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Marius Ionescu

I present in the first part of this statement (the first five pages) an overview of my research
accomplishments and some projects that I am currently pursuing or plan to pursue in the
future. The second part of this document (pages 6 through 28) contains a more detailed and
technical description of my past, current, and future research goals, as well as the references
that I cite in the statement.

1. AN OVERVIEW OF MY RESEARCH

My research interests are in the field of harmonic and functional analysis. In particular,
much of my work over the past few years had two main foci: the theory and applications
of Calderón-Zygmund and pseudodifferential operators on fractals; and the study of the in-
teraction between operator theory/algebras and fractals, irreversible dynamical systems, the
representation theory of groupoids and the theory of wavelets.

Key to most of my research is the definition of an iterated function and its invariant set
due to Hutchinson [53]. An iterated function system (i.f.s.) is a collection (F1, . . . , FN ) of
contractions defined on a complete metric space Y . For most of the applications of our theory
we let Y = Rn for some n ≥ 1. Given such an i.f.s. there is a unique compact invariant set K
such that

K = F1(K)
⋃
· · ·
⋃
FN (K).

The invariant set K is also called a self-similar set. Two important examples of self-similar
sets are the unit interval and the Sierpinski gasket. Given a list of probabilities (µ1, . . . , µN )
there is a unique invariant measure µ whose support is K such that

µ(A) =
N∑
i=1

µiµ(F−1
i (A)), for all Borel sets A.

I begin first by describing my recent work on harmonic analysis on fractals. The common
topic of these papers is the study of differential and pseudodifferential operators on a class of
fractals called the post-critically finite (p.c.f.) self-similar sets ([53],[76],[136]) and other mea-
sure metric spaces. The underlying technology is the construction of a Laplace operator and
Dirichlet form on fractals due to Kigami [76]. Specifically, Kigami used graph approximations
for some self-similar sets, including the unit interval and the Sierpinski gasket, to build a
self-similar energy form E , that is a Dirichlet form that satisfies

E(u) =
N∑
i=1

r−1
i E(u ◦ Fi),

for some weights (r1, . . . , rN ). The Laplacian is defined weakly: u ∈ dom ∆ with ∆u = f if

E(u, v) = −
∫
X
fvdµ

for all v ∈ dom E with v|V0 = 0, where V0 is the boundary of the self-similar set. We assume
that f is in L2(µ), which gives a Sobolev space.

The results that I proved with my coauthors in [59] represent my first contribution to the
literature of analysis on fractals. In this paper, we provide a concrete, self-similar description
of the resolvent of the Laplacian on a p.c.f. fractal extending the construction of the Green
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function. That is, we constructed a symmetric function G(λ)(x, y) which weakly solves (λ −
∆)−1G(λ)(x, y) = δ(x, y), meaning that∫

X
G(λ)(x, y)u(y)dµ(y) = (λI−∆)−1u(x).

We provide also a new view of the resolvent on the unit interval and worked out a few exam-
ples, including the Sierpinski gasket. We plan to use our results to study spectral operators
of the form

ξ(∆) =

∫
Γ
ξ(λ)(λI−∆)−1dλ

in a similar manner as used by Seeley [[120],[119]] for the Euclidean situation.
In a joint work with Luke Rogers [60], we proved a characterization of the Calderón-

Zygmund operators on fractals. Recall ([126]) that an operator T bounded on L2(µ) is a
Calderón-Zygmund operator if T is given by integration with respect to a kernel K(x, y), that
is Tu(x) =

∫
X K(x, y)u(y)dµ(y) for almost all x /∈ suppu, such that K(x, y) is a function off the

diagonal and such that ∣∣K(x, y)
∣∣ . R(x, y)−d and∣∣K(x, y)−K(x, y)
∣∣ . η

(
R(y, y)

R(x, y)

)
R(x, y)−d,

whenever R(x, y) ≥ cR(y, y) for some Dini modulus of continuity η and some c > 1. R is
a metric on the self-similar set called the resistance metric; it coincides with the Euclidean
metric on [0, 1]. The main result of the paper proves that if T is an bounded operator on L2(µ)
that has a kernel K(x, y) that is a smooth function off the diagonal of X ×X and satisfies∣∣K(x, y)

∣∣ . R(x, y)−d∣∣∆yK(x, y)
∣∣ . R(x, y)−2d−1,

then the operator T is a Calderón-Zygmund operator. We showed that the purely imaginary
Riesz and Bessel potentials satisfy these hypothesis. These operators are the first explicit
examples of Calderón-Zygmund operators on fractals. Our proofs are quite technical as com-
pared with the Euclidean case due to the lack of a mean value theorem on fractals. We exploit
heavily the self-similar structure of the fractals.

In a recent paper joint with Luke Rogers and Robert Strichartz ([61]) we define and study
pseudodifferential operators on fractals and other metric measure spaces that include the
p.c.f. self-similar sets and Sierpinski carpets. Given a smooth function p such that∣∣∣∣(λ d

dλ

)k
p(λ)

∣∣∣∣ ≤ Ck(1 + λ)
m
d+1

where d is the Hausdorff dimension with respect to the resistance metric on the fractal, we
define a pseudo-differential operator of order m with constant coefficients to be

p(−∆)u =

∫ ∞
0

p(λ)dP (λ)(u).

One of the main results of the paper states that if m = 0 then p(−∆) is given by integration
with respect to a kernel that is smooth off the diagonal and satisfies specific decay properties.
In particular, the pseudo-differential operators of order 0 are Calderón-Zygmund operators.
Our results capture many known results in the classical harmonic analysis. The proofs, how-
ever, are different due the interesting fact that, on many fractals, the product of two smooth
functions is not smooth anymore [11]. Therefore, standard techniques used in harmonic anal-
ysis such as multiplication with smooth bumps are not available to us. Key to our proofs are
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the sub-gaussian heat kernel estimates that are true on many self-similar sets and other met-
ric measure spaces. One of the main motivation behind our work was the desire to understand
elliptic and hypoelliptic operators on fractals. There were many open questions about them in
the literature ([136, 13, 114]). We characterize these operators in one of the applications that
we describe in the paper. Moreover, we study an interesting class of operators, the so called
quasielliptic operators, that does not have an analogue in the Euclidean case. For an exam-
ple of a quasielliptic operator, consider a fractal K with spectral gaps such as the Sierpinski
gasket. Assume that α, β are positive real numbers such that α < β and λ/λ′ /∈ (α, β) for all
λ, λ′ in the spectrum of −∆. Let a ∈ (α, β). Then q(λ1, λ2) = λ1 − aλ2 is a quasielliptic symbol.
We show that every quasielliptic pseudodifferential operator is equal to an elliptic pseudodif-
ferential operator, though there are quasielliptic differential operators which are not elliptic
as differential operators. Other applications that we discuss are the Hörmander type opera-
tors and the beginning of the study of wavefront sets on fractals. We began also the study of
pseudo-differential operators with variable coefficients, that is operators defined by symbols
of the form p(x, λ). These operators behave, in general, differently than their counterpart in
the Euclidean case, because the product of two smooth symbols is not smooth anymore. We
managed to prove so far that these operators are bounded on Lp. Moreover, we conjecture that
they are Calderón-Zygmund operators. Our results open many new venues of research and
provide new tools that will be helpful in the study of specific differential equations of fractals,
such as the Scrödinger equation. We plan to pursue this study in the near future.

In a related paper that is joint with Luke Rogers and Alexander Teplyaev ([62]) we study
derivations and Fredholm modules on metric spaces with a local regular conservative Dirich-
let form. Derivations on p.c.f. fractals and, more generally, C∗-algebras have been studied
by Cipriani and Sauvageot in [16] and [17]. We give a concrete description of the elements of
the Hilbert module of Cipriani and Sauvageot in the setting of Kigami’s resistance forms on
finitely ramified fractals [75], a class which includes the p.c.f. self-similar sets studied in [17]
and many other interesting examples [1] [139], [112]. We also discuss weakly summable Fred-
holm modules (an abstract version of an order zero elliptic pseudodifferential operator in the
sense of Atiyah [6]) and the Dixmier trace in the cases of some finitely and infinitely ramified
fractals (including non-self-similar fractals) if the so-called spectral dimension is less than 2.
Even though our results provide information about the “commutative” geometry on fractals,
we use heavily noncommutative techniques due to Connes [19] and Cipriani and Sauvageot
[16]. A few venues of continuing this research are the extension of our results to noncommu-
tative Dirichlet forms, and the possible generalization of our results to other type of fractals,
like the diamonds fractal and Laakso spaces.

I depict in the second part of this overview some of my results that describe the interaction
between fractals and operator algebras, as well as results about the fine ideal structure of
specific C∗-algebras. In the three papers [55], [54], and [63] that resulted from my thesis
I studied the structure of different operator algebras attached to a large class of fractals.
These fractals arise from Mauldin-Williams graphs [86] also known as graph directed Markov
systems [84]. They are a generalization of iterated function systems described above in the
following sense: let G = (E0, E1, r, s) be a finite directed graph. A graph directed Markov
system (G.D.M.S.) associated to G consists of a collection {Tv}v∈E0 of compact metric spaces,
one for each vertex of the graph, and a collection {φe}e∈E1 of contractive maps, one for each
edge of the graph ([86], [35]). We associate with such a system a C∗-correspondence X over
the C∗-algebra A = C(T ), where T =

⊔
Tv. I built different operator algebras associated with

a G.D.M.S. via the Pimsner construction [102] and showed how they capture the dynamics of
the fractals. The first main result of [55] states that if the underlying graph has nor sources or
sinks then the C∗-algebra associated to the fractal is isomorphic to the Cuntz-Krieger algebra
[23] associated to the underlying graph. A theorem that follows from my proof states that
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a natural generalization of G.D.M.S. to the noncommutative setting is illusory. I showed,
however, in [54] that the tensor algebra, a non-self adjoint algebra, that I associated to a
G.D.M.S. is locally a complete conjugacy invariant. My results stands in a long series of results
that were inspired by Arveson’s discovery [5] of the relation between conjugacy invariants for
measure preserving transformations and non-self-adjoint operator algebras.

In [63], Watatani and I associate a different C∗-algebra to a G.D.M.S. and we show that it
captures more clearly the underlying dynamics. Our approach puts more emphasis on the so
called “branch points” of the system, the points that arise due to the failure of the injectivity
of the coding by the Markov shift for the graph G. We prove that, in general, these C∗-
algebras are quite different from the underlying graph C∗-algebras. Moreover, we show that
the K-theory completely characterizes our C∗-algebras and we compute the K-groups for a
few examples. In [58] we extend some of these results to C∗-algebra associated to general
Markov-Feller operators. In our setting, a Markov-Feller operator is a positive unital map on
C(X) for some compact space X. Our construction generalizes a large number of C∗-algebras
associated to dynamical systems in the literature. The first main result of [58] describes
the simplicity of C∗-algebras associated to Markov operators in terms of the probabilistic
properties of these operators. We apply our results to recover known results in the literature
as well as provide new applications. In a second theorem, we provide a characterization of
the topological quivers ([91]) that arise from our construction. Specifically, we proved that
the C∗-algebra of a topological quiver whose vertex and edge spaces are compact and has
no infinite emitters is isomorphic to the C∗-algebra of a Markov-Feller operator. We plan to
continue our study of these C∗-algebras and better understand the relationship between the
support of a Markov operator and the corresponding operator algebras, as well as to decipher
the influence of the branch points of Markov operators on the K-theory and the KMS-states
of the C∗-algebra. For example, if the state space of a Markov operator is finite, than the
support of the operator completely characterizes the C∗-algebra in the sense that the C∗-
algebras associated with two Markov operators are the same if and only if their support is the
same. This statement is, most likely, not true for a general Markov-Feller operator. However,
we conjecture that two operators with the same support give rise to Morita equivalent C∗-
algebras.

A closely related project that I am currently undertaking with Paul Muhly relates the the-
ory of wavelets to natural representations of groupoids attached to local homeomorphisms.
The main tool that we use is what we call the Renault-Deaconu groupoid ([105],[108],[28])
associated to a local homeomorphishm:

G = {(x, n, y) ∈ X × Z×X : T k(x) = T l(y), n = k − l},

endowed with a suitable topology such that G becomes an étale, locally compact groupoid.
Some partial results and examples have appeared in [57]. The main example of the paper
describes how one can recover the classical wavelet analysis [83] via the “trivial” representa-
tion of the Renault-Deaconu groupoid associated to the map T (z) = z2 on the unit circle. We
are currently extending this work and we proved recently a general theorem that provides a
unitary extension to endomorphisms associated with local homeomorphisms, generalizing a
number of results in the literature (see, for example, [80]).

Extending our analysis of Renault-Deaconu groupoids, Alex Kumjian and I study in [56]
the connection between the Hausdorff measure on a compact space X and the KMS states
on the C∗-algebras attached to local homeomorphisms that satisfy a “local scaling condition”.
Roughly speaking, a local homeomorphism satisfies the local scaling condition if, locally, the
map is a similitude. We prove that, for such a local homeomorphism, the Hausdorff mea-
sure on the underlying space gives rise to a KMS state on the C∗-algebra of the groupoid.
Moreover, we provide conditions that guarantee that the KMS-states are unique and have a
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unique inverse temperature. We describe how our results provide a quick computation of the
topological entropy for many local homeomorphisms. We extend our results to an example of
a local homeomorphism on a fractafold [132] that does not satisfy the hypothesis of our main
theorem. We believe that this is the first example of a local homeomorphism on spaces built
out of fractals and it was one of the main motivation behind our work. We view the local
homeomorphism that we defined as the fractal analogue of the map T (z) = z2 on the torrus.

In ongoing work, Kumjian and I use actions of Renault-Deaconu groupoids on spaces to
study symmetries of the so called “fractafolds”. These are spaces that were introduced by
Strichartz [131] to mimic the relationship between the unit interval and the real line in the
fractal world. Given an invariant set K of an iterated function system with N maps, each in-
finite sequence x in {1, . . . , N}∞ gives rise to a fractal blowup by taking the preimage inverse
of K in the order given by x. Strichartz noticed that two such fractal blowup are homeo-
morphic if and only if the parametrizing sequences are, eventually, the same. Based on this
observation, we assemble these fractal blowups into a bundle on which the Cuntz groupoid,
a particular example of a Renault-Deaconu groupoid, acts. We proved so far that this action
gives rise to a natural local homeomorphism on the bundle that is essentially free. Moreover,
we are studying various properties of the action groupoid and its C∗-algebra.

In a series of papers done jointly with Dana P. Williams, we undertake the task of studying
the fine structure of the ideal space of groupoid and Fell bundleC∗-algebras [65, 64, 66, 67, 68].
In [64] we prove the so called Effros-Hahn conjecture ([36]) for groupoid C∗-algebras: every
primitive ideal in the C∗-algebra of an amenable groupoid is induced from a stability group.
Our results provide a significant sharpening of some results in the literature [107]. Our proof
is quite technical and even though we proved our results for groupoid C∗-algebras, we use
heavily the theory of groupoid dynamical systems as in [106] and [107]. We show in [65] that
the induced representation of an irreducible representation of a stability group is irreducible.
This result generalizes a number of theorems in the literature and is one of the main pillars
in our proof of the Effros-Hahn conjecture.

In [67] begin the systematic study of the primitive ideal space of C∗-algebra associated to
Fell bundles over groupoids [95]. Fell bundles generalize most known examples of dynamical
systems: groupoids [105] and twisted groupoids [78], C∗-dynamical systems [100] and Green’s
twisted dynamical systems [43], and (twisted) groupoid dynamical system [106]. We prove in
[67] that if p : A → G is a Fell bundle over a groupoid then there is a natural continuous
action of the groupoid on the primitive ideal space of the C∗-algebra A sitting over the unit
space of a Fell bundle. We use this action to generalize a result about short exact sequences
to Fell bundles over groupoids. Namely, we prove that if I is a G-invariant ideal in A then one
can build a “reduction” of the Fell bundle to I and a “quotient” Fell bundle by I and we obtain
a short exact sequence. Our main result in [66] extends a classic Morita Equivalence Result
of Green’s [43] to the C∗-algebras of Fell bundles over groupoids. The main results states that
if H is a stability group of G, then C∗(G,A) and C∗(H,A|H) are Morita equivalent. Green’s
result is a particular case of an application of our result to the case when G is a group. Our
main result in [68] states that, for a Fell bundle C∗-algebra, the induced representation of a
an irreducible homogeneous representation is irreducible. This results is a generalization of
results in [33],[117],[118] and it constitutes an important step towards the proof of a general-
ized Effros-Hahn conjecture for Fell bundle C∗-algebras. Our proof requires an intermediate
result which is of considerable interest on its own. Namely, the induced representation of an
irreducible representation over a stability group is irreducible. We plan to continue our project
in joint work with Dana Williams. Success in proving the Effros-Hahn conjecture in this con-
text will provide important information about the primitive ideal space and simplicity of Fell
bundle C∗-algebras and, in particular, will provide information about the ideal structure of
many C∗-algebras associated to dynamical systems.
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As I mentioned at the beginning of my research statement, I provide in what follows a more
detailed and technical description of my research accomplishments, of some problems that I
am currently pursuing, and of directions for future research.

2. HARMONIC ANALYSIS ON FRACTALS

I became interested in problems related to analysis on fractals during the year I spent at
Cornell University in 2007-2008 as a visiting assistant professor. There I had the opportu-
nity to interact with many people working in the area of harmonic analysis and differential
operators on fractals, such as Strichartz, Kigami, Teplyaev, and Rogers. I have also been in-
volved in the research of the students participating in the R.E.U. program in fractal analysis
at Cornell. This fact helped me understand the many venues of research in this mathematical
area that are available to me, as well as to undergraduate and graduate students. I became
immediately involved in some interesting projects on the subject. I will describe next a few
projects that I have recently finished, I am currently working on or intend to begin working
on in the near future.

An iterated function system (i.f.s.) is a collection {F1, . . . , FN} of contractions on a complete
metric space X. For such an i.f.s. there exists a unique invariant (self-similar) compact set K
([53],[10],[34]). That is,

K = F1(K)
⋃
· · ·
⋃
FN (K).

If ω1, ω2, . . . ωn ∈ {1, . . . , N}, then we say that ω = ω1ω1 . . . ωn is a word of length n over the
alphabet {1, . . . , N}. The subset Kω = Fω(K) := Fω1 ◦ · · · ◦ Fωn(K) is called a cell of level n.
We denote by Wn the set of all words of length n and by W ∗ the set of all finite words over
{1, . . . , N}. We write W∞ for the set of infinite words (sequences) with elements in {1, . . . , N}.

Since the map Fi, i = 1, . . . , N , is a contraction, it follows that it has a unique fixed point xi
for all i = 1, . . . , N . We say that K is a post-critically finite (p.c.f.) self-similar set if there is a
subset V0 ⊆ {x1, . . . , xN} satisfying

Fω(K)
⋂
Fω′(K) ⊆ Fω(V0)

⋂
Fω′(V0)

for any ω, ω′ ∈ W ∗ that have the same length and ω 6= ω′. The set V0 is called the boundary
of K and the boundary of a cell Kω is Fω(V0). One defines V1 =

⋃
i Fi(V0), and, inductively,

Vn =
⋃
i Fi(Vn−1) for n ≥ 2. Then the fractal K is the closure of V ∗ =

⋃
n Vn.

Two important examples of p.c.f. self-similar sets are the unit interval [0, 1] and the Sier-
pinski gasket ([76, 136, 40, 11, 97, 132, 140]). The maps F1(x) = 1/2x and F2(x) = 1/2x+ 1/2
form an i.f.s. on R with invariant set [0, 1]. Then V0 = {0, 1} and V ∗ consists of the dyadic
points. To study the Sierpinski gasket one can consider three points A1, A2, and A3 in R2

and define Fi(x) = 1/2(x − Ai) + Ai, i = 1, 2, 3. Then (F1, F2, F3) is an i.f.s. on R2 and its
invariant set is the Sierpinski gasket. In this case V0 = {A1, A2, A3}. Other examples of p.c.f.
fractals that fall under the scope of our results are the affine nested fractals [39] that in turn
are generalizations of the nested fractals [82] and include the pentagasket and Lindstrøm’s
snowflake, the Vicsek sets [87], and the abc-gaskets [71].

A theory of analysis on certain p.c.f. self-similar fractals has been developed around the
Laplace operator by Kigami ([76]; see also [136]). The Laplacian on many p.c.f. fractals may
be built using Kigami’s construction from a self-similar Dirichlet energy form E on K with
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weights {r1, . . . , rN}:

E(u) =
N∑
i=1

r−1
i E(u ◦ Fi).

The existence of such forms is non-trivial, but on a large collection of examples they may
be obtained from the approximating graphs as the appropriate renormalized limit of graph
energies ([76, 136]). The second ingredient is the existence of a unique self-similar measure
µ(A) =

∑N
i=1 µiµ(F−1(A)), where {µ1, . . . , µN} are weights such that 0 < µi < 1 and

∑
µi = 1,

see [53]. Then the Laplacian is defined weakly: u ∈ dom ∆ with ∆u = f if

E(u, v) = −
∫
X
fvdµ

for all v ∈ dom E with v|V0 = 0. The domain of the Laplacian depends on the assumptions that
one makes about f . Kigami assumes that f is continuous, but for our work it will be more
natural to assume that f is in L2(µ), which gives a Sobolev space.

The effective resistance metric R(x, y) on K is defined via

R(x, y)−1 = min{E(u) : u(x) = 0 and u(x) = 1}.

It is known that the resistance metric is topologically equivalent, but not metrically equiva-
lent to the Euclidean metric ([76, 136]).

Real analysis is performed, however, mainly on the real line and torus and not on the unit
interval. Therefore, some of the spaces that we consider are built from p.c.f. fractals as in
[131, 132]. In those papers the author defines fractal blowups of a fractal K and fractafolds
based on K. The former generalizes the relationship between the unit interval and the real
line to arbitrary p.c.f. self-similar sets, while the latter is the natural analogue of a manifold.
Let w ∈ {1, . . . , N}∞ be an infinite word. The fractal blowup associated to w is

X =

∞⋃
m=1

F−1
w1

. . . F−1
wmK.

Two such blowups are naturally homeomorphic if the parametrizing words are eventually
the same. In general there are an uncountably infinite number of blowups which are not
homeomorphic. We assume that the infinite blowup X has no boundary. This happens unless
all but a finite number of letters in w are the same. One can extend the definition of the
energy E , the measure µ, and the Laplacian ∆ to X. It is known that, for a large class of
p.c.f. self-similar sets including the Sierpinski gasket and nested fractals, the Laplacian on
an infinite blowup without boundary has pure point spectrum ([140], [116]).

A fractafold [132] based on K is a set for which every point has a neighborhood which is
homeomorphic to a neighborhood of a point in K. We will consider fractafolds that consist of
a finite or infinite union of copies of K glued together at some of the boundary points. The
fractafold X is compact if and only if we consider a finite number of copies of K. We suppose
in the following that all the copies of K have the same size in X. If all the boundary points of
the copies of K are paired, then the fractafold X has no boundary. One example of a fractafold
is the unit circle viewed as two copies of the unit interval glued together at the endpoints;
another one is the double cover of the Sierpinski gasket, where one consider two copies of
the gasket with corresponding boundary points paired. An explicit description of the spectral
resolution of the fractafold Laplacian for certain infinite fractafolds is given in [137].

To develop a theory that resembles the theory of P.D.E., Strichartz extended the definition
of the energy and the Laplacian to products of p.c.f. self-similar sets [134], [129]. An important
point to keep in mind is that products of p.c.f. self-similar sets are not p.c.f. self-similar sets
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anymore. Strichartz described in [134] how one can extend the definition of the Laplacian and
energy to products of fractals.

From now on, X will stand for either the fractal K or a fractafold built out of K as explained
above. It is known ([76],[136]) that X satisfies the doubling condition, that is, there is a
constant C > 0 such that

µ(B(x, 2r)) ≤ Cµ(B(x, r)) for all x ∈ X and r > 0.

We assume that the heat operator et∆ has a positive kernel ht(x, y) that satisfies the following
sub-Gaussian upper estimate

(1) ht(x, y) ≤ c1t
−β exp

(
−c2

(
R(x, y)d+1

t

)γ)
,

where c1, c2 > 0 are constants independent of t, x and y. In this expression both d and γ
are constants that depend on X and β = d/(d + 1). Moreover we assume that hz(x, y) is
a holomorphic function on {Re z > 0}. The estimates (1) are known to be true for a large
number of p.c.f. self-similar sets ([39], [9], [47], [49], [129]) with R being the resistance metric,
the constant d being the Hausdorff dimension with respect to the resistance metric, and γ
a constant specific to the fractal. The heat kernel estimates (1) are valid for the Sierpinski
carpets1 ([7, 8]) and Laakso spaces ([128]) as well.

While the main motivation of our work comes from the analysis on fractals, our results
capture the known facts from classical harmonic analysis on Rn and riemannian manifolds
and can be used to define pseudodifferential operators on other metric measure space. For a
non-fractal example, the operators defined in [50] fall under the hypothesis of our work.

2.1. Resolvent and Heat Kernels on Fractals. The heat equation, the heat kernel, and
the heat kernel estimates have been central topics in analysis on fractals. These topics have
been studied primarily with probabalistic methods [9], [76], [39], [48]. In collaboration with
Pearse, Ruan, Rogers and Strichartz, we were able to give an analytic formula for the resol-
vent of the Laplacian on a p.c.f. fractal that by-passed probabilistic methods [59]. That is, we
constructed a symmetric function G(λ)(x, y) which weakly solves (λ−∆)−1G(λ)(x, y) = δ(x, y),
meaning that ∫

X
G(λ)(x, y)u(y)dµ(y) = (λ−∆)−1u(x).

For λ = 0 our construction recovers the Green function for the Laplacian ∆. Our main theorem
provides an explicit description of the resolvent kernel. Heuristically, the resolvent kernel is
the sum of the weak solutions of the resolvent problem in all cells of all order. We worked
out in detail our construction for a series of examples, including the unit interval and the
Sierpinski gasket. Rogers extended our construction and estimates of the resolvent to infinite
blow-ups of P.C.F. fractals in [113]. Moreover, using our results, he proved using analytic
methods the heat kernel estimates.

We hope that the resolvent kernel will provide other information about spectral operators
of the form

ξ(∆) =

∫
Γ
ξ(λ)(λI−∆)−1dλ

in the same manner as used by Seeley [119][120] for the Euclidean situation. Such study
would be significant in providing us information about operators that don’t fall under the hy-
pothesis of Calderón-Zygmund theory on fractals, such as the Schrödinger operator on infinite
blowups.

1Recall that while the Sierpinski carpets are self-similar sets, they are not p.c.f self-similar spaces



Marius Ionescu, Research Statement Page 9 of 28

2.2. Calderón-Zygmund operators on p.c.f. fractals. In [60] we give the first natural
examples of Calderón-Zygmund operators in the theory of analysis on post-critically finite
self-similar fractals. This is achieved by showing that the purely imaginary Riesz and Bessel
potentials on nested fractals with 3 or more boundary points are of this type. Complex powers
of the Laplacian on Euclidean spaces and manifolds and their connection to pseudodifferential
operators have been studied intensely (see, for example, [119, 120, 125, 138, 26] and the
citations within). Our main focus is to show that the Riesz potentials (−∆)iα and the Bessel
potentials (I−∆)iα, α ∈ R, are Calderón-Zygmund operators in the sense of [126]: an operator
T bounded on L2(µ) is called a Calderón-Zygmund operator if T is given by integration with
respect to a kernel K(x, y), that is

Tu(x) =

∫
X
K(x, y)u(y)dµ(y)

for almost all x /∈ suppu, such that K(x, y) is a function off the diagonal and such that∣∣K(x, y)
∣∣ . R(x, y)−d and(2) ∣∣K(x, y)−K(x, y)
∣∣ . η

(
R(y, y)

R(x, y)

)
R(x, y)−d,(3)

whenever R(x, y) ≥ cR(y, y) for some Dini modulus of continuity η and some c > 1. We say, in
this case, that K(x, y) is a standard kernel. The operator T is a singular integral operator if
the kernel K(x, y) is singular at x = y. The main result of [60] is:

Theorem 2.1. Let K be a nested fractal and X be either K or an infinite blow-up of K without
boundary. Suppose T is an bounded operator on L2(µ) that has a kernel K(x, y) that is a
smooth function off the diagonal of X ×X and satisfies∣∣K(x, y)

∣∣ . R(x, y)−d(4) ∣∣∆yK(x, y)
∣∣ . R(x, y)−2d−1.(5)

Then the operator T is a Calderón-Zygmund operator.

The proof of this theorem for a general p.c.f. self-similar set is considerably more technical
compared to the Euclidean case because of the lack of a mean value theorem in the fractal
world. We use in a crucial way the self-similarity property of the fractals and the formula for
the Green function on fractals ([76]).

We extend our analysis to products of nested fractals and their infinite blowups. We also
generalize our results to the so called Laplace type transforms. Recall that a function p :
[0,∞) → R is said to be of Laplace transform type if p(λ) = λ

∫∞
0 m(t)e−tλdt, where m is

uniformly bounded. Then we can define an operator

p(−∆)u = (−∆)

∫ ∞
0

m(t)et∆udt

with a kernel

(6) K(x, y) =

∫ ∞
0

(−∆1)ht(x, y)m(t)dt.

that is smooth off the diagonal and it satisfies the estimates (4) and (5).
Riesz and Bessel potentials for negative real powers in the context of metric measure

spaces, including fractals, have been studied in [52] (see also [51]), however their results
are not directly applicable in our setting.

We conjecture that the Riesz and Bessel potentials on fractals, as well as the Laplace type
transforms, are in fact singular integral operators. We plan to tackle this problem as part of
a larger project that I describe next.
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2.3. Pseudodifferential operators on p.c.f. fractals. Several recent papers have studied
properties of spectral operators on fractals. For example, [135] shows some new convergence
properties of Fourier series on fractals with spectral gaps and establishes a Littlewood-Paley
inequality for such fractals. Numerical results suggest that in addition to the Riesz and
Bessel potentials that we studied in [60], other spectral operators on fractals are given by
integration with kernels that satisfy estimates as in Theorem 2.1 [3, 21]. In [61] we define
and study pseudodifferential operators on metric measure spaces endowed with a non-positive
self-adjoint Laplacian such that the heat kernel of the heat operator satisfies sub-Gaussian
estimates. Some of the results proved in [61] are extensions of the corresponding results from
classical harmonic analysis (see, for example [138, 124, 126]) However the proofs of our results
are very different. The main reason for this difference is that the product of smooth functions
is, in general, no longer in the domain of the Laplacian [11]. Therefore techniques that are
essential in real analysis like multiplication with a smooth bump are not available to us. We
frequently use the Borel type theorem proved in [115] to decompose a smooth function in a
sum of smooth functions supported in specified cells. We review next the main definitions and
results of this paper.

For fixed m ∈ R we define the symbol class Sm to be the set of p ∈ C∞((0,∞)) with the
property that for any integer k ≥ 0 there is Ck > 0 such that∣∣∣∣(λ d

dλ

)k
p(λ)

∣∣∣∣ ≤ Ck(1 + λ)
m
d+1

for all λ > 0, where d is the Hausdorff dimension with respect to the resistance metric on the
fractal. The rationale for dividing m by d+ 1 is that the Laplacian behaves like an operator of
order d+ 1.

If p is any bounded Borel function on (0,∞) then one can define an operator p(−∆) via

p(−∆)u =

∫ ∞
0

p(λ)dP (λ)(u).

This operator extends to a bounded operator on L2(µ) by the spectral theorem. If p ∈ Sm with
m > 0, then q(λ) := (1 + λ)−

m
d+1 p(λ) is bounded and one can define p(−∆) = (I −∆)

m
d+1 q(−∆).

For fixed m ∈ R we define the class ΨDOm of pseudodifferential operators with constant coef-
ficients on X to be the collection of operators p(−∆) with p ∈ Sm.

We prove that the pseudodifferential operators with constant coefficients satisfy the sym-
bolic calculus and that they are given by integration with respect to kernels that are smooth
and decay off the diagonal, extending some of the results of [60]. The first of the main theo-
rems in the paper is

Theorem 2.2. Let p : (0,∞) → C be an S0-symbol. Then p(−∆) has a kernel K(x, y) that is
smooth off the diagonal of X ×X and satisfies

(7) |K(x, y)| . R(x, y)−d

and

(8) |∆l
x∆k

yK(x, y)| . R(x, y)−d−(l+k)(d+1).

Thus the class of pseudodifferential operators of order 0 on p.c.f. fractals are Calderón-
Zygmund operators and they extend to bounded operators on Lq, for all 1 < q < ∞. In
this context we therefore recover the results of [141], [121]. We extend our analysis also to
products of metric measure spaces such that the heat kernel on each factor satisfies our main
estimates (1). However, we allow the constants in the estimates to be different. Thus, the
class of examples for our results is quite large. For instance, one can apply our results to a
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product between the real line and a fractafold based on the Sierpinski gasket or a Sierpinski
carpet.

We believe that actually more is true. Namely, we conjecture that the pseudodifferential
operators of order 0 are singular integral operators. This result is known to be true in the real
case ([126]). However, the methods of proof used in the real analysis case are not applicable
to our context. This is one of the projects that we plan to pursue in the near future.

We define Sobolev spaces on these fractals and prove that pseudodifferential operators with
constant coefficients are bounded on them. One of the main applications that we want to work
on in the near future is a “Fubini-type” theorem as in [130]:

Conjecture 2.3. Assume that Xk is a product of k copies of an infinite blowup X of a p.c.f.
self-similar set. Let f be a function on X and let fj be the restriction of f to k − 1 copies
of X obtained by freezing the jth component, j = 1, . . . , k. Then f ∈ Lps(Xk) if and only if
fj ∈ Lp(Xk−1) for j = 1, . . . , k, and then

‖f‖Lps(Xk) '
k∑
j=1

‖fj‖Lp(Xk−1) .

In order to prove this conjecture we need first to enhance our knowledge of fractional
Sobolev spaces on fractals. Namely, when is a bounded operator on Lps or Lp given by a mul-
tiplier? What is the correct notion of “commuting with translations” on fractals? A positive
answer to our conjecture will be useful in the study of differential equations and differential
operators such as the Schrödinger operator that I discuss in a future section. Such opera-
tors don’t fall under the scope of our Theorem 2.2 and estimating their Lp and Lps norms is a
difficult task.

Another important application that we discuss in [61] the study elliptic and hypoelliptic op-
erators. Namely, we prove that a pseudodifferential operator satisfies the pseudo-local prop-
erties and that an elliptic operator is hypoelliptic. This gives positive answers to some open
questions posed in [136, 13, 114].

An interesting class of operators that can be defined on fractals with spectral gaps are
the so called quasielliptic operators ([13, 121]). For example, assume that α, β are positive
real numbers such that α < β and λ/λ′ /∈ (α, β) for all λ, λ′ in the spectrum of −∆. Let
a ∈ (α, β). Then q(λ1, λ2) = λ1−aλ2 is a quasielliptic symbol. We show that every quasielliptic
pseudodifferential operator is equal to an elliptic pseudodifferential operator, though there
are quasielliptic differential operators which are not elliptic as differential operators.

We extend the class of pseudodifferential operators to include operators for which the
derivatives of the symbols have a slower rate of decay. Namely, for 0 ≤ ρ ≤ 1 we consider
the collection Smρ of symbols p ∈ C∞((0,∞)) with the property that for any k ≥ 0 there is
Ck(ρ) > 0 such that ∣∣∣∣(λρ ddλ)kp(λ)

∣∣∣∣ ≤ Ck(ρ)(1 + λ)
m
d+1

for all λ > 0, where 0 ≤ ρ ≤ 1. We proved that if 1/(γ + 1) < ρ ≤ 1 then the kernels of
the corresponding pseudodifferential operators are smooth; they are not, however, Calderón-
Zygmund operators if ρ < 1, and they might not be bounded on Lq(µ). As an application to our
results we consider the Hörmander type hypoelliptic operators. We say that a smooth map
p : (0,∞)N → C, where N ≥ 2, is a Hörmander type hypoelliptic symbol if there are ε > 0 and
A > 0 such that ∣∣∣∣∣ ∂

α

∂λα p(λ)

p(λ)

∣∣∣∣∣ ≤ cα|λ|−ε|α| for |λ| ≥ A,
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where cα are postive constants for all α ∈ NN . We prove that the Hörmander type hypoel-
liptic operators are hypoelliptic. This extends one side of the classical result ([138, Chapter
III, Theorem 2.1]). The converse is false in general, as is exemplified by the quasielliptic
operators.

2.4. Wavefront sets and microlocal analysis. In another application we introduce in [61]
the wavefront set and microlocal analysis on products of compact spaces built out of fractals.
Let Γ denote an open cone in RN+ and Ω an open set in X. We use ϕαk to denote L2 normalized
eigenfunctions corresponding to eigenvalues λαk , and set λα = λα1 + · · ·+ λαN . A distribution
u is defined to be C∞ in Ω × Γ if it can be written on Ω as a linear combination of eigenfunc-
tions with coefficients having faster than polynomial decay over the eigenvalues in Γ. More
precisely, if there is a sequence bn and a function v with v|Ω = u that has the form

(9) v =
∑
α

cαϕα1 ⊗ ϕα2 ⊗ · · · ⊗ ϕαN ,

for values cα such that |cα| ≤ bn(1 + λα)−n/(d+1) for all n and all {λα1 , . . . , λαN } ∈ Γ. We define
the wavefront set of u, WF(u), to be the complement of the union of all sets where u is C∞. If
u is a smooth function on X then WF(u) is empty. More generally, singsuppu is the projection
of WF(u) onto X. The main theorem that we proved so far about wavefront sets is

Theorem 2.4. If p ∈ Sm then WF p(−∆)u ⊆ WF(u). If in addition p(−∆) is elliptic then
WF(p(−∆)u) = WF(u).

Thus pseudodifferential operators may decrease the wavefront set and that elliptic opera-
tors preserve the wavefront set, extending results from classical harmonic analysis (see, for
example, [122]). We also describe the wavefront set for a few concrete examples. While we
can not hope to prove that singularities propagate along the wavefront set, as in the classical
real analysis, since for many p.c.f. fractals there are compactly supported eigenfunctions of
the Laplacian, we do believe that the wavefront set will play an important role in the analysis
of P.D.E. on fractals. They should provide important information about solutions for the wave
equations on fractals and other equations. In particular, we believe the following conjecture
is true:

Conjecture 2.5. LetX1 andX2 be two cells inX such thatX1 ⊂ X2 and let Ui be the interior of
Xi. Let p be a pseudodifferential operator with constant coefficients. If u satisfies the equation
p(−∆)u = 0 in U2 and vanishes on U1 then u must vanish on U2.

We plan to pursue the study of wavefront sets on fractals in a project joint with Robert
Strichartz.

2.5. Pseudodifferential operators with variable coefficients and applications. In the
last section of [61], we define and study some properties of pseudodifferential operators with
variable coefficients on fractals. The definition of a symbol with variable coefficients is straight
forward. Namely, for m ∈ R we define the symbol class Sm to consist of the smooth functions
p : X × (0,∞) → C such that for each k ∈ N and j ∈ N there is a positive constant Cj,k such
that

(10)

∣∣∣∣∣
(
λ
∂

∂λ

)k
∆j
xp(x, λ)

∣∣∣∣∣ ≤ Cj,k(1 + λ)
m
d+1 .

Then we define the operator class of pseudodifferential operators with variable coefficients
ΨDOm by

p(x,−∆)u(x) =

∫ ∫
p(x, λ)Pλ(x, y)u(y)dydλ,
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for p ∈ Sm and u ∈ D. Recall that for a large class of fractals the domain of the Laplacian
is not closed under multiplication [11]. This implies in our case that the symbolic calculus is
not valid for the pseudodifferential operators with variable coefficients. Namely, the product
of two symbols in the above sense is no longer smooth and it can not be a symbol of a pseu-
dodifferential operator. Another consequence of this fact is that the kernel of these operators
cannot be smooth. Nevertheless we managed to prove the following important result in the
case when X is compact and has no boundary.

Theorem 2.6. Suppose that X is a compact fractafold with no boundary and p ∈ S0. Then the
operator Tu(x) = p(x,−∆)u(x) is given by integration with a kernel that is continuous off the
diagonal and satisfies the estimate

(11) |K(x, y)| . R(x, y)−d.

While the estimates of the previous theorem alone do not allow us to apply our [60, Theorem
3.2] to conclude that p(x,−∆) are Calderón-Zygmund operators, we managed to prove the
following theorem:

Theorem 2.7. Suppose that X is a compact fractafold with no boundary and p ∈ S0. Then the
operator Tu(x) = p(x,−∆)u(x) extends to a bounded operator on Lq(µ) for all 1 < q <∞.

These results cannot be obtained using the results of [141] and [121]. Our method of proof
consists in approximating p(x,−∆) by an infinite sum of constant coefficient pseudodiffer-
ential operators that are uniformly bounded on Lq(µ). Even though we managed to prove
Theorem 2.7 without the use of the Calderón-Zygmund theory, the following conjecture is
important in understanding some differential equations:

Conjecture 2.8. Suppose that X is a compact fractafold without boundary and p ∈ S0. Then
the operator Tu(x) = p(x,−∆)u(x) is a Calderón-Zygmund operator.

We already know that T is bounded on L2(µ) and that its kernel satisfies the estimate (2).
In order to prove that the kernel K of the operator T satisfies (3) as well we plan to use some
of our estimates from [62]. Once the above conjecture is proved, then the next step is to prove
the following conjecture:

Conjecture 2.9. Suppose that X is a compact fractafold without boundary and p ∈ S0. Then
the operator Tu(x) = p(x,−∆)u(x) is a singular integral operator on L2(µ).

We want to pursue this idea even further. Namely, we want to investigate whether the The-
orems 2.6 and 2.7 as well as the Conjectures 2.8 and 2.9 are valid for non-compact fractafolds.
As a first step in proving these conjectures in the non-compact case, we need to prove that the
operator p(x,−∆) is bounded on L2(µ). The extension of this result from the compact case to
infinite blowups is far from trivial, since we can not multiply by smooth cut-off functions. We
plan to use the results in [115] and decompose a smooth functions into a sum of compactly
supported smooth functions. We already know that the pseudodifferential operator associ-
ated to each such function is bounded on L2(µ). The main technical point is to prove that the
bounds are summable.

A positive answers to the conjectures described above would allow us to use pseudodiffer-
ential techniques in the study of various differential equations on fractals. In particular, we
plan to study Schrödinger operators of the form H = −∆ + χ, where χ is a potential. The
authors of [98] showed that, on the Sierpinski gasket, the spectrum of a Schrödinger operator
associated to a continuous potential χ breaks into clusters whose asymptotic distribution may
be described precisely. The authors use the spectral decimation method for the Sierpinski
gasket to prove their main results. However, similar results are true for the Schrödinger op-
erators corresponding to the Laplace-Beltrami operator on a compact riemannian manifold,
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with smooth potential ([46],[45][44],[142]). The proof of the results for riemannian manifolds
uses extensively pseudodifferential techniques. Therefore, not only we plan to use our theory
of pseudodifferential operators and show that the results of [98] are true for all the p.c.f. self-
similar sets for which the heat kernel satisfies the estimate (1), but also we plan to provide a
more detailed description of the spectrum for Schrödinger operators with smooth potentials.
An important problem that we need to overcome is the fact that the class of pseudodiffer-
ential operators with variable coefficients does not satisfy the symbolic calculus. Therefore
the methods of [142] need to be changed significantly in our context. The main tool that we
want to use again is the approximation of a variable coefficient pseudodifferential operator by
constant coefficient operators.

In addition to the conjectures that I enumerated above, I plan to study other properties
of the pseudodifferential operators on fractals, such as the Gårding inequality and the Lp-
boundedness of symbols in Smρ . These projects are motivated by the desire to understand the
wave and Schrödinger equation on fractals. Moreover, in a joint project with Robert Strichartz
we want to use the techniques that we have developed for pseudodifferential operators in
order to study the “harmonic extension property”. To be more specific, suppose that h is a
function that is harmonic on an open set U except at a point x. What conditions on h will
guarantee that we can extend h to a harmonic function on U? We conjecture that h should be
in a specific Lp space or a Sobolev space. If x is a so called junction point for the fractal, then
the theory of distribution supported at a junction point that has been developed in [114] helps
to provide an answer. For a generic point x the proof will be substantially harder.

Another application of our results that we want to investigate is the Poisson integration
formula for product of fractals. Such a formula was provided in [134] under some very re-
strictive conditions. We conjecture that the Poisson formula holds as long as the heat kernel
estimates (1) are satisfied.

2.6. Exotic and forbidden symbols. This project is a natural extension of the pseudodif-
ferential operators project. Namely, following [126, Chapter VII], we want to consider the
symbol class Smρ,δ of smooth symbols p : X × R→ C that satisfy∣∣∣∣(λ−δ∆x)n

(
λρ

d

dλ

)k
p(x, λ)

∣∣∣∣ ≤ Ck,n(ρ, δ)(1 + λ)
m
d+1 ,

for all n,m ≥ 0. Notice that for ρ = 1 and δ = 0 we recover the pseudodifferential operators
described above. If ρ = 1 and δ = 1 one can not expect that the operator Tu = p(x,−∆)
is bounded on L2(µ), as some well known examples in real analysis show. For this reason,
we call the class S0

1,1 the class of “forbidden” symbols (as in [126]). It would be interesting,
however, to find an example of a symbol p defined on an infinite blow-up of a Sierpinski gasket
such that p(x,−∆) is not bounded on L2(µ). Moreover, we plan to check if such operators are
given by integration with respect to some kernels and to study the decay properties of these
kernels. Also, we want to study the boundedness of these operators on different function
spaces introduced in ([133]). In particular, we believe that the following is true.

Conjecture 2.10. Suppose that the symbol p belongs to S0
1,1. Then the operator p(x,−∆) extend

to a bounded operator on the Lipschitz space Λγ , for γ > 0.

Next we want to study the class of “exotic” symbols, S0
ρ,ρ with 0 ≤ ρ < 1. By analogy with

the real case, we want to prove the following conjecture:

Conjecture 2.11. Suppose p is a symbol that belongs to S0
ρ,ρ with 0 ≤ ρ < 1. Then the operator

p(x,−∆) extends to a bounded operator on L2(µ).

The proof of this result for a p.c.f. will be very different compared to the proof of the similar
result in the classical case. While I still expect that the Cotlar inequality ([22]) will play a
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crucial role in the proof, the symmetry between the x-space and λ-space that was essential
in the real case fails here. The idea of proof that we want to pursue is to decompose the λ-
space using the dyadic decomposition and to decompose the x-space using a particular cell
decomposition of X. Once again, we have to be carefully on the x-space side because we
can not multiply with smooth cut-off functions. The results in [115] should once more play
an important role in overcoming these obstacles (see also [124],[127]). Success in proving
these conjecture will shed more light about heat kernels on the imaginary axis and, perhaps,
Cauchy-Szegö type kernels on fractals.

2.7. Littlewood-Paley functions and area functions on fractals. This project is another
natural extension of the pseudodifferential operators on fractals project. Namely, we want to
define and study the Littlewood-Paley functions and area function on fractals. While we can
not define the so called g-function on fractals, it is easy to define the g1-function

g1(f)(x) =

(∫ ∞
0

tet∆f(x)dt

)1/2

.

A relatively easy proof shows that g1 is bounded on L2(µ). While using the general results
of [125] one can prove that g1 is bounded on Lp(µ), 1 < p < ∞, it will be desirable to obtain
a direct proof, using the self-similarity properties of the fractal X. A more delicate problem
is the study of the so called area function. The definition of the area function on a generic
infinite blowup of the Sierpinski gasket that we propose is the following. For a generic point
x ∈ X and any m ∈ Z there is a unique m-cell Cm(x) containing x. We define

(12) A(f)(x)2 =
∞∑

m=−∞

∫ 3−m

3−m−1

ECm(x)(u(·, t))dt,

where u = e−t
√
−∆f and EC denotes the energy restricted to the cell C. We managed to prove

the following results about the area function:

Theorem 2.12. Suppose that A is defined as in (12). Then ‖Af‖22 ' ‖f‖2. That is, there are
positive constants C1 and C2 such that ‖A(f)‖2 ≤ C1‖f‖2 and ‖f‖2 ≤ C2‖A(f)‖2.

The next step is to prove the following conjecture for the area function:

Conjecture 2.13. The area function A is bounded on Lp and there positive constants C1(p)
and C2(p) such that ‖A(f)‖p ≤ C1(p)‖f‖p and ‖f‖p ≤ C2(p)‖A(f)‖p.

Notice that this result can not be obtained using the general results of [125].
Another Littlewood-Paley function that we want to study is the partial sum operator. Strichartz

defined in [135] a special case of the partial sum operator S on a fractal with spectral gaps
by adding the Fourier coefficients only between gaps. Then Aq‖f‖q ≤ ‖Sf‖q ≤ Bq‖f‖q for
1 < q < ∞. We conjecture that the result is valid for fractals even in the absence of spectral
gaps. We can define the sum operator in a similar fashion as in the Euclidean space using the
dyadic decomposition ([124, Section 4.5.1]). Using our theory of pseudodifferential operators
we already made progress in proving that ‖Sf‖p ' ‖f‖p for all 1 < p < ∞ for all p.c.f. self-
similar sets as long as the heat kernel estimates are satisfied. The main motivation for the
study of the partial sum operator S is our desire to understand Schrödinger type equations on
fractals in a similar fashion as in [14]. In that paper the author studies the periodic nonlinear
Schrödinger equation

∆xu+ i∂tu+ u|u|p−2 = 0,

with p ≥ 3, u = u(x, t) a 1-periodic in each coordinate of the x-variable, and with some given
initial data. We believe that understanding non-linear Schrödinger equations on fractals will
be important to physicists. There are, however, a few problems that we need to be careful
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about; the first problem is how to pick the non-linear term. As explained above, the product of
two smooth functions fails to be smooth on many highly-symmetric fractals. However, since
the Schrödinger operator maps L2 into L2, it might suffice to assume that u is in L2. Also, the
basic arguments of [14] that use the algebraic properties of the exponential function (see, for
example, the proof of [14, Proposition 2.1]) fail for general p.c.f. self-similar sets. However,
some incipient computations lead us to believe that we can circumvent some of these difficul-
ties using the properties of the sum operator on fractals. In some ongoing work done with
Luke Rogers and Kasso Okoudjou, we realized that for fractals with localized eigenfunctions
some of the results of [14] fail. Namely, the presence of the localized eigenfunctions implies
that the Schrödinger operator eit∆ can not be smoothing. That is, the operator can not be
bounded from Lp to Lq if q > p. More generally, we conjecture that a multiplier must have a
specific decay in order for the corresponding multiplier operator to be smoothing, decay that
the Schrödinger multipliers fail to satisfy.

A closely related project that we believe will be of interest to people working in analysis
on fractals and that we intend to pursue in the near future is the study of the weighted
inequalities. Namely, we plan to define and study the Ap weights on fractals and study the
connection between the weak (p, p) inequalities and Ap weights. This will most likely be a
longer term project.

2.8. Fredholm modules, Dirichlet forms, and derivations on fractals. In [62] we study
derivations and Fredholm modules on metric spaces with a local regular conservative Dirich-
let form. The classical example of a Dirichlet form is E(u, u) =

∫
|∇u|2 with domain the Sobolev

space of functions with one derivative in L2. In [16] Cipriani and Sauvageot show that any
sufficiently well-behaved Dirichlet form on a C∗-algebra has an analogous form, in that there
is a map, δ, that is a derivation (i.e. has the Leibniz property) from the domain of the Dirichlet
form to a Hilbert moduleH, such that ‖δa‖2 = E(a, a). In the case that the Dirichlet form is lo-
cal regular on a separable locally compact metric measure space, this construction is a variant
of the energy measure construction of LeJan [81]. In particular, understanding the module H
essentially relies on understanding energy measures. It is now well-known that fractal sets
provide interesting examples of Dirichlet forms with properties different from those found on
Euclidean spaces. Cipriani and Sauvageot study their derivation in the p.c.f. self-similar set
setting in [17], obtaining properties of a Fredholm module (an abstract version of an order
zero elliptic pseudodifferential operator in the sense of Atiyah [6]) using the heat kernel esti-
mates and the counting function of the associated Laplacian spectrum. These results open up
an exciting connection between Dirichlet forms on fractals and the non-commutative geome-
try of Connes [19], so it is natural to ask for an explicit description of the key elements of this
connection, namely the Hilbert moduleH and its associated Fredholm module. In [62] we give
a concrete description of the elements of the Hilbert module of Cipriani and Sauvageot in the
setting of Kigami’s resistance forms on finitely ramified fractals [75], a class which includes
the p.c.f. self-similar sets studied in [17] and many other interesting examples [1] [139], [112].
We also discuss weakly summable Fredholm modules and the Dixmier trace in the cases of
some finitely and infinitely ramified fractals (including non-self-similar fractals) if the so-
called spectral dimension is less than 2. In the finitely ramified self-similar case we relate
the p-summability question with estimates of the Lyapunov exponents for harmonic func-
tions and the behavior of the pressure function. We give a direct sum decomposition of this
module into piecewise harmonic components that correspond to the cellular structure of the
fractal. This decomposition further separates the image of the derivation from its orthogonal
complement and thereby gives an analogue of the Hodge decomposition for H. By employing
this decomposition to analyze the Fredholm module from [17] we give simpler proofs of the
main results from that paper and further prove that summability of the Fredholm module is
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possible below the spectral dimension. We also clarify the connection between the topology
and the Fredholm module by showing that there is a non-trivial Fredholm module if and only
if the fractal is not a tree (i.e. not simply connected).

In the near future we want to extend this project into a few directions. A first natural
avenue of research is the proof of the following conjecture:

Conjecture 2.14. The Fredholm module of [17] and [62] is given by a pseudodifferential op-
erator on the fractal in the sense of [61].

Another natural direction given my background is to prove some of the results that I de-
scribed above in the context of non-commutative Dirichlet forms ([2],[18],[16]). We already
realized that the non-commutative version of the extension theorem [41, Theorem 1.5.2] that
is essential in LeJan construction is the Stinespring’s dilation theorem that is also one of the
crucial tools used in [16]. In a different direction, we want to check whether the resolvent
estimates that we proved in [59] might help in sharpening our results and extending them to
other classes of fractals. Namely, do our results hold for diamonds and possible non-finitely
ramified Laakso spaces ([79])? We conjecture that the answer is affirmative. How do our
results change if the form is not local?

3. FRACTALS AND C∗-ALGEBRAS

3.1. Disertation Results. The results from [55], [54], and [63] have evolved from my disser-
tation. My thesis was completed at the University of Iowa under the direction of Professor
Paul S. Muhly. It was awarded the 2006 D.C. Spriestersbach Dissertation Prize for Mathe-
matics, Physical Sciences, and Engineering at the University of Iowa.

The common subject of the papers mentioned above is the structure of certain operator
algebras (self-adjoint and non-self-adjoint) associated with Mauldin-Williams graphs and the
dynamical systems they determine. My primary focus was the Pimsner construction of what
are known now as Cuntz-Pimsner algebras (see [102] and [90]).

Let G = (E0, E1, r, s) be a finite directed graph. A Mauldin-Williams graph associated to
G consists of a collection {Tv}v∈E0 of compact metric spaces, one for each vertex of the graph,
and a collection {φe}e∈E1 of contractive maps, one for each edge of the graph ([86], [35]). We
associate with such a system a C∗-correspondence X over the C∗-algebra A = C(T ), where
T =

⊔
Tv, which reflects the dynamics of the Mauldin-Williams graph (see [55, Definition

2.2])). My interests lie in the structure of operator algebras built from this correspondence.
The first main result of [55] states that if the underlying graph G has no sources and no

sinks, that is, if the maps r and s are surjective, then the Cuntz-Pimsner algebra O(X ) asso-
ciated to the Mauldin-Williams graph is isomorphic to the Cuntz-Krieger algebra associated
with the graph G [23] (see [55, Theorem 2.3]). This is a generalization of the results of [103].
My proof is different from that in [103] and yields a second theorem. It asserts, roughly, that
if one wants to build a graph-directed system where the Tv are replaced by arbitrary unital
C∗-algebras Av and where the φe are replaced by homomorphisms that are contractive in the
Rieffel metric ([110],[111]) then the resulting Cuntz-Pimsner algebra still is isomorphic to
C∗(G). In fact, I proved that in such situations, using the hypothesis that the graph G has no
sinks, the C∗-algebras Av involved are necessarily commutative.

I showed, however, in [54] that the tensor algebra of X , T+(X ), is “locally” a “complete conju-
gacy invariant”. More precisely, I proved that if Xi, i = 1, 2 are the C∗-correspondences coming
from two Mauldin-Williams graphs defined over the same graph G, then the associated tensor
algebras T+(Xi) are Morita equivalent in the sense of [12] if and only if that are completely
isometrically isomorphic. This, in turn, happens if and only if there is a homeomorphism be-
tween the vertex spaces which implements a conjugacy between the appropriate edge maps.
This result, thus, stands in a long series of results that were inspired by Arveson’s discovery
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[4] of the relation between conjugacy invariants for measure preserving transformations and
non-self-adjoint operator algebras.

In the third paper that resulted from my thesis, [63], Watatani and I associate a slightly
different C∗-correspondence to a Mauldin-Williams graph, which yields a C∗-algebra that
seems to respect the dynamics more clearly. This new C∗-correspondence X over A = C(K)
is based on the union of the so called cographs of the maps φe. This approach allows us to
put more emphasis on the “branch points” of the maps. These are points (x, y) ∈ K ×K such
that φe(y) = φf (y) = x for some e 6= f . Assuming that the underlying graph G of a Mauldin-
Williams graph is irreducible and is not a cyclic permutation, and assuming that the invariant
set K satisfies a technical condition called the open set condition, we proved that the Cuntz-
Pimsner algebra O(X) associated with the C∗-correspondence X is simple and purely infinite.
Since O(X) is also separable, nuclear, and satisfies the Universal Coefficient Theorem, the
classification theorem of Kirchberg and Phillips [77],[101] implies that the isomorphism class
of O(X) is completely determined by its K-theory with the K-theory class of the unit. Its K-
theory is closely related to the failure of the injectivity of the coding by the shift on a Cantor
set. In particular, Watatani and I compute the K-theory for a few specific examples and show
that it can be quite different from the K-theory of the underlying graph.

3.2. Graph directed Markov systems and C∗-algebras. This project is a natural exten-
sion of my thesis. A graph directed Markov system (GDMS) is a generalization of an Mauldin-
Williams graph in that it allows for an infinite, but countable, number of edges, while still
requiring a finite number of vertices [85]. To each vertex v one attaches a compact metric
space Kv and to each edge e one attaches a contraction φe : Kr(e) → Ks(e). Some examples
of such dynamical systems are the so called continued fractions and the Kleinian groups of
Schottky type. The main difference compared with the classical Mauldin-Williams graphs is
that the invariant set and the path space of a GDMS fails, in general, to be a locally com-
pact space. This failure makes it challenging to associate a C∗-algebra to a GDMS. The idea
that I propose to overcome this difficulty is to use the groupoid model of Paterson [99] for
infinite graph C∗-algebras. This leads to building a topological quiver over the closure of the
invariant set. Natural questions I will like to answer include: how does the structure of the
C∗-algebra associated with a graph directed Markov system depend on the underlying infinite
graph? How is the dynamics of the GDMS reflected in the properties of the C∗-algebra? Is the
associated C∗-algebra simple? Can one compute it’s K-theory by studying particular sets of
points? Based on the work I have done so far, the C∗-algebra associated to a GDMS should be,
in general, different from the C∗-algebra of the underlying graph. Moreover, I have reasons
to believe that these C∗-algebras are simple. This belief is substantiated by the work that I
will describe in the next section. While I believe that, under suitable assumptions, these C∗-
algebras are purely infinite, the proof seems to require more elaborate techniques compared
with the classical Mauldin-Williams graphs.

In a different direction, I plan to study in collaboration with John Quigg and Steve Kaliszewski
the KMS states induced from invariant measures of the GDMS on the C∗-algebra described
above. This work will extend the impressive analysis of Pinzari, Watatani, and Yonetani [103].

3.3. Markov operators and C∗-algebras. In a recent paper which is joint with Paul S.
Muhly and Victor Vega we began the study of Markov operators and C∗-algebras [58]. We
say that an operator P on C(X), where X is compact, is a Markov operator in case P is
unital and positive. Using a Markov operator P , we built a topological quiver and a C∗-
algebra O(P ) ([92]) on C(X) using the so called support of P . This Cuntz-Pimsner algebra,
O(P ) generalizes a number of C∗-algebras associated with automorphism, endomorphisms,
transfer operators, and graphs ([123], [28], [29], [27], [38], [37], [73], [63], [104]). Our first
theorem provides a characterization of the simplicity of the C∗-algebra O(P ) in terms of the
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probabilistic properties of P . Namely, we proved that O(P ) is simple if and only if there are no
closed strongly absorbing sets for P . The second theorem of [58] states that, given a compact
topological quiver E with no singular vertices, there is a Markov operator P such that O(E)
is isomorphic to O(P ). In future work I plan to explore further the interactions between the
probabilistic features of P and the properties of O(P ). One particularly intriguing problem
is deciding when two P ’s give rise to isomorphic Cuntz-Pimsner algebras. When the P ’s are
finite state Markov chains, then the two algebras are isomorphic if and only if the supports are
same. Whether this is true more generally seems unlikely. However, [20, Proposition 6, p. 39]
suggests that in general two P ’s with the same support give Morita equivalent Cuntz-Pimsner
algebras.

Other interesting problem is to determine the “branch points” of a Markov operator and
their influence on the K-theory of O(P ). Namely, if IX = C0(U) is the ideal in C(K) that
is the preimage of the compact operators on X (see [102]), then we define the branch points
of P to be the closed set K \ U . This definition generalizes work done in [73] and [72]. The
existence of these branch points leads naturally to the study the KMS states on O(P ) and
representations of the C∗-algebra induced by invariant measures of the Markov operator P
(see [69] for some particular cases). I expect that the ergodic Markov operators will provide
interesting insights in the study of the KMS states on C∗-algebras. Representations of the
Cuntz algebra On induced from invariant measures associated to iterated function systems
have played a key role in the study of wavelet analysis done by Jorgensen, Bratelli, and co.
[15], [32], [30], [70]. My work should unify and extend, thus, their study and provide new
examples of wavelets on the real line and fractals.

3.4. Tensor Algebras Associated to Fractals and their Perturbations. As I pointed out
in the description of my dissertation results, a natural C∗-correspondence associated with an
iterated function system or, more generally, a Mauldin-Williams graph gives a C∗-algebra that
ignores the dynamics of the system or graph. However, I proved in [54] that the tensor algebra
does determine the dynamics in specified ways. One question to investigate is a perturbation
question: If Xi, is the C∗-correspondence coming from a Mauldin-Williams graph, i = 1, 2,
and if the underlying graphs are the same, so that one may identify O(X1) and O(X2), under
what circumstances is T+(X1) close to T+(X2) in the Hausdorff metric? I expect the answer to
be in terms of some sort of “closeness” for the underlying dynamics. Another question I plan
to pursue is whether the non-self adjoint algebras one can associate to the graph directed
Markov systems I described above will provide a topological invariant for the GDMS in a
similar way with [54]. Providing an answer for a GDMS should open a new set of problems
and conjectures. For example, if the Toeplitz algebra is indeed a topological invariant of the
system, for which Markov operators will the result still hold? Davidson and Katsoulis proved
in [24] and [25] that the result would fail if one considers, in our language, a Markov operator
built from a finite number of continuous maps that are not contractions.

4. WAVELETS, FRACTALS, AND GROUPOIDS

4.1. Groupoids methods in wavelet theory. One project which I am actively pursuing
with Paul S. Muhly is the use of groupoid methods in wavelet theory. An outline of our work
together with partial results are published in [57]. We summarize the results below. The key
idea is the use of the Renault-Deaconu groupoid [28], [108] and the theory of Exel [38] con-
cerning irreversible dynamical systems to expand on the work of Bratteli, Jorgensen, Dutkay,
et. al [15], [70], [31]. Their work, in turn, relates wavelet analysis, both for classical wavelets
and for wavelets on fractals, to representations of the Cuntz algebra. Our approach shows
how their Cuntz representations may be tied more closely to the underlying geometry of the
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situations they consider. A wavelet is a function ψ in L2(R) such that

{U jT kψ : j, k ∈ N}
is an orthonormal basis for L2(R), where U is the operator of dilation by 2, and T is the
operator of translation by 1.

In our approach we start with a local homeomorphism T on a compact, Hausdorff space X,
and define the Renault-Deaconu groupoid to be

(13) G = {(x, n, y) ∈ X × Z×X : T k(x) = T l(y), n = k − l},
endowed with a suitable topology such that G becomes an étale, locally compact groupoid.
Thus G carries information about the entire pseudogroup generated by T . In investigations
that Muhly and I have been making (described in part in [57]) it has become clear that har-
monic analysis on fractals and the analysis of wavelets can profitably exploit the representa-
tion theory of G for suitable choices of X and T . Our analysis shows that there are structures
that are intrinsic to the geometric setting of a space X with a local homeomorphism T . These
include the groupoid G and its C∗-algebra, the pseudogroup G, and the Deaconu correspon-
dence X [28],[29]. These are the source of isometries and the Cuntz relations - assuming X
has an orthonormal basis. Each choice of orthonormal basis (which we call a filter bank) gives
Cuntz isometries Si in C∗(G). Further, we may construct the minimal unitary extension of
any of the Si essentially within C∗(G).

The “classic” wavelet analysis arises from our groupoid perspective via the following exam-
ple. Let X = T, Tz = z2, µ = Lebesgue measure on T. Let π be the representation of C∗(G)
given by (µ,H, U), where H = X × C is the trivial line bundle on X,

U(γ) : {s(γ)} × C→ {r(γ)} × C, U(γ)(s(γ), c) = (r(γ), c).

This representation induces the classical wavelets: π(f)ξ(z) = f(z)ξ(z), π(Si)ξ(z) = mi(z)ξ(z
2),

where (m1,m2) is a filter bank associated with T . Then one can recapture the result due to
Jorgensen and, more recently, Larsen and Raeburn [80] that the inverse Fourier transform of
m2(eπix)φ(2−1x) is the wavelet associated with the filter bank (m1,m2).

4.2. Local homeomorphisms on fractafolds. Let T be a local homeomorphism on a com-
pact metric spaceX. Alex Kumjian and I say in [56] that T satisfies the local scaling condition
if

(x, y) 7→ ρ(Tx, Ty)

ρ(x, y)

extends to a continuous function f on X × X that is strictly positive on the diagonal ∆X =
{(x, x) | x ∈ X}. Our first theorem shows that the Hausdorff measure on X gives rise to a
KMS state on the C∗-algebra attached to T via the Renault-Deaconu groupoid ([28, 108],[109])
with inverse temperature given by the Hausdorff dimension of X. Assuming that the local
homeomorphism T : X → X is positively expansive and exact, and assuming that ϕ = f |∆
satisfies the Bowen condition then we prove that β is the unique inverse temperature which
admits a KMS state. Moreover, the (α, β)-KMS state ωµ is unique. We use our results to
derive a formula that allows an easy computation of the topological pressure of T in some
particular cases. We discuss a few examples that generalize known results for gauge actions
and generalized gauge actions on Cuntz and Cuntz-Krieger C∗-algebras. We present also the
connection between the formula that computes the Hausdorff dimension of a self-similar set
and the formula that defines the unique KMS-state attached to the gauge action on the Cuntz
algebra. One of the main motivation for our work was an attempt to define and study a local
homeomorphism on a fractafold based on a Sierpinski gasket. Since it seems unlikely that
one can define a local homeomorphism on the Sierpinski gasket itself due to the different
topological nature of the three vertex points compared with a “generic” point in the gasket,
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we looked at a simple fractafold that one can build using the Sierpinski gasket. Namely,
we defined a natural local homeomorphism σ on the Sierpinski octafold, which is obtained
by considering four copies of the Sierpinski gasket on alternating faces of a octahedron. We
believe that our local homeomorphism is the fractal analogue of the map T (z) = z2 on the
torus. It turns out that this example did not satisfy the hypothesis of our main theorem in
[56]. However, we showed using the associated Renault-Deaconu groupoid that the conclusion
is still true. Moreover we computed the topological entropy of our local homeomorphism:
h(T ) = log 3.

In recent and ongoing work done with Alex Kumjian, we try to find and analyze symmetries
of fractals associated to iterated function systems (F1, . . . , FN ) and to study the associated C∗-
algebras that might arise from the dynamics. Recall that in [131] Stricharz constructed a
family of fractafold blowups of the invariant set of an iterated function system which is pa-
rameterized by infinite words in the alphabet {1, . . . , N} and observed that two such blowups
are naturally homeomorphic if the parametrizing words are eventually the same. We endow
these fractafold blowups with the inductive limit topology and assemble them into a fractafold
bundle L. In general there do not appear to be any natural nontrivial symmetries of a generic
blowup but Stricharz’s observation suggests that we look for symmetries of the bundle in-
stead. Indeed we show that the homeomorphisms between fibers observed by Stricharz give
rise to a natural action on L, the fractafold bundle, of the Cuntz groupoid. The groupoid action
and the associated action groupoid G̃ constitute the main focus for our work. We prove that
the there is a local homeomorphism σ̃ on L such that G̃ is isomorphic to the Renault-Deaconu
groupoid associated to σ̃ and, in particular, G̃ is étale (that is, the range map is a local home-
omorphism). We also prove that G̃ is topologically principal and has a dense orbit. If L is
locally compact then we conjecture that the associated C∗-algebra, C∗(G̃), is primitive. An-
other conjecture that we make is that there is an invariant measure for G̃. As a consequence,
the associated C∗-algebra would have a densely defined lower semi-continuous trace.

5. THE STRUCTURE OF GROUPOID AND FELL BUNDLE C∗-ALGEBRAS

5.1. Induced representations and primitive ideals. In this ongoing project, in which I
am collaborating with Dana P. Williams, we are concerned with the generalization of the
famous Effros-Hahn conjecture to groupoid and Fell bundle C∗-algebras. Key to this project
is understanding the theory of representations of these C∗-algebras.

In two recent papers [65] and [64], Williams and I made significant progress on this project
and we proved that a generalized Effros-Hahn conjecture is true for groupoid C∗-algebras.
Let me begin with a review of the “classical” Effros-Hahn conjecture and a short description
of our results. I will proceed, then, with a discussion of our future plans.

A dynamical system (A,G, α), where A is a C∗-algebra, G is a locally compact group and α
is a strongly continuous homomorphism of G into AutA, is called EH-regular if every prim-
itive ideal of the crossed product A oα G is induced from a stability group ([144]). In their
1967 Memoir [36], Effros and Hahn conjectured that if (G,X) was a second countable locally
compact transformation group with G amenable, then

(
C0(X), G, lt

)
should be EH-regular.

This conjecture, and its generalization to dynamical systems, was proved by Gootman and
Rosenberg in [42] building on results due to Sauvageot [117],[118].

In [107], Renault gives the following version of the Gootman-Rosenberg-Sauvageot The-
orem for groupoid dynamical systems. Let G be a locally compact groupoid and (A,G, α) a
groupoid dynamical system. If R is a representation of the crossed product A oα G, then
Renault forms the restriction, L̂, of R to the isotropy groups of G and forms an induced repre-
sentation Ind L̂ of AoαG such that kerR ⊂ ker(Ind L̂). When G is suitably amenable, then the
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reverse conclusion holds. This is a powerful result and allows Renault to establish some very
striking results concerning the ideal structure of crossed products.

In [64], Williams and I provide a significant sharpening of Renault’s result in the case of a
groupoid C∗–algebra — that is, a dynamical system where G acts on the commutative algebra
C0(G(0)) by translation. We showed that every primitive ideal K of C∗(G), with G amenable,
is induced from a stability group. That is, we show that K = IndGG(u) J for a primitive ideal J of
C∗
(
G(u)

)
, where G(u) is the stability group at some u ∈ G(0). This not only provides a cleaner

generalization of the Gootman-Rosenberg-Sauvageot result to the groupoid setting, but gives
us a much better means to study the fine ideal structure of groupoids and the primitive ideal
space (together with its topology) in particular. We took the opportunity to formalize the
theory of inducing representations from a general closed subgroupoid in [65]. The main result
of this paper is that the induced representation of an irreducible representation of a stability
group is irreducible. This result is also one of the main pillars in our proof of the Effros-
Hahn conjecture for groupoids. In the case of transformation group C∗-algebras, it is well
known that representations induced from irreducible representations of the stability groups
are themselves irreducible [143]. The corresponding result for groupoid C∗-algebras has been
proved in an ad hoc manner in a number of special cases (see, e.g., [105],[107],[89, 93, 94]).
Thus our analysis unifies and extends these results to groupoid C∗-algebras.

Our next goal is to extend our results to other sorts of dynamical systems built on groupoids:
twisted groupoids ([78]), Green twisted dynamical systems ([43]), groupoid dynamical systems
and twisted groupoid dynamical systems ([107],[106]). Fortunately, as described in detail in
[88, §3] or [96, §2], all these variants are subsumed using the C∗-algebra of a separable Fell
bundle p : B → G over a locally compact groupoid G with a Haar system. In this event,
the sections A = Γ0(G0,B) form a C∗-algebra and we prove in [67] that the groupoid G acts
continuously on PrimA. Any representation L of C∗(GP ,B), where P is a primitive ideal in
A, is associated to a representation π of the C∗-algebra A. We use the action defined in [67]
to generalize a result about short exact sequences to Fell bundles over groupoids. Namely, we
show that if I is a G-invariant ideal in A, then there is a short exact sequence of C∗-algebras

0 // C∗(G,BI) // C∗(G,B) // C∗(G,BI) // 0,

where C∗(G,B) is the Fell bundle C∗-algebra and BI and BI are naturally defined Fell bun-
dles corresponding to I and A/I, respectively. Of course this exact sequence reduces to the
usual one for C∗-dynamical systems. Our main result in [66] extends a classic Morita Equiv-
alence result of Green’s to the C∗-algebras of Fell bundles over groupoids. Specifically, we
show that if p : B → G is a saturated Fell bundle over a transitive groupoid G with stability
group H = G(u) at u ∈ G(0), then C∗(G,B) is Morita equivalent to C∗(H,C ), where C = BH .
As an application, we show that if p : B → G is a Fell bundle over a group G and if there is
a continuous G-equivariant map σ : PrimA → G/H, where A = B(e) is the C∗-algebra of B
and H is a closed subgroup, then C∗(G,B) is Morita equivalent to C∗(H, CI) where CI is a Fell
bundle over H whose fibres are A/I−A/I-imprimitivity bimodule and I =

⋂
{P : σ(P ) = eH}.

Green’s result is a special case of our application to bundles over groups.
Our main result in [68] says that if L is an irreducible representation of C∗(GP ,B), kerπ = P

and π is homogeneous, then IndGGP L is irreducible. This result extends [33, Theorem 1.7]
and some results of [117] and [118] and constitutes an important step towards the proof of
the Effros-Hahn conjecture for Fell bundle C∗-algebras. We illustrate how it “trickles down”
to other dynamical systems settings. Our proof requires an intermediate result which is of
considerable interest on its own. Namely if p : B → G is a separable Fell bundle over a locally
compact groupoid G with Haar system, then we show that if u ∈ G0, if G(u)is the stability
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group of u in G, and if L is an irreducible representation of C∗(G(u),B), then IndGG(u) L is an
irreducible representation of C∗(G,B).

We expect that the study of the Effros-Hahn conjecture for groupoid dynamical systems
and Fell bundles to be substantially harder. The proof will require to retool the methods of
Sauvageot [117], [118] and Gootman-Rosenberg [42] (see also [144]) to work in the context
of Fell bundles. Our work in [68] already captures important results from [117] and [118].
Another significant observation that we made in [68] is that it suffices to consider Fell bundles
over groups and, thus, we can work in a more familiar framework. Success here should lead to
an important improvement upon [107] and give more information about the structure of the
primitive ideal space and simplicity of Fell bundle C∗-algebras. In particular, we conjecture
that if p : B → G is a separable Fell bundle over a Hausdorff groupoid G such that the action of
G on Prim is minimal and there exists a point in PrimA with discretely trivial isotropy, then
the reduced C∗-algebra of the Fell bundle is simple. I will continue to work on this project
with Dana P. Williams.

5.2. Groupoids and Markov operators. I plan to use the techniques developed in the
previous project to study the problem of deciding for which Markov operators P there is
a groupoid such that O(P ) is isomorphic to the C∗-algebra of the groupoid. This problem
was suggested to me by Jean Renault and it should fill an important gap in the literature
of topological quivers [91] and C∗-algebras. Based on preliminary work, it seems that one
needs some kind of “locally finiteness” assumption for the Markov operator P . An answer to
this problem might shed some light on a more general problem: given a topological quiver
E = (E0, E1, r, s, λ), is there a groupoid G so that O(E) is isomorphic to C∗(G)? The answer
is known to be true when r is a local homeomorphism, that is, when E is a topological graph
in the sense of Katsura ([74]). An answer for general topological quiver has been searched by
many people working in C∗-algebras. I believe that my study of Markov operators might help
provide a (negative) answer to this open question.
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20. Alain Connes, Sur la théorie non commutative de l’intégration, Algèbres d’opérateurs (Sém., Les Plans-sur-

Bex, 1978), Lecture Notes in Math., vol. 725, Springer, Berlin, 1979, pp. 19–143. MR 548112 (81g:46090)
21. Sarah Constantin, Robert S. Strichartz, and Miles Wheeler, Analysis of the Laplacian and spectral operators

on the Vicsek set, Commun. Pure Appl. Anal. 10 (2011), no. 1, 1–44. MR 2746525
22. M. Cotlar, A combinatorial inequality and its applications to L2-spaces, Rev. Mat. Cuyana 1 (1955), 41–55

(1956). MR 0080263 (18,219a)
23. Joachim Cuntz and Wolfgang Krieger, A class of C∗-algebras and topological Markov chains, Invent. Math.

56 (1980), no. 3, 251–268. MR 561974 (82f:46073a)
24. Kenneth R. Davidson and Elias G. Katsoulis, Nonself-adjoint operator algebras for dynamical systems, Op-

erator structures and dynamical systems, Contemp. Math., vol. 503, Amer. Math. Soc., Providence, RI, 2009,
pp. 39–51. MR 2590615 (2011a:47169)

25. , Operator algebras for multivariable dynamics, Mem. Amer. Math. Soc. 209 (2011), no. 982, viii+53.
MR 2752983 (2012c:47194)

26. E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge Uni-
versity Press, Cambridge, 1990. MR MR1103113 (92a:35035)

27. V. Deaconu, A. Kumjian, and P. Muhly, Cohomology of topological graphs and Cuntz-Pimsner algebras, J.
Operator Theory 46 (2001), no. 2, 251–264. MR MR1870406 (2003a:46093)

28. Valentin Deaconu, Groupoids associated with endomorphisms, Trans. Amer. Math. Soc. 347 (1995), no. 5,
1779–1786. MR MR1233967 (95h:46104)

29. , Generalized solenoids and C∗-algebras, Pacific J. Math. 190 (1999), no. 2, 247–260. MR MR1722892
(2000j:46103)



Marius Ionescu, Research Statement Page 25 of 28

30. D. Dutkay and P. E. T. Jorgensen, Fourier frequencies in affine iterated function systems, J. Funct. Anal. 247
(2007), 110–137.

31. D. Dutkay and P. E.T. Jorgensen, Wavelet constructions in non-linear dynamics, Electron. Res. Announc.
Amer. Math. Soc. 11 (2005), 21–33.

32. , Wavelets on fractals, Rev. Mat. Iberoamericana 22 (2006), 131–180.
33. Siegfried Echterhoff and Dana P. Williams, Inducing primitive ideals, Trans. Amer. Math. Soc 360 (2008),

6113–6129.
34. G. A. Edgar, Measure, topology, and fractal geometry, Undergraduate Texts in Mathematics, Springer-Verlag,

New York, 1990.
35. Gerald Edgar, Measure, topology, and fractal geometry, second ed., Undergraduate Texts in Mathematics,

Springer, New York, 2008. MR 2356043 (2009e:28001)
36. Edward G. Effros and Frank Hahn, Locally compact transformation groups and C∗- algebras, Memoirs

of the American Mathematical Society, No. 75, American Mathematical Society, Providence, R.I., 1967.
MR 0227310 (37 #2895)

37. R. Exel and A. Lopes, C∗-algebras, approximately proper equivalence relations and thermodynamic formal-
ism, Ergodic Theory Dynam. Systems 24 (2004), no. 4, 1051–1082. MR MR2085390 (2006e:46059)

38. Ruy Exel, A new look at the crossed-product of a C∗-algebra by an endomorphism, Ergodic Theory Dynam.
Systems 23 (2003), no. 6, 1733–1750. MR MR2032486 (2004k:46119)

39. Pat J. Fitzsimmons, Ben M. Hambly, and Takashi Kumagai, Transition density estimates for Brownian mo-
tion on affine nested fractals, Comm. Math. Phys. 165 (1994), no. 3, 595–620. MR MR1301625 (95j:60122)

40. M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket, Potential Anal. 1 (1992), no. 1,
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118. , Idéaux primitifs induits dans les produits croisés, J. Funct. Anal. 32 (1979), no. 3, 381– 392.
119. R. T. Seeley, Complex powers of an elliptic operator, Singular Integrals (Proc. Sympos. Pure Math., Chicago,

Ill., 1966), Amer. Math. Soc., Providence, R.I., 1967, pp. 288–307. MR MR0237943 (38 #6220)
120. , Analytic extension of the trace associated with elliptic boundary problems, Amer. J. Math. 91 (1969),

963–983. MR MR0265968 (42 #877)
121. Adam Sikora, Multivariable spectral multipliers and analysis of quasielliptic operators on fractals, Indiana

Univ. Math. J. 58 (2009), no. 1, 317–334. MR MR2504414
122. C.D. Sogge, Fourier integrals in classical analysis, Cambridge Univ Pr, 1993.
123. P. J. Stacey, Crossed products of C∗-algebras by ∗-endomorphisms, J. Austral. Math. Soc. Ser. A 54 (1993),

no. 2, 204–212. MR 1200792 (94a:46077)
124. Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Se-

ries, No. 30, Princeton University Press, Princeton, N.J., 1970. MR MR0290095 (44 #7280)
125. , Topics in harmonic analysis related to the Littlewood-Paley theory., Annals of Mathematics Studies,

No. 63, Princeton University Press, Princeton, N.J., 1970. MR MR0252961 (40 #6176)
126. , Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math-

ematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, With the assistance of Timothy S.
Murphy, Monographs in Harmonic Analysis, III. MR MR1232192 (95c:42002)

127. Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University
Press, Princeton, N.J., 1971, Princeton Mathematical Series, No. 32. MR MR0304972 (46 #4102)

128. Benjamin Steinhurst, Uniqueness of locally symmetric Brownian motion on Laakso spaces, Potential Anal.
38 (2013), no. 1, 281–298. MR 3010781

129. R. S. Strichartz, A fractal quantum mechanical model with Coulomb potential, Commun. Pure Appl. Anal. 8
(2009), no. 2, 743–755. MR MR2461574

130. Robert S Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech 16 (1967), no. 9, 1031–1060.
131. Robert S. Strichartz, Fractals in the large, Canad. J. Math. 50 (1998), no. 3, 638–657. MR MR1629847

(99f:28015)
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