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ABSTRACT. We describe a method for associating some non-self-adjoint alge-
bras to Mauldin-Williams graphs and we study the Morita equivalence and
isomorphism of these algebras.

We also investigate the relationship between the Morita equivalence and iso-
morphism class of the C*-correspondences associated with Mauldin-Williams
graphs and the dynamical properties of the Mauldin-Williams graphs.

1. INTRODUCTION

In this note we follow the notation from [8]. By a Mauldin- Williams graph (see
[14]), we mean a system G = (G,{Ty, pv }vev, {@Pc}ecr), where G = (V, E,r,s) is a
graph with a finite set of vertices V, a finite set of edges E, a range map r and a
source map s, and where {7y, py }vev and {@.}ecr are families such that:

(1) Each Ty, is a compact metric space with a prescribed metric p,, v € V.
(2) For e € E, ¢ is a continuous map from 7,.(¢y to T such that

clpr(e)(xay) < ps(@)((be(l'), ¢8(y)) < CPr(e) (x,y)

for some constants ¢y, ¢ satisfying 0 < ¢; < ¢ < 1 (independent of e¢) and

all z,y € T
We shall assume, too, that the source map s and the range map r are surjective.
Thus, we assume that there are no sinks and no sources in the graph G.

In [8] we associated to a Mauldin-Williams graph G = (G, {Ty, pv }vev,; {¢ec teck)

a so-called C*-correspondence X over the C*-algebra A = C(T'), where T =
[l,cyv T» is the disjoint union of the spaces T,,v € V, as follows. Let E xgT =
{(e,x)|x € T,.(¢y}. Then, by our finiteness assumptions, E' xT is a compact space.
We set X = C(E x¢ T) and view X as a C*-correspondence over C(T) via the
formulae:

)

f' (6,1‘) = f(e,x)a(x),
a-&(e,z) = aodp.(x)l(e,T)

and

(€ male):= Y &lea)n(e ),

)
wE€T,(c)
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where a € C(T) and £, € C(E xg T). With these data we can form the tensor
algebra 7 (X)) as prescribed in [I5] and [16]. Our main result is:

Theorem 1.1. For i = 1,2, let G; = (Gi, (K!)vev;, (¢%)eer,) be two Mauldin-
Williams graphs. Let A; = C(K*) and let X; be the associated C*-algebras and
C*-correspondences. Then the following are equivalent:

(1) T, (&) is strongly Morita equivalent to T (Xa) in the sense of [2].
(2) Xy and Xy are strongly Morita equivalent in the sense of [16].
(3) X1 and X are isomorphic as C*-correspondeces.
(4) T (Xy) is completely isometrically isomorphic to Ty (Xs).

We find this result especially remarkable in light of Theorem 2.3 from [8, The-
orem 1.1] (see also Section 4.2 from [I8]), which states that the Cuntz-Pimsner
algebra, O(X), which is the C*-envelope of the tensor algebra 7 (X'), depends only
of the structure of the underlying graph. In particular, our results lead to exam-
ples of different non-self-adjoint algebras which are not completely isometrically
isomorphic, but have the same C*-envelope, namely O,,.

To understand further the relationship between the tensor algebra and the
Mauldin-Williams graph, we study the isomorphism class of our C*-correspondences
and tensor algebras in terms of the dynamics of the Mauldin-Williams graph.
Roughly, we find that two C*-correspondences associated to two Mauldin-Williams
graphs, (G, (Kl(,z))vew, (¢1)eer,), i = 1,2, are isomorphic if the maps ¢! and ¢?
are locally conjugate in a sense that will be made precise later.

2. NON-SELF-ADJOINT ALGEBRAS
ASSOCIATED WITH MAULDIN-WILLIAMS GRAPHS

Definition 2.1. An invariant list associated with a Mauldin-Williams graph G =
(G, {Ty, pv}vev, {Petecr} is a family (K, ),cv of compact sets, such that K, C T,
for all v € V' and such that

K, = U (be(Kr(e))'
e€E,s(e)=v

Since each ¢, is a proper contraction, G has a unique invariant list (see [14, Theorem
1]). We set T':= (J,cy Ty and K := J,cy Ko and we call K the invariant set of
the Mauldin-Williams graph.

veV

In the particular case when we have one vertex v and n edges, i.e. in the setting of
an iterated function system, the invariant set is the unique compact subset K := K,
of T' =T, such that

K = ¢1(K) U--- U¢n(K)
Note that the s-homomorphism ® : A — L(X), (2(a)f)(e,z) = a o ¢ (x)(e, ),
which gives the left action of the C*-correspondence associated to a Mauldin-
Williams graph, is faithful if and only if K = T. In this note we assume that
T equals the invariant set K.

Kajiwara and Watatani have proved in [10, Lemma 2.3] that, if the contractions
are proper, the invariant set of an iterated function system has no isolated point.
Their proof can be easily generalized to the invariant set of a Mauldin-Williams
graph. Hence K has no isolated points.

For a C*-correspondence X over a C*-algebra A, the (full) Fock space over X is

FX)=AoXx9px®?g. ...
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We write @, for the left action of A on F(X), ®u(a) =diag(a, @1 (a), 3 (a),---),
where ®(") is the left action of A on X®" (&) = &, the left action of A on X). For
£ € X, the creation operator determined by £ is defined by the formula T (n) = {®,
for all n € F(X).

Definition 2.2. The tensor algebra of X, denoted by 7, (X), is the norm closed
subalgebra of L(F(X)) generated by ®..(A) and the creation operators T, for
¢ € X (see [I5] and [16]). The C*-algebra generated by 7 (X) is denoted by 7 (X)
and it is called the Toeplitz algebra of the C*-correspondence X.

We may regard each finite sum ZnN:O X®™" as a subspace of F(X) and we may
regard E(ZT]LO X®™) as a subalgebra of L(F(X)) in the obvious way. Let B be the
C*-subalgebra of L(F(X)) generated by all the E(Zﬁ:o X®™) as N ranges over
the non-negative integers. Then 7 (X) C M(B), the multiplier algebra of B. The
Cuntz-Pimsner algebra O(X) is defined to be the image of 7(X) in the corona
algebra M (B)/B (see [15] and [I7]).

By a homomorphism from an A; — By C*-correspondence Xi, to an Ay — By
C*-correspondence X we mean a triple (o, V, 3), where a: A1 — Ay, §: By — By
are C*-homomorphisms and V : X} — X, is a linear map such that V(a&b) =
a(a)V(§)B(b) and such that (V(€),V(n))s, = B(E n)B,) (see [16, Section 1]).
When A; = Ay and By = B, we will consider a € Aut(A;) and 8 € Aut(By).
This then forces V' to be isometric. If V' is also surjective, we shall say that V is a
correspondence isomorphism over («, ). If, moreover, Ay = By and o = (3, we say
that V' is a correspondence isomorphism over c.

A central concept for our work in this note is the strong Morita equivalence for
C*-correspondences defined in [16], Definition 2.1], which we review here.

Definition 2.3. If X' is a C*-correspondence over a C*-algebra A, and ) is a
C*-correspondence over a C*-algebra B, we say that X and Y are strongly Morita
equivalent if A and B are strongly Morita equivalent via an A-B equivalence bi-

module Z (in which case we write A NP B), for which there is an A-B corre-
spondence isomorphism (id, W,id) from Z ®p ) onto X ® 4 £Z. This means, in
particular, that W(a&b) = aW (£)b for all a € A,b € B and £ € Z ®p Y and that

(W(&), W(n))s = (&m) -

We say that a C*-correspondence X over a C*-algebra A is aperiodic if: for all
n > 1, for all £ € X®*" and for all hereditary subalgebras B C A, we have

inf{H@(”)(a)ﬁaH |a>0,a€B,|al = 1} =0.

It was proved in [16, Theorem 3.2, Theorem 3.5] that if X and ) are strongly Morita
equivalent, then 7, (X) and 7 () (respectively 7 (X) and 7(Y) , O(X) and O()))
are strongly Morita equivalent. Also, if X and ) are aperiodic C*-correspondences
over the C*-algebras A and B, respectively, and if 7, (X) and 7 ())) are strongly
Morita equivalent in the sense of [2], then X and ) are strongly Morita equivalent
(see [16, Theorem 7.2]).

To study the aperiodicity and strong Morita equivalence of C*-correspondences
associated to Mauldin-Williams graphs, we need the following lemma which gives
an equivalent description of when a C*-correspondence is aperiodic.

Lemma 2.4 ([16) Lemma 5.2]). The C*-correspondence X is aperiodic if and only
if given ag € A, ag > 0, ¥ € X®k, 1 <k < n, and € > 0, there is an x in the
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hereditary subalgebra agAag, with > 0 and ||z|| = 1, such that
[zaoz|| > [laoll — &

and
[@®) (2)ek x| < e for1l <k <n.

For a directed graph G = (V, E,r,s) and for k > 2, we define
EF .= {a=(ay, - ,ax) : a; € Fand r(a;) = s(ajy1),i=1,--- ,k—1}

to be the set of paths of length k in the graph G. We define also the infinite path
space to be

E® :={()ien : o; € F and r(«a;) = s(a;+1) for all i € N}.
For a € E*, we write ¢ = Doy O+ O Py

Proposition 2.5. Let G = (G, (Ky)vev, (¢c)ecr) be a Mauldin-Williams graph
with the invariant set K. Let A = C(K) be the associated C*-algebra and let X be
the associated C*-correspondence. Then the C*-correspondence X is aperiodic.

Proof. Note that ¢q : K, (o) — Ky, With a € E* and k € N, has a fixed point if
and only if r(«a) = s(«), i.e. « is a cycle in the graph G.

Fix ng € N, choose k € N,1 < k < ng; let ag € A with ag > 0; let £ € X®F and
let € > 0. We verify the criterion in Lemma [Z4] first when ng = k = 1.

Without loss of generality, we assume that ||ag|| = 1. Then we can find ¢ty € K
such that |ag(tg)] > 1 — ¢ and tp is not a fixed point for any ¢. , e € E. Let
vo € V be such that ¢ty € K,,. Choose §; > 0 such that B(tg,d1) C K,, and
B(¢e(to),01) N B(to,d1) = 0 for all e € E for which r(e) = vg. Let

P min{p,, (to,t) | ap(t) =0}, if {t € K,, : ao(t) =0} # 0,
N 01, otherwise.

Set 6 = min{dy,d2} and let x € A, x > 0 be such that

(1 it t=t,
x(t)_{ 0, if te K\ Blto,d).

Since x(t) > 0 only when ag(t) > 0, it follows that « € agAag. Moreover,
x(to)ao(to)x(to) > 1 — €, hence [|zapz|| > 1 —¢.

Fix t € K. If t € B(to,9), then ¢.(t) ¢ B(to,d), by our choice of §; and the
fact that each map ¢, is a contraction, for all e € E such that r(e) = wvg; so
xo ¢ (t)x(t) = 0. If t ¢ B(to,d), then x(t) = 0, hence x o ¢.(t)z(t) = 0, for all
e € E such that t € K, (). Therefore, (®(z){x) (e,t) = x 0 ¢po(t){(e,t)x(t) = 0 for
all (e,t) € E xg K. Since

(@(2)éw, D(a)ea)a(t) = Y (wode(t) [ Ele,t) | (1),

ecE
tER ()
we see that [|®(x)Ez| = 0.
For ng = 2, we choose ty € K such that ag(tg) > 1 — ¢ and ¢, is not a fixed point
for any ¢, with o € E?. Let vy € V be such that ¢y € K,,. Let §; > 0 be such
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that B(¢a(to),61) N B(tg,d1) = 0, for all @ € E? for which r(a) = vg, and such
that B(to,d1) C Ky,. Choosing d2,0 and x as before, we conclude that x € agAag
and |z|| > 1 —e. Moreover, we have z o ¢, (t)z(t) =0 for all t € K, a € E U E?
(since ¢, is a contraction, for all @ € E U E?); and since

(0@ ()¢, 0@ ()¢%) (1)
= 3 (@0 dal)? (a1 |E3(ar, by (1)]” x(t)? = 0,

a€E2
tEK (a)

it follows that H<I>(k)(x)§ka =0 for £k = 1,2. Applying the same argument induc-
tively, we see that X is an aperiodic C*-correspondence. (]

Let K! and K2 be two compact metric spaces. Let A; = C(K') and Ay =

C(K?). If A, SNE z Ao, then the Rieffel correspondence determines a unique home-

omorphism f : K! — K? and a unique Hermitian line bundle £ over Graph(f) =
{(z, f(z)) : z € K'}, such that Z is isomorphic to I'(£) (see [21], [20} Section 3.3
and Example 4.55], [19, Appendix (A)]), where I'(£) is the imprimitivity bimodule
of the cross sections of £ endowed with the following structure:

(a-s-b)(x, f(x)) = a(z)s(z, f(2))b(f(x)),
(s1,82)4,(y) = s1 )
(

2
a,(s1,82)(x) = si(a, f

forall a € Ay, b € Ay, s,81,82 € I'(L). We write Z(f, L) for T'(L).
We are ready to prove the main theorem.

Proof of Theorem[LIl By Proposition 2.5 X} and X, are aperiodic C*-correspon-
dences. Using [16, Theorem 7.2], we obtain that () implies (2]).

Now we show that (2)) implies [B]). Suppose that X; and X, are strongly Morita
equivalent. This implies that A; and Ay are strongly Morita equivalent via an
imprimitivity bimodule Z such that Z ® X, is isomorphic to X; ® Z. Let f : K1 —
K? and £ be the homeomorphism and the line bundle determined by the Rieffel
correspondence. We have that Z(f, £) ® X» is isomorphic to X; @ Z(f, £). Hence

Z(f, L)@ X2® Z(f, L) is isomorphic to X, where Z(f, L) is the dual imprimitivity

bimodule (see [20, Proposition 3.18]). We prove that Z(f,£) ® Xy ® Z/(—J?,_Z) is
isomorphic to X5 over an isomorphism « of A7 and As.
Let a1 Ay — Ay be defined by the formula a(a) = ao f~! and let V : Z(f,£) ®

—~

Xo ® Z(f, L) — Xy be defined by the formula

V(s1®E®82)(e,y) = s1(f D2 (), 62 (y))E (e, 2)s2(f (1), v)-

Then « is an isomorphism and

V(ie-519E®8-b)=a-V(s1 ®E®52) - b,
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for all a,b € A, s1,82 € Z(f, L), £ € Xy. Moreover, we have that
(V(s1®€@82),V(t @n®t2)a,(y)
= ) V(08 s)(e,y)V(h@n®i)(ey)

e€E
2
yERZ

= > (a2 ). W) )5 (1))

ecE

2
UEKT(C)

(7 G2 W)), 2 W)le, (T (1), v) )
= (510 ® 82,11 @N R ta)a,,

for all s1,s9,t1,t2 € Z(f, L) and &,n € Xy. Also, for £ € X5, V(I®E® 1) = &
Hence V' is a correspondence isomorphism. Thus &) is isomorphic to Xs.
The rest is clear. (]

It was shown in [8, Theorem 2.3] that the Cuntz-Pimsner algebra of the C*-
correspondence built from a Mauldin-Williams graph is isomorphic to the Cuntz-
Krieger algebra of the underlying graph G = (V, E, r, s) (as defined in [12]). Hence,
for C*-correspondences associated to Mauldin-Williams graphs with the same un-
derlying graph which are not isomorphic, we obtain tensor algebras which are not
Morita equivalent, but have the same C*-envelope, namely the Cuntz-Krieger al-
gebra of the graph G.

3. THE ISOMORPHISM CLASS OF THE C*-CORRESPONDENCES
ASSOCIATED WITH MAULDIN-WILLIAMS GRAPHS

In the following we analyze the relation between the isomorphism class of the C*-
correspondences associated with two Mauldin-Williams graphs, G; = (G, (K!)ev,
(¢1)ecr), i = 1,2, and the topological and dynamical properties of the Mauldin-
Williams graphs.

Since, by [I8, Section 4.2] and [8, Theorem 2.3], the Cuntz-Pimsner algebra
associated to a Mauldin-Williams graph depends only on the structure of the un-
derlying graph G, we will consider only Mauldin-Williams graphs having the same
underlying graph G = (V, E,r, s).

Next we determine necessary and sufficient conditions for the isomorphism of
the C*-correspondences associated to two Mauldin-Williams graphs.

Proposition 3.1. Fori = 1,2, let G; = (G, (K!)vev, (¢%)ecr) be two Mauldin-
Williams graphs over the same underlying graph G. Let A; = C(K?%), i = 1,2, be the
associated C*-algebras and let X;, i = 1,2, be the associated C*-correspondences. If
there is a homeomorphism f : K' — K2, a partition of open subsets {Uy,..., Uy}
for K, for some m € N, and if for each U; there is a permutation o; € Sy, where
n = |E|, such that f’lo¢§j(e)0f|Uj = ¢t|u, and f(Krl(e)) = Kf(gj(e)) foralle e B,

Jje{l,...,m}, then Xy and Xy are isomorphic.

Proof. Since f is a homeomorphism, the map 3 : Ay — Aj, defined by the equation
B(b) =bo f for all b € Ay, is a C*-isomorphism. Define V : X5 — X by the formula

V(ﬁ)(e,x) = Zfak(e)(f(x)) : 1Uk($)7
k=1
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for all (e,r) € E xg K, where &,,()(f(z)) := &(ox(e), f(x)). We show that V is a
C*-correspondence isomorphism over (3. Let by,by € Ay and £ € X,. We have

V(b -€-ba)(e, ) = Y b1o b2, o (f(@)o o) (f(2)ba(f(2)1y, (@)
k=1

m

= Y biofodl ()i (o)(f(2))1u, (@) - B(b) ()
k=1

= B(b1) - V(§) - B(b2) (e, ).
Also

eceE

2
F)ER2

(VE), V) a, (@)= Y (Zfak(e)(f(ﬂf))??ok(e>(f($))1Uk($)>,
k=1

hence (V(£),V(n))a, = B({§,m)4,). Finally, one can see that V is onto, hence V' is
a C*-correspondence isomorphism. (I

Recall that, for k > 2, E*¥ := {a = (a1, -+ ,1) : o € F and r(a;) =
s(aiy1),s = 1,--- k — 1}, is the set of paths of length k in the graph G. Let
E* = Upen E* be the space of finite paths in the graph G. Also the infinite path
space, E°°, is defined to be

E*® :={()ien : o €FE and r(a;)=s(a;yq) for alli € N}.

For v € V, we also define E¥(v) := {a € E¥ : s(a) = v}, and E*(v) and
E*°(v) are defined similarly. We consider E*°(v) to be endowed with the metric:
Oy, B) = cl*Mlif o # 3 and 0 otherwise, where a A S is the longest common prefix
of o and (3, and |w| is the length of the word w € E* (see [5], Page 116]). Then E*(v)
is a compact metric space, and, since > equals the disjoint union of the spaces
E*°(v), E* becomes a compact metric space in a natural way. Define the maps 6, :
E>(r(e)) — E>(s(e)) by the formula 0.(«) = e, for all v € E* and for all e €
E. Then (G, (E*®(v))vev, (0c)ecr) is a Mauldin-Williams graph. We set Ag :=
C(E*°) and we set £ be the C*-correspondence associated to this Mauldin-Williams
graph. Let M = (G, {Ky, py }vero, {¢e}tecrt) be a Mauldin-Williams graph. For
(a1,...,0pn) € E™ let Ko, a,) = ®ay © -+ Pa, (Kr(a,))- Then, for any infinite
path a = (an)nen € £, (),>1 K(as,...,a,,) contains only one point. Therefore, we
can define a map 7 : E* — K by {n(z)} = MNn>1 Kiar,.osan)- Since m(E™) is
also an invariant set, 7 is a continuous, onto map and 7(E>(v)) = K,. Moreover,
mol, = ¢, om.

We say that a Mauldin-Williams graph M = (G, {Ky, pv }vero, {®ectecrt) is
totally disconnected if ¢o(Ky (o)) N (K, (p)) = 0 if s(e) = s(f) and e # f.

Corollary 3.2. Let M = (G,{Ky, pv}vero,{¢ec}ecrr) be a totally disconnected
Mauldin- Williams graph. Let A be the C*-algebra and let X be the C*-correspon-
dence associated to this Mauldin- Williams graph. Then X is isomorphic with &,
as C*-correspondences. In particular, one obtains that for any two totally dis-
connected Mauldin-Williams graphs having the same underlying graph G, the C*-
correspondences and tensor algebras associated are isomorphic.
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Proof. If the Mauldin-Williams graph is totally disconnected, then the map = :
E> — K defined above is a homeomorphism. Moreover, 7 0 6, o 7! = ¢, for all
e € F, therefore the associated C*-correspondences are isomorphic. O

The converse of this corollary is true and will be proved later.

The next theorem is a converse of the Proposition 3.1l We note, however, that
the family of open sets {U;} here is not required to be a partition of the compact
set K, but only a finite open cover of it.

Theorem 3.3. For i = 1,2, let G; = (G,(K!)yev, (¢)eer) be two Mauldin-
Williams graphs over the same underlying graph G. Let A; = C(K*%), i = 1,2, be the
associated C*-algebras and let X;, i = 1,2, be the associated C*-correspondences. If
X, and X, are isomorphic, then there is a homeomorphism f : K — K2, a finite

open cover of K', {Un,...,Up}, and for each U; there is a permutation o; € S,
(n = |E|) such that
(3.1) 7l odlo flu, = 64 (olu; for alle € E,i€ {1,...,m}.

Proof. Since X7 and A5 are isomorphic, there is a C*-isomorphism 3 : Ay — A;
and a C*-correspondence isomorphism W : Xy — X such that W(b; - £ - by) =
B(b1)W (§)B(b2) and (W(E), W(n))a, = B(E,m)a,), for all b1, by € Az, §,n € Xa.
Let f: K' — K? be the homeomorphism which implements (3, that is, 3(b) = bo f,
for all b € As.

Let . € X5, defined by

. 1, ife= 9,
de(g,y) = { 0, otherwise,

for e € E, be the natural basis in X and let (0.).., C &1 be the natural basis in
A1, which is defined similarly.

For £ € Xy, € = deE dg - &g, where 4(y) = &(g,y) for all y € Kf(g) and is 0
otherwise. With respect to the bases, we can write

W) =w Z(sg'fg :Zw(ég)'fyof

gEE geE
(3'2) = Z Z 62 ' weggg © fa
geEFE ecE
where
(3.3) W(d,) = Z 0L Weg, Weq € A,
ecE

and wey are given by the formula we, = (., W(dg4))a,, for all e,g € E. We call
(Weg)e,ge & the matrix of W with respect to the basis (0.)cer and (d4)ger (it is an
n X n matrix, where n = |E|). Since W preserves the inner product, we see that

(3.4) (W(0g), W(de)) = (g, 0c) = dge,
where d4.(x) = 1 if e = g and 2 € K, () and is 0 otherwise. Also,
(3.5) (W(8,), W(3e)) = > whywpe.

feE
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Equations 34) and ([B.3) imply that for every x € K' the matrix (wef(x))e, fep is
invertible. Hence there is o, € S, such that w,_ (c)(z) # 0 for all e € E. Therefore,
there is a neighborhood U, of x such that

(3.6) Wo,(e)e(y) #Oforalle e B,y € U, andz € K.
Let b € As. Then, for h € E we have that

W(b-8,) = siwenbo i, o f

ecE
and
Bb) - W(Sh) =Y dlbo foplwen.
ecE
Fix z € K' and let o, € S,, and U, be defined as in Equation B6). Then

W(b ! 5}L)(Ux(h)7y) = Wq, h)h( )b © ¢h f( )
and
(B(b) - W(8n))(02(h),y) =bo fody i) (W)we, myn(y)
for all y € U, and for all h € E. Since W is a C*-correspondence isomorphism and
Wo, (nyn(y) # 0 for all y € Uy, for any 2 € K', there is a neighborhood U, of x in
K" and there is a permutation o, € S,, such that

ftodioflu, = ¢(1,Z(h)|uz for allh € E.

Hence we can find a finite cover {Uy,...,U,,} of K! and for each U; we can find a
permutation o; € S, such that the Equation (3] holds. O

In the special case when the two Mauldin-Williams graphs are totally discon-
nected, more can be said about the choice of the permutations o;.

Corollary 3.4. Let G; = (G, (K!)vev, (¢1)ecr) be two Mauldin-Williams graphs.
Let A; = C(K%) and let X;, i = 1,2, be the associated C*-algebras and C*-
correspondences. If Gy is totally disconnected and if Xy is isomorphic with Xy there
is a continuous map h : K — S,, such that f~*o¢?o f(x) = Oh(x)(e)(T), for allx €
K.

Proof. Recall that if G is totally disconnected, then ¢ (K. r(e)) N d)f( f) = (Z) if

e # f. From the Theorem we know that there are open sets {Uy,---,Up}, f
some m € N, and permutations o1, ,0m € S, such that

(3.7 ! qﬁal forallec E,ie{l,---,m}.

If U; NU; # 0 for some i ;é 7, then it follows that ¢z1n(e)|UmUj = ¢<17j(e) lu,nu, for all
e € E, hence o;(e) = g;(e) for alle € E, so o; = 0. Therefore, we can choose the
cover Uy, -+ ,U,, such that U; NU; = 0 if i # j.

Let € K!. Then there is a unique i € {1,---,n} such that z € U;. We
define h(z) = o;. Then h : K' — S, is a well-defined map. Moreover, h is
continuous (considering S,, endowed with the discrete topology), since for every
0 € Sp, (o) =0 or h1(o) = U;, for some i € {1,---,n}. Finally, from the
Equation ([B.1) we obtain that

ftog?o f(x) = qb}z(x)(e)(a:) for allz € K' ande € E.
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Suppose that G; = (G, (K{)vev, (¢)ecr) are two Mauldin-Williams graphs that
satisfy the hypothesis of the Corollary B4 We claim that G must also be totally
disconnected. Suppose that there are e, f € F, e # f, such that ¢§(Kf(e)) N

(bf,(Kf(f)) # 0. Then there is an € K' such that y := f(z) € ¢2(K? o) N
¢F(K7 ). Then ¢} () = @}, (%), Which is a contradiction since Gy is
totally disconnected. So G5 is totally disconnected.

Example 3.5. Let K be the Cantor set, let ¢; : K — K, i = 1,2, be the maps

defined by the formulae ¢1(z) = jx and ¢2(z) = 2 + 2. Then K is the invariant
set of (¢1,¢2). Let T = 1[0,1] and let ¢; : T — T, i = 1,2, be the maps defined
by the formulae ¥y (z) = 2z and 13(z) = —32 + 1. Then T is the invariant set of
(11,12). Since (1,12) is not totally disconnected, we see that the associated C*-
correspondences are not strongly Morita equivalent. Hence the tensor algebras fail
to be strongly Morita equivalent in the sense of [2], yet their C*-envelopes coincide

with OQ .

Example 3.6. Let T be the regular triangle in R? with vertices A = (0,0), B =
(1,0) and C = (1/2,v/3/2). Let éu(w,y) = (5 + 4.4 + %), da(w,y) = (5.%) and
¢3(z,y) = (24 1,%). Then the invariant set K of this iterated function system
is the Sierpinski gasket. Let ¢1 = 01 0 ¢1, 9 = ¢9 and 3 = o3 o ¢3, where o; is
the symmetry about the median from the vertex ¢;(C) of the triangle ¢;(T"), for
1 = 1,3. Then the invariant set of this iterated function system is also the Sierpinski
gasket, but the C*-correspondences associated to (¢1, P2, ¢3) and (91,12, 13) are
not isomorphic.
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