed is an easy alulation. The \onverse" assertion follows from Theorem 3.4beause, as is easily seen, if (�; S+) are given, ating on a Hilbert spae H, say, thenwe obtain a Cuntz-Pimsner representation (�;  ) ofML by setting  (�) := �(�)S+ .This representation \integrates" to give a C�-representation of O(X ), whih byTheorem 3.3 is C�(G). �4. Filter BanksDefinition 4.1. A family fmigi=1;:::;N � X is alled a �lter bank if it is anorthonormal basis for X .This means that hmi;mji = 0 if i 6= j, and hmi;mii = 1. Note that this lastondition is muh stronger than asserting that eah mi has norm 1. In general amodule X need not have an orthonormal basis. Even some modules built on Tnwith the map z ! Az may fail to have orthonormal bases. However, on T1 theyexist.Definition 4.2. If fmigi=1;:::;N is a �lter bank, we all m1 the low pass �lterand the rest high pass �lters.One problem of great importane is to deide when a funtion m in X satisfyinghm;mi = 1 an be ompleted to an orthonormal basis, i.e., when an suh a funtionm be viewed as a low pass �lter in a �lter bank. This depends to a great extent



200 MARIUS IONESCU AND PAUL S. MUHLYupon the underlying geometry of the situation under onsideration, as Paker andRie�el have shown [29, 30℄.We note, too, that while we have been emphasizing the topologial situation,there is a Borel version of our analysis. In this situation Borel orthonormal basesalways exist and low pass �lters an be ompleted to a �lter bank.Theorem 4.3. De�ne � : C(X) ! C(X) by �(f) = f Æ T , f 2 C(X), andadopt the notation of Theorem 3.3. The following assertions are valid in C�(G) :(1) �(�(a))S = S�(a), for a 2 C(X):(2) If fm1; : : : ;mng is a �lter bank and if Si :=  (mi), then fSig is a Cuntzfamily of isometries in C�(G) suh that�(�(a))Si = Si�(a):(3) For all a 2 C(X)(8) �(�(a)) = nXi=1 Si�(a)S�i :The proof of Theorem 4.3 is a straightforward alulation and so will be omit-ted. Nevertheless, there are several useful points to be raised about the result.Suppose, quite generally, that A is a C�-algebra and that � is an endomor-phism of A. Then the powers of � an be used to build an indutive system(fAng1n=0; f�m;ngm�n) in a familiar fashion: one takes An to be A for every nand sets �m;n := �m�n, when m � n. The indutive limit of this system, A1,exists, but may be zero. In the event the limit is not 0, then, as Staey proves inProposition 3.2 of [37℄, there is, for eah positive integer n, a unique C�-algebraB and a pair (�; ftigni=1) onsisting of a �-homomorphism � : A ! B suh that�(1M(A)) = 1M(B), where � denotes the extension of � to the multiplier algebra of A,M (A), and a family of isometries in the multiplier algebra of B, ftigni=1 � M (B),suh that(1) ftigni=1 is a Cuntz family of isometries, i.e., t�i tj = Æij1M(B), for i; j =1; 2; : : : ; n, and Pni=1 tit�i = 1M(B). When n = 1, t = t1 is simply anisometry.(2) For all a 2 A, �(�(a)) =Pni=1 ti�(a)t�i .(3) If (�; fTigni=1) is a family onsisting of a C�-representation of A on aHilbert spae H and a Cuntz family of isometries fTigni=1 in B(H), thenthere is a nondegenerate representation (� � T ) of B on H so that (� �T ) Æ � = � and (�� T )(ti) = Ti, i = 1; 2 : : : ; n. (The family (�; fTigni=1) isalled a Cuntz-ovariant representation of order n of the system (A;�).)(4) B is the C�-algebra generated by �(A) and elements of the form �(a)ti,i = 1; 2; : : :; n and a 2 A.Definition 4.4. The C�-algebra B just desribed is alled the Staey rossedprodut of order n determined by A and �, and is denoted A o�n N.Note that when n = 1, the endomorphism in a Staey rossed produt of order1 annot be unital if the embedding � is injetive. This happens if and only ifthere is a Cuntz-ovariant representation (�; T ) of order 1 with a faithful �. Inthe setting of Theorem 3.1, it is lear that � is not unital by virtue of equation(3). Also, by virtue of equation 1. in the statement of that theorem it is naturalto speulate about the relation between C�(G) and the Staey rossed produt of



GROUPOID METHODS IN WAVELET ANALYSIS 201order 1 determined by C�(R1) and �. It turns out that the rossed produt thatExel would assoiate to C�(R1), �, and L, in [17℄ and whih he would denote byC�(R1) o�;L N, is isomorphi to C�(R1) o�1 N by his [17, Theorem 4.7℄. On theother hand, Brownlowe and Raeburn show that Exel's algebra C�(R1) o�;L N isisomorphi to the relative Cuntz-Pimsner algebra determined the ideal A�(A)A\J ,where A = C�(R1)2. Now in this situation J oinides with A beause �(1) =�(P ), where P = SS� , and beause �(P ) = �0 
 ��0 . On the other hand, theideal A�(A)A is proper. Thus, the relative Cuntz-Pimsner algebra determinedby A�(A)A \ J has the Cuntz-Pimsner algebra O(ML) as a proper quotient, by[18, Proposition 3.14℄. So, in our setting, we see that C�(G) is a proper quotientof C�(R1) o�;L N ' C�(R1) o�1 N. On the other hand, Theorem 4.3 suggeststhat C�(G) may be the Staey rossed produt C(X) o�n N, but we are unable todetermine the preise irumstanes under whih this may happen. Nevertheless, asTheorem 4.3 shows, C�(G) ontains a Cuntz ovariant representation of order n of(C(X); �), and therefore any C�-representation of C�(G) produes automatiallya Cuntz-ovariant representation of (C(X); �). These are the starting point ofBratteli and Jorgensen's analysis [2, Proposition 1.1℄.5. Representations of C�(G)Renault worked out the struture theory of the most general representation of anygroupoid C�-algebra in [33℄. We disuss here ertain aspets of it in our speialsetting that is relevant for appliations to wavelets. Let � : C�(G)! B(H) be a C�-representation, where G for the moment is an arbitrary loally ompat groupoidwith Haar system f�ugu2G(0) . Then � determines and is determined by a triple(�;H; U ), where � is a quasi-invariant measure on G(0) = X; H is a (Borel) Hilbertbundle on X, and U is a representation of G on H. The relation between � andthe triple (�;H; U ) is expressed through the equation�(f)�(u) = ZGu f()(U ()�(s()))� 12 () d�u();where � is an L2(�)-setion of the bundle H and � is the modular funtion of themeasure �: In more detail, let � = RG(0) �u d�(u) and let ��1 be the image of �under inversion. Then to say � is quasi-invariant is to say that � and ��1 aremutually absolutely ontinuous. In this ase, � is de�ned to be d��1d� .Speializing now to the setting where our groupoid G is the Deaonu-Renaultgroupoid assoiated to the loal homeomorphismT on the ompat Hausdor� spaeX, it is not diÆult to see that the measure � is quasi-invariant in the fashion justdesribed if and only if � Æ T�1 � �. In this event, if we let D denote the Radon-Nikodym derivative d�ÆT�1d� , then the modular funtion � is given by the equation�(x;m� n; y) = D(x)D(Tx) � � �D(Tm�1x)D(y)D(Ty) � � �D(Tn�1y) :2If E is a C�-orrespondene over a C�-algebra A and if K is an ideal in J , then the relativeCuntz-Pimsner algebra determined byK, O(K;E), is the universalC�-algebra for representationsof E, (�;  ), that have all the properties of a Cuntz-Pimsner representation exept that theequation �(a) = ( ; �)(1)(�(a)) is assumed to hold only for a 2 K. See [28℄ and [18℄, where thebasi theory of suh algebras is developed.



202 MARIUS IONESCU AND PAUL S. MUHLYA measurable funtion D de�nes also a transfer operator L�D :M (X)!M (X)by the equation(9) L�D(�)(f) := ZX XTy=xD(y)f(y) d�(x):The relevane of the transfer operator L�D to our situation was established by Re-nault in [36, Theorem 7.1℄ and [35, Proposition 4.2℄. We state a slightly modi�edversion of his results.Theorem 5.1. (Renault) Let � be a probability measure on X. Then � is quasi-invariant with respet to G and admits � as Radon-Nikodym derivative if and onlyif L�D(�) = �.In appliations to wavelets, i.e. to the settings where X = Tor X = Tn and Tis the power funtion z ! zN or x +Zn! Ax+Zn the measure that one usuallyhooses is Lebesgue measure. Also, the bundle one hooses is the trivial line bundleH = T� C or H = Tn� C and the representation is the translation representation:U () : fs()g � C ! fr()g � C ,U ()(s(); ) = (r(); ); 2 G. But we note that some of the reent work of Dutkay and Roysland [15, 16℄an be formulated in the setting we are desribing by taking more ompliatedbundles and representations.6. An Example: Classial WaveletsWe disuss how the onstruts we have desribed an enter into analysis of lassialwavelets. In this setting, as we have indiated, X is the irle or 1-torusT, the loalhomeomorphism T is given by squaring: Tz = z2, the quasi-invariant measure � isLebesgue measure on T, the bundle H is the trivial one-dimensional bundle, andthe representation U is translation. The L2-setions of H is just L2(�) and if � isthe integrated form of the representation assoiated to this data, then � representsC(X) (viewed as �(C(X)) in C�(G)) as multipliation operators on L2(�). Further,if fmigi=1;2 is a �lter bank and if S1 and S2 are the isometries it determines as inTheorem 4.3, then �(Si)�(z) = mi(z)�(z2), i = 1; 2. Thus (�(S1); �(S2)) is a Cuntzfamily on L2(�) suh that�(�(�(f))) = �(S1)�(�(f))�(S1)�+ �(S2)�(�(f))�(S2)�;for all f 2 C(T), whih is equation (8). We note in passing that there are many�lter banks and that given any m1 in X suh that hm1;m1i = 1, we obtain a �lterbank fm1;m2g if we take m2 to be the funtion de�ned by the equationm2(z) := zm1(�z):All other possibilities for m2 are obtained from this hoie by multiplying it by�(z2), where � is a ontinuous funtion of modulus 1.The key to building wavelets from the Cuntz relations is to build the minimalunitary extension of �(S1). This was observed by Bratteli and Jorgensen in [2℄.



GROUPOID METHODS IN WAVELET ANALYSIS 203However, we follow Larsen and Raeburn [25℄ who use the indutive limit approahadvaned by Douglas [9℄. Here is the basi setup: Form the indutive systemHn Sm;n�! Hmwhere Hn = L2(T) for every n and the \linking maps" Sm;n : Hn ! Hm, aresimply the powers of �(S1): Sm;n = �(S1)m�n. We let H1 denote the indutivelimit lim�!(fHng; fSm;ngg, and we let S1;n : Hn ! H1 denote the limit embeddings.Then there is a unique unitary U on H1 so thatUS1;n+1 = S1;n+1�(S1) = S1;n;for all n. This map U is the minimal isometri extension of �(S1). We want tounover a bit more struture in U .To this end, observe that for m;n � 0,(Sm;n�)(z) = 2(m�n)=2m1(z)m1(z2)� � � m1(z2(m�n)�1 )�(z2(m�n) ):Analysis of Dutkay and Jorgensen in [10℄ and [13, Proposition 2.2℄ leads to anexpliit identi�ation ofH1 with L2(T1; ~�), where T1 is the 2-adi solenoid and ~�is a measure built from Lebesgue measure onTand the transfer operator assoiatedwith jm1j2: Lm1(f)(z) = 1jT�1(x)j Xw2=z jm1(w)j2f(w):The representation � of C(T) on L2(�) extends to a representation � of C(T) onL2(T1; ~�) via the formula�(f)�(z1 ; z2; : : :) = f(z1)�(z1; z2; : : :);where � 2 L2(T1; ~�), and where, reall, points in T1 are sequenes (z1; z2; : : :)suh that zk = z2k+1, for all k � 1. Also, the measure ~� is quasi-invariant for theextension T1 of the map T on T, de�ned on T1 by the formula T1(z1; z2; : : :) =(z21 ; z1; z2; : : :), and U is given by the formulaU�(z1; z2; : : :) = �(z21 ; z1; z2; : : :)J 12 (z1; z2; : : :);where J is the Radon-Nikodym derivative with respet to ~� of the translate of ~�by T1 . The pair (�; U ) is a ovariant pair:�(f Æ T1) = U�(f)U�1;for all f 2 C(T). To build the wavelet assoiated with the �lter bank, we needto get from L2(T1; ~�) to L2(R) in a unitary fashion that transforms U into D,whih reall is given by the formula D�(x) = p2�(2x); and transforms � into therepresentation ~�(f)�(x) = f(e2�ix)�(x). This is aomplished with the aid of afamous theorem of Mallat.Theorem 6.1. (Mallat [26, Theorem 2℄) Suppose m1, whih is a unit vetorin the C�-orrespondene X , satis�es the additional two hypotheses:(1) The Fourier oeÆients of m1are O((1 + k2)�1):(2) jm1(1)j = 1(3) For all x 2 [��2 ; �2 ℄, m1(eix) 6= 0.



204 MARIUS IONESCU AND PAUL S. MUHLYThen the produt Q1k=1m1(e2�i2�kt) onverges on Rand the limit, �, lies in L2(R).Further, for all x 2 R(1) �(2x) = m1(e2�ix)�(x)(2) Pk2Zj�(x+ k)j2 = 1.Remark 6.2. Mallat's hypotheses are labeled as equations (38){(41) on page76 of [26℄. Equation (38) is our hypothesis 1, equation (39) is our hypothesis 2.,and his equation (41) is our hypothesis 3. Equation (40) is the assertion that m1 isa unit vetor in X . We note, however, that there is a lot of \wiggle room" in thesehypotheses and a lot of work has been devoted to �nding their exat limits. In[5, Chapter 6℄, for example, Daubehies disusses aspets of this matter at lengthand exposes, in partiular, works of Cohen and Lawton whih give neessary andsuÆient onditions for a unit vetor m1 to be a trigonometri polynomial andgenerate a wavelet. The point to keep in mind, for our purposes, is that a unitvetor m1 2 X always generates an isometry S1. Further, the minimal unitaryextension of �(S1), U , lives on the spae L2(T1; ~�), where ~� is onstruted usingm1. These things do not depend on anything other than the fat that m1 is a unitvetor in X . However, some hypotheses on m1 seem to be neessary to get fromL2(T1; ~�) to L2(R). Conlusion 1. of Mallat's theorem is the stepping stone thattakes us from L2(T1; ~�) to L2(R). Conlusion 2. does not play an immediate rolein the Larsen-Raeburn approah, but it implies, in partiular, that translates of �̂are orthonormal [26, Equation (50)℄.With the aid of � we may de�ne Rn : Hn ! L2(R) via the formula (Rn�)(x) :=2�n2 �(e2�i(2�nx))�(2�nx), � 2 Hn(= L2(T)). It then is a simple matter to hekthat Rn is an isometry that satis�es the equation Rn+1�(S1) = Rn. By propertiesof indutive limits, we may onlude that there is a unique Hilbert spae isometriinjetion R1 : H1 ! L2(R) so that R1S1;n = Rn. The problem now is to showthat R1 is surjetive. For this purpose, de�ne Vn := RnHn = RnL2(T): Then, asMallat showed in the proof of the seond half of Theorem 2 in [26℄, we have:Lemma 6.3. (Mallat)(1) Vn � Vn+1.(2) \Vn = f0g.(3) WVn = L2(R).Thus R1 : H1 ! L2(R) is a Hilbert spae isomorphism.We want to remark that onditions 2. and 3. of the preeding lemma representtwo di�erent problems. Condition 2. is the assertion that the isometry �(S1) is apure isometry. Bratteli and Jorgensen provide a proof of this that is di�erent fromMallat's by noting that �(S1) is pure beause m1 does not have modulus one a.e.[2, Theorem 3.1℄. The ondition 3. also has alternate proofs. One that we �ndpartiularly attrative, beause it works in the more general setting of waveletsbuilt on Tn using a dilation matrix A, may be found in Strihartz's survey [38,Lemma 3.1℄.Reall that the \dilation by 2 operator", D, is de�ned on L2(R) by the formulaD�(x) = 21=2�(2x) and that D a unitary operator on L2(R).Lemma 6.4. R1UR�11 = D; and R1�(f)R�11 �(t) = f(e2�it)�(t) for all f 2C(T); all � in L2(R) and all t 2 R.



GROUPOID METHODS IN WAVELET ANALYSIS 205Proof. The �rst assertion requires only a simple alulation:D(R1(S1;n+1�))(x) = D(Rn+1�)(x) = 21=2(Rn+1�)(2x)= 21=22�(n+1)2 �(e2�i(2�(n+1)2x))�(2�(n+1)2x) = (Rn�)(x)= (R1S1;n�)(x) = (R1US1;n+1�)(x):The seond assertion is veri�ed similarly. �If we set Wn = Vn+1 	 Vn, then by Lemma 6.3:Mn2ZWn = L2(R):But then we �nd thatW0 = V1 	 V0 = R1L2(T)	 R0L2(T)(10) = R1L2(T)	 R1�(S1)L2(T)= R1(L2(T)	 �(S1)L2(T))= R1�(S2)L2(T);by the Cuntz relations. So if we set ek(z) = zk and set �k := R1�(S2)e�k. Thenf�kg is an orthonormal basis for W0 and�k(x) = 2�1=2(21=2m2(e(2�i2�1x))e�2�ikx)�(2�1x)= e�2�ikx�(x)where �(x) := m2(e�ix)�(2�1x):Thus, f�j;kg1j;k=�1 is an orthonormal basis for L2(R), where�j;k(x) = Dj�k(x)= 2j=2e(�2�ik2jx)�(2jx):Consequently, if  is the inverse Fourier transform of �, then  is a wavelet.This ompletes the proof of the following theorem as formulated by Bratteliand Jorgensen [2℄ and Larsen and Raeburn [25℄.Theorem 6.5. (Bratteli-Jorgensen, Larsen-Raeburn)The inverse Fourier transform ofm2(e�ix)�(2�1x)is the wavelet assoiated with the �lter bank (m1;m2).7. Further Thoughts: FratafoldsAs we have seen, the C�-algebra C�(G) always ontains an isometry S and a Cuntzfamily of isometries fSigni=1, provided X has an orthonormal basis. Further, we mayonstrut the minimal unitary extension of either S or of any of the Si essentiallywithin C�(G). More aurately, these objets are onstruted in the multiplieralgebra of the C�-algebra of a Morita equivalent groupoid that we denote by G1.To onstrut G1; we form an analogue of the 2-adi solenoid, viz., the projetivelimit spae X1 := fx := (x1; x2; : : :) : T (xk+1) = xkg, and we setG1 = f(x; n�m; y) : Tnx1 = Tmy1g:



206 MARIUS IONESCU AND PAUL S. MUHLYThen G1 is a groupoid with unit spae X1 that is Morita equivalent to G in thesense of [27℄. Note, however, that G1 is not r-disrete. It has many Haar systemsthat are not in any evident way equivalent. Eah transfer operator L�D assoiatedwith a ontinuous funtion D as in equation (9) determines a natural Haar systemon G1 that reets speial features of C�(G). In partiular, if D = jmj where mis a unit vetor in X (so in partiular if m is part of an orthonormal basis for X ),then the minimal unitary extension of S1 = �(m)S (in the notation of Theorem3.3) lives in the multiplier algebra of C�(G1), when G1 is endowed with the Haarsystem determined by jmj.We observe in passing that Dutkay and Jorgensen [13℄ assoiate the C�-rossedprodut C(X1) oZto the setting we have been disussing (where Zis viewed asating on X1 through the homeomorphism T1, whih is de�ned via the formulaT1(x1; x2; : : :) = (Tx1; x1; x2; : : :).) This rossed produt lies in the multiplieralgebra of C�(G1).Thus, our analysis shows that the study of wavelets an be broken into twopiees. First, there are the strutures that are intrinsi to the geometri settingof a spae X with a loal homeomorphism T . These inlude the groupoid G andits C�-algebra, the pseudogroup G, and the Deaonu orrespondene X . These arethe soure of isometries and the Cuntz relations - assuming X has an orthonor-mal basis. Eah hoie of orthonormal basis gives Cuntz isometries in C�(G) thatsatisfy equation (8). Even if X fails to have an orthonormal basis, X will al-ways ontain a (normalized tight) frame in the sense of Frank and Larson [19,De�nition 3.1℄ (also alled a quasi-basis in the sense of Watatani [40℄). This isa olletion of vetors f igni=1 suh that for every � 2 X ; � = Pni=1  ih i; �iandh�; �i = Pni=1h�;  iih i; �i. Suh a olletion may be onstruted easily with theaid of a partition of unity subordinate to an open over of X suh that T is ahomeomorphism when restrited to eah element of the over. Muh of the analy-sis in C�(G) an be aomplished with a frame for X . The parameters involved inrepresenting the Cuntz relations on Hilbert spae ome from the representation the-ory of C�(G). Even onstruting the minimal unitary extension of �(S1) involvesingredients intrinsi to our setting. The groupoid G1 is Morita equivalent to Gand arries a natural Haar system that may be \pegged" to S1 - more aurately,a natural Haar system on G1 an be onstruted from eah low pass �lter. Therewill result a natural multiresolution analysis in L2(X1; ~�).To make ontat with wavelet basis in L2(Rn) for some n, whih is the se-ond piee in the study of wavelets, one must have a mehanism for passing fromL2(X1; ~�) to L2(Rn). This involves a di�erent set of tools. In the �nal analysis,there may not be any naturally onstruted wavelet-like bases in L2(Rn) omingfrom a partiular spae and loal homeomorphism. One should not despair at this.Rather, one should fous on building orthonormal bases in W0 (the wandering sub-spae in equation (10) and then push them around to form an orthonormal basisfor all of L2(X1; ~�) using the minimal unitary extension U of �(S1). After all,L2(X1; ~�) and the other spaes we have been disussing are the naturally our-ring spaes adapted to X and T . This e�etively is what Dutkay and Jorgensendid in [11℄ and is similar to what Jorgensen and Pedersen did in [22℄.We believe the proof of Theorem 6.5 that we presented, whih is due to Larsenand Raeburn [25℄, an be tweaked to show a bit more. The 2-adi solenoid T1is the dual group of the 2-adi numbers: the set of all rational numbers whose
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