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ABSTRACT. The generalized Effros-Hahn conjecture for groupoid
C∗-algebras says that, if G is amenable, then every primitive ideal
of the groupoid C∗-algebra C∗(G) is induced from a stability group.
We prove that the conjecture is valid for all second countable amen-
able locally compact Hausdorff groupoids. Our results are a sharp-
ening of previous work of Jean Renault and depend significantly
on his results.

1. INTRODUCTION

A dynamical system (A,G,α), where A is a C∗-algebra, G is a locally compact
group and α is a strongly continuous homomorphism of G into AutA, is called
EH-regular if every primitive ideal of the crossed product AÏα G is induced from
a stability group (see [19, Definition 8.18]). In their 1967 Memoir [4], Effros and
Hahn conjectured that if (G,X) was a second countable locally compact transfor-
mation group with G amenable, then (C0(X),G, lt) should be EH-regular. This
conjecture, and its generalization to dynamical systems, was proved by Gootman
and Rosenberg in [6] building on results due to Sauvageot [17,18]. For additional
comments on this result, its applications, as well as a precise statement and proof,
see [19, Section 8.2 and Chapter 9].

In [16], Renault gives the following version of the Gootman-Rosenberg-
Sauvageot Theorem for groupoid dynamical systems. Let G be a locally compact
groupoid and (A,G,α) a groupoid dynamical system. If R is a representation of
the crossed product A Ïα G, then Renault forms the restriction, L̂, of R to the
isotropy groups of G and forms an induced representation Ind L̂ of A Ïα G such
that kerR ⊂ ker(Ind L̂) [16, Theorem 3.3]. When G is suitably amenable, then
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the reverse conclusion holds [16, Theorem 3.6]. This is a powerful result and
allows Renault to establish some very striking results concerning the ideal structure
of crossed products and has deep applications to the question of when a crossed
product is simple (see [16, Section 4]).

In this note, our object is to provide a significant sharpening of Renault’s result
in the case of a groupoid C∗-algebra—that is, a dynamical system where G acts
on the commutative algebra C0(G(0)) by translation. We aim to show that if G is
Hausdorff and amenable, then every primitive ideal K of C∗(G) is induced from
a stability group. That is, we show that K = IndGG(u) J for a primitive ideal J of
C∗(G(u)), where G(u) is the stability group at some u ∈ G(0). This not only
provides a cleaner generalization of the Gootman-Rosenberg-Sauvageot result to
the groupoid setting, but gives us a much better means to study the fine ideal
structure of groupoids and the primitive ideal space (together with its topology)
in particular. (For further discussion of these ideas, see [2, Section 4].)

In Section 2 we give a careful statement of the main result, and give a brief
summary of some of the tools and ancillary results needed in the sequel. Since the
proof of the main result is rather involved, we also give an overview of the proof to
make the subsequent details easier to parse. Then in Section 3, we give the proof
itself. Our techniques require that we work whenever possible with separable C∗-
algebras. Therefore all our groupoids are assumed to be second countable. We
also assume that our locally compact groupoids have continuous Haar systems
and are Hausdorff. We also assume that homomorphisms between C∗-algebras
are ∗-preserving and that representations are nondegenerate.

2. THE MAIN RESULT

Unlike the situation for groups, the definition of amenability of a locally compact
groupoid is a bit controversial. The currently accepted definition originally comes
from [14, p. 92]: a locally compact groupoid G with continuous Haar system
λ = {λu} is amenable if there is a net {ϕi} ⊂ Cc(G) such that

(1) the functions u,
∫
G
|ϕi(γ)|2 dλu(γ) are uniformly bounded, and

(2) the functions γ , ϕi ∗ ϕ∗i (γ) converge to the constant function 1 uni-
formly on compacta.

If G is a group, then we recover the usual notion of amenability (for example,
see [19, Proposition A.17]). A different definition of amenability for a locally
compact groupoid is given in [1, Definition 2.2.8].1 Fortunately, [1, Proposition
2.2.13(iv)] implies the two definitions are equivalent (and gives some additional
equivalent conditions). In particular, [1, Theorem 2.2.13] implies that amenabil-
ity is preserved under equivalence of groupoids as defined in [9, Definition 2.1].
Thus the notion of amenability is independent of the choice of continuous Haar
system on G.

1Both the numbering and the statements of some results in the published version of this paper
differ from those in the widely circulated preprint.
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Theorem 2.1. Assume that G is a second countable locally compact Hausdorff
groupoid with Haar system {λu}u∈G(0) . Assume also that G is amenable. If K ⊂
C∗(G) is a primitive ideal, then K is induced from an isotropy group. That is,

K = IndGG(u) J

for a primitive ideal J ∈ Prim(C∗(G(u)).

Remark 2.2. Let R be the equivalence relation on G(0) induced by G: r(γ) ∼
s(γ) for all γ ∈ G. We give R the Borel structure coming from the topology on
R induced from G (which is often finer than the product topology on R viewed
as a subset of G(0) × G(0)). Since the proof of Theorem 2.1 requires only that
we are entitled to apply Renault’s [16, Theorem 3.6], Theorem 2.1 is valid under
the weaker assumption that the Borel equivalence relation R is amenable with
respect to every quasi-invariant measure µ on G(0) [16, Definition 3.4] (see also
[1, Definition 3.2.8]). Some other valid hypotheses are discussed in [16, Remark
3.7]. We have decided to use the less technical hypotheses of amenability of G
here, and to leave the more technical, but weaker, hypotheses for the interested
reader to sort out as needed.

Even though Theorem 2.1 involves only groupoid C∗-algebras, our tech-
niques use the theory of groupoid dynamical systems and their crossed prod-
ucts. For these, we will employ the notation and terminology from [10, Sec-
tion 4]. In particular, our treatment of direct integrals comes from [8] (which
was, in turn, motivated by [13]), and we suggest [19, Appendix F] as a refer-
ence. We need Renault’s disintegration theorem [15, Proposition 4.2] for rep-
resentations R of C∗(G). For the statement, notation and basics for this result,
we suggest [10, Section 7]. The disintegration result implies that R is the in-
tegrated form of a unitary representation (µ,G(0) ∗ H, V) of G consisting of a
quasi-invariant measure µ on G(0), a Borel Hilbert bundle G(0) ∗H and a family
V = {Vγ :H (s(γ))→H (r(γ))} of unitaries so that

V̂ (γ) = (r(γ), Vγ, s(γ))
defines a groupoid homomorphism V̂ : G → Iso(G(0) ∗H).

The proof of Theorem 2.1 occupies the entire next section. Since the proof
is a bit involved, we give a brief overview here in the hope that it will motivate
some of the efforts in the next section. (The basic outline follows the proof of the
Gootman-Rosenberg-Sauvageot Theorem as proved in [19, Chapter 9].)

We start by fixing K ∈ PrimC∗(G) and letting R be an irreducible represen-
tation such that kerR = K. We assume that R is the integrated form of a unitary
representation (µ,G(0)∗H, V). Since V defines via restriction a representation ru
of each stability group G(u) = {γ ∈ G : r(γ) = u = s(γ)}, and since we can
view each ru as a representation of the C∗-algebra C∗(Σ) of the group bundle Σ
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associated to the collection Σ(0) of closed subgroups of G, we can form the direct
integral representation

r B
∫ ⊕
G(0)
ru dµ(u)

of C∗(Σ). We call r the restriction of R to the isotropy groups of G.
A key step is to observe that (r , V) is a covariant representation of a groupoid

dynamical system (C∗(Σ),G,α) for a natural action α. Then we can form the
representation L′′ = r Ï V of C∗(Σ) Ïα G. This allows us to invoke Renault’s
impressive [16, Theorem 2.2] which is a groupoid equivariant version of Effros’s
ideal center decomposition theorem from [3] (for more on Effros’s result, see [19,
Appendix G]). This allows us to show that r is equivalent to a representation

r̃ B
∫ ⊕

PrimC∗(Σ) r̃P dν(P),

where each r̃P has kernel P , and ν is a measure on PrimC∗(Σ). Moreover,
PrimC∗(Σ) is a right G-space for the action of G induced by α, and [16, Theo-
rem 2.2] implies that ν is quasi-invariant when PrimC∗(Σ) is viewed as the unit
space of the transformation groupoid G = PrimC∗(Σ)∗G. (Although G is not a
locally compact groupoid, it is a Borel groupoid with a Borel Haar system so the
definition of quasi-invariant makes perfectly good sense.) We then need to work
a bit to see that ν is also ergodic with respect to the G-action on PrimC∗(Σ).

We then define an induced representation ind r̃ of C∗(G). As essential com-
ponent of the proof is Proposition 3.14 where we use the quasi-invariance and
ergodicity of ν to show that the kernel of ind r̃ is an induced primitive ideal. This
is a generalization of Sauvageot’s [17, Lemma 5.4] where the corresponding result
for transformations groups is proved. Then the final step in our proof is to ob-
serve that ind r̃ is equivalent to the induced representation Ind L̂ used by Renault
in [16]. Then we can invoke the deep results in [16] to show, when G is suitably
amenable, that

K = kerR = ker(Ind L̂).

Since ker(ind r̃ ) = ker(Ind L̂) and since ker(ind r̃ ) is induced, this shows K is
induced and completes the proof.

3. THE PROOF OF THE MAIN THEOREM

In this section we present the details of the proof of Theorem 2.1. As in the
statement of the theorem,G will always denote a second countable locally compact
Hausdorff groupoid endowed with a Haar system {λu}u∈G(0) .

Let K be a primitive ideal in PrimC∗(G). Using Renault’s disintegration
theorem, we can find an irreducible representation R such that kerR = K and
such that R is the integrated form of a representation (µ,G(0) ∗H, V) of G.
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We let Σ(0) be the space of closed subgroups of G equipped with the Fell
topology whose basic open sets are of the form

U(K;U1, . . . , Un)

= {H ∈ Σ(0) : H ∩ K = ∅ and H ∩ Ui ,∅ for i = 1,2, . . . , n},

where K ⊂ G is compact and each Ui ⊂ G is open (cf. [19, Appendix H.1]).
Although Σ(0) need not be compact as in the group case, Σ(0) ∪ {∅} is compact
in the space of closed subsets of G. Hence, Σ(0) is locally compact Hausdorff.
Furthermore the map p : Σ(0) → G(0) given by p(H) = u if r(H) = {u} = s(H)
is continuous, and if K ⊂ G(0) is compact, then p−1(K)∩Σ(0) is compact. That is,Σ(0) is conditionally compact over G(0) [16, Section 1]. We let Σ be the associated
group bundle over Σ(0):

Σ = {(u,H,σ) : u = p(H) and γ ∈ H}.

(The elements of Σ have been written slightly redundantly to make some of the
subsequent computations easier to follow.) Notice that if (u,H,σ) ∈ Σ, then
H ⊂ G(u). By [16, Corollary 1.4], there is a continuous Haar system {βH}H∈Σ(0)
for Σ.

We want to define an action α of G on C∗(Σ) so that (C∗(Σ),G,α) is a
groupoid dynamical system. We start by showing that C∗(Σ) is a C0(G(0))-alge-
bra (cf. [19, Definition C.1]). For this, the following variation on [16, Lemma
1.6] will be helpful.

Lemma 3.1. Let G∗Σ(0) = {(σ,H) ∈ G×Σ(0) : s(σ) = p(H)}. Then there
is a continuous mapω : G ∗ Σ(0) → (0,∞) such that

(3.1)
∫
H
f(σγσ−1)dβH(γ) =ω(σ,H)

∫
σ ·H

f(γ)dβσ ·H(γ)

for all f ∈ Cc(G).

Furthermore, for all σ , τ ∈ G and H ∈ Σ(0), we have

(3.2) ω(στ,H) =ω(τ,H)ω(σ,τ ·H) and ω(σ,H)−1 =ω(σ−1, σ ·H).

Sketch of the Proof. The existence of ω(σ,H) follows from the uniqueness of
the Haar measure on σ ·H. The fact that ω is continuous follows from the fact
that both integrals in (3.1) are continuous with respect to (σ,H). Equation (3.2)
is a straightforward computation. ❐

For u ∈ G(0), let ΣG(u) the compact Hausdorff space of subgroups of G(u). Let
C∗(ΣG(u)) be the groupoid C∗-algebra of the corresponding group bundle. Thus
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if ΣG(u)∗G = {(H,γ) ∈ Σ(0)×G : γ ∈ H}, then C∗(ΣG(u)) is the completion of
Cc(ΣG(u) ∗G) in the obvious universal norm for the ∗-algebra structure given by

f ∗g(H,γ) =
∫
H
f(H,η)g(H,η−1γ)dβH(η) and f∗(H,γ) = f(H,γ−1)∗.

Since the restriction map, κu : Cc(Σ) → Cc(ΣG(u)) is surjective (by [19, Lemma
8.54]), κu extends to a homomorphism of C∗(Σ) onto C∗(ΣG(u)).

Remark 3.2. Notice that C∗(ΣG(u)) is (isomorphic to) Fell’s subgroup C∗-
algebra as originally defined in [5] (or as a special case of [19, Section 8.4]). It
is important to note that, since we are treating ΣG(u) ∗ G as a groupoid, there
are no modular functions in the formula above for the adjoint in contrast to the
definitions in [5] or [19].

Lemma 3.3. The groupoid C∗-algebra C∗(Σ) is a C0(G(0))-algebra. Moreover,
the fiber C∗(Σ)(u) over u is isomorphic to C∗(ΣG(u)).

Proof. The groupoid C∗-algebra C∗(Σ) is clearly a C0(Σ(0))-algebra, and as in
the proof of [19, Proposition 8.55], it is not hard to check that the fibre C∗(Σ)(H)
over H is isomorphic to C∗(H). In particular, the restriction map ιH : Cc(Σ) →
Cc(H) is surjective and extends to a homomorphism of C∗(Σ) onto C∗(H).

By composing functions on G(0) with p, we see that C∗(Σ) is also a C0(G(0))-
algebra. Let u ∈ G(0) and let Iu be the ideal of C∗(Σ) spanned by C0,u(G(0)) ·
Cc(Σ), where C0,u(G(0)) consists of the functions f in C0(G(0)) such that f(u) =
0. Then C∗(Σ)(u) = C∗(Σ)/Iu. Clearly Iu ⊂ kerκu. To show that C∗(Σ)(u) is
isomorphic to C∗(ΣG(u)) it is enough to prove that Iu ⊃ kerκu.

Let L be a representation of C∗(Σ) such that Iu ⊂ kerL. An approximation
argument shows that if f ∈ Cc(Σ) is such that f(u,H,γ) = 0 for all H ∈ G(u)
and γ ∈ H, then f ∈ kerL. Therefore ifϕ ∈ C0(Σ) is such thatϕ(H) = 1 for all
H ∈ ΣG(u), then L(f) = L(ϕ · f).

We can view ΣG(u) as a compact subset of Σ. Since

H ,
∫
H
f(γ,H)dβH(γ)

is continuous on Σ, for any ε > 0 we can findϕ ∈ C0(Σ) such that ϕ(H) = 1 for
all H ∈ ΣG(u) and such that

‖ϕ · f‖C∗(Σ) ≤ sup
H∈ΣG(u) ‖ιH(f )‖1 + ε,

where ιH : Cc(Σ)→ Cc(H) is the restriction map. It follows that

‖L(f)‖ ≤ sup
H∈ΣG(u) ‖ιH(f )‖1 ≤ ‖κu(f)‖I ,
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where ‖ · ‖I is the I-norm on Cc(ΣG(u) ∗G) ⊂ C∗(ΣG(u)). Thus we can define a
‖ · ‖I-decreasing representation L′ of Cc(ΣG(u)) by L′(κu(f )) B L(f). Since L′
must be norm decreasing for the C∗-norm, we have

‖L(f)‖ ≤ ‖κu(f)‖C∗(ΣG(u)),
and kerκu ⊂ kerL. Since L is any representation with Iu in its kernel, we have
kerκu ⊂ Iu. ❐

To define an action α of G on C∗(Σ) using [10, Definition 4.1], we first
define

αη : C∗(Σ)(s(η))→ C∗(Σ)(r(η))
at the level of functions by

(3.3) αη(F)
(
r(γ),H, γ

)
Bω(η−1,H)−1F

(
s(η), η−1 ·H,η−1γη

)
.

Then we compute that∫
H
αη(F)

(
r(η),H, γ

)
dβH(γ)(3.4)

=ω(η−1,H)−1
∫
H
F
(
s(η), η−1 ·H,η−1γη

)
dβH(γ)

=
∫
η−1·H

F
(
s(η), η−1 ·H,γ)dβη

−1·H(γ).

Lemma 3.4. The triple (C∗(Σ),G,α) is a groupoid dynamical system.

Proof. The preceding discussion shows that αη is isometric for the I-norm,
and hence defines an isomorphism. The fact that αγδ = αγ ◦ αδ is clear by
equation (3.3). To see that α = {αη}η∈G is continuous is a bit messy. We’ll use the
criteria from [10, Lemma 4.3] and show that there is a C0(G)-linear isomorphism

α : r∗C∗(Σ)→ s∗C∗(Σ)
which induces the αη on the fibres. It is not hard to establish that the pull-back
r∗C∗(Σ) is (C0(G)-isomorphic to) the C∗-algebra of the group bundleG∗rΣ(0)∗
G = {(η,H,γ) : γ ∈ H ⊂ G(r(η))}, and similarly for s∗C∗(Σ). Then we can
define

α : Cc(G ∗r ∗Σ(0) ∗G)→ Cc(G ∗s ∗Σ(0) ∗G)
by

α(f)(η,H,γ) =ω(η−1,H)−1f(η, η−1 ·H,η−1γη).

Then α is isometric with respect to the appropriate I-norms and therefore extends
to a C0(G)-linear isomorphism which induces the αη as required. ❐
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3.1. Restriction to the stability groups. We maintain the set-up that R is
an irreducible representation with kerR = K ∈ PrimC∗(Σ), and that R is the
integrated form of a representation (µ,G(0) ∗ H, V) of G. Note that C∗(Σ) =Γ0(G(0);S) for an upper semicontinuous C∗-bundle pS : S → G(0) (as in [19,
Theorem C.26]). Since u , G(u) is Borel [16, Lemma 1.5], we can define the
restriction of R to the isotropy groups of G to be the representation r of C∗(Σ) on
L2(G(0) ∗H, µ) given by

(3.5) r(F)h(u) B
∫
G(u)

F
(
u,G(u), γ

)
Vγh(u)∆G(u)(γ)−1/2 dβG(u)(γ),

where ∆G(u) is the modular function on G(u) (see Remark 3.5 below). It may be
helpful to notice that r is the direct integral

(3.6) r =
∫ ⊕
G(0)
ru dµ(u),

where ru is the composition of the representation of C∗(G(u)) given by V |G(u)
with the quotient map κu of C∗(Σ) onto C∗(G(u)). (We will also write ru for
the representation of C∗(G(u)).)

Remark 3.5. Some care is necessary when applying ru to a function in F ∈
Cc(Σ)—or for that matter, Cc(G(u)). Since Σ is a groupoid, there is no modular
function in the formula for the adjoint; instead, it must appear in the integrated
form of representations in order that they be ∗-preserving. This “explains” the
appearance of the group modular functions in (3.5). In fact, δ′(u, γ) = ∆G(u)(γ)
is the Radon-Nikodym derivative of µ ◦ β with respect to µ ◦ β−1 associated to
µ considered as a quasi-invariant measure on G(0) viewed as the unit space of the
Borel groupoid group bundle G′ = {(u, γ) : γ ∈ G(u)}. This observation will
be important at the end of Section 3.2.

Lemma 3.6. The tuple (r , µ,G(0) ∗ H, V) is a covariant representation of
(C∗(Σ),G,α) [10, Definition 7.9]. In fact, Vγrs(γ) = (rr(γ)◦αγ)Vγ for all γ ∈ G.

Proof. We compute as follows. Fix γ ∈ G with s(γ) = v and r(γ) = u.
Then

Vγrv(F)

= Vγ
∫
G(v)

F
(
v,G(v), η

)
Vη∆G(v)(η)−1/2 dβG(v)(η)

=
∫
G(v)

F
(
v,G(v), η

)
Vγη∆G(v)(η)−1/2∆G(v)(η)−1/2 dβG(v)(η)

=ω(γ,G(v)) ∫
γ·G(v)

F
(
v,G(v), γ−1ηγ

)
Vηγ∆G(v)(γ−1ηγ)dβγ·G(v)(η)
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which, since γ ·G(v) = G(u) and ∆G(v)(γ−1ηγ) = ∆G(u)(η), is

=
∫
G(u)

ω
(
γ,γ−1 ·G(u))F(v,γ−1 ·G(u), γ−1ηγ

)
Vη∆G(u)(η)−1/2 dβG(u)Vγ

=
∫
G(u)

αγ(F)
(
u,G(u), η

)
Vη∆G(u)(η)−1/2 dβG(u)(η)Vγ

= ru
(
αγ(F)

)
Vγ.

The result follows. ❐

In view of Lemma 3.6, we can let L′′ B rÏV be the representation of the groupoid
crossed product C∗(Σ) Ïα G which is the integrated form of
(r , µ,G(0) ∗H, V) (see [10, Proposition 7.11]). If δ is the Radon Nikodym de-
rivative of µ ◦ λ with respect to µ ◦ λ−1, then for each f ∈ Γc(G; r∗S)

(
L′′(f )h | k) = ∫

G(0)

∫
G

(
ru
(
f(γ)

)
Vγh

(
s(γ)

) | k(u))δ(γ)−1/2 dλu(γ)dµ(u).

Now we want to form Effros’s ideal center decomposition of r following [16,
Theorem 2.2].2 Let σ : PrimC∗(Σ) → G(0) be the continuous map induced
by the C0(G(0))-structure on C∗(Σ) [19, Proposition C.5]. As in the discussion
preceding [16, Proposition 1.14], there is a continuous G-action on PrimC∗(Σ),
equipped with its Polish regularized topology, with respect to σ ; that is, there is a
continuous map (P, γ), P · γ from

PrimC∗(Σ)∗G = {(P, γ) : σ(P) = r(γ)}
to PrimC∗(Σ).3 Then, as in the paragraph following the proof of [16, Proposition
1.14], we can form the transformation groupoid

G B PrimC∗(Σ)∗G,
where

r(P, γ) = P, s(P, γ) = P · γ,
(P, γ)(P · γ,η) = (P, γη), (P, γ)−1 = (P · γ,γ−1).

2Formally, Renault’s proofs need to be modified to deal with upper semicontinuous C∗-bundles,
but this is straightforward.

3Notice that in many treatments of groupoid actions on spaces, the structure map σ is assumed to
be open as well as continuous. In this case, we have only that σ is continuous. Since PrimA has the
regularized topology, there is no reason to suspect that σ need be open even if S were a continuous
C∗-bundle in the first place.
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With respect to the regularized topology on PrimC∗(Σ), G is what Renault calls in
[16] locally conditionally compact—the important thing is that it is a standard Borel
groupoid, and that λP = εP ×λσ(P) is a continuous Haar system for G [16, p. 12].
Using this structure, we want to construct an covariant ideal center decomposition
of L′′ in analogy with [19, Appendix G.2]. The idea is to use a decomposition
theorem of Effros’s [3] to decompose r into homogeneous representations in an
equivariant way (cf. [19, Theorem C.22]). Recall that a representation π of
a C∗-algebra A is homogeneous if kerπ = kerπE for any nonzero projection
E ∈ π(A)′. (Here πE is the subrepresentation of π corresponding to E.) It was
Sauvageot who first noticed the importance of Effros’s ideal center decomposition
for the solution of the Effros-Hahn conjecture. A key feature for us is that if A
is separable and π is homogeneous, then kerπ is primitive [19, Corollary G.9].
Renault provides the decomposition result we need in [16, Theorem 2.2]. The
essential features of his result are as follows: L′′ is equivalent to a representation
L′ on L2(PrimC∗(Σ) ∗ K, ν) where ν is a quasi-invariant measure on G(0) =
PrimC∗(Σ), and PrimC∗(Σ) ∗ K is a Borel Hilbert bundle over PrimC∗(Σ).
To define L′, Renault must produce a ν-conull set U ⊂ PrimC∗(Σ) and a Borel
homomorphism

L̂′ : G
∣∣
U → Iso

(
PrimC∗(Σ)∗K)

of the form L̂′(P, γ) = (P, L(P,γ), P · γ), and for each P ∈ U , homogeneous
representations r̃P of C∗(Σ) with ker r̃P = P such that for all F ∈ C∗(Σ)

P , r̃P (F) is Borel, and(3.7)

L(P, γ)r̃P·γ(F) = r̃P
(
αγ(F)

)
L(P, γ) for all (P, γ) ∈ G

∣∣
U.(3.8)

Since ker r̃P = P , we can always view r̃P as a representation of the fibre
C∗(Σ)(σ(P)). Therefore, if f ∈ Γc(G; r∗S), then (γ, P) , r̃P (f (γ)) is well-
defined and Borel on the set of (P, γ) such that σ(P) = r(γ). (Recall that
sections of the form γ , ϕ(γ)a(r(γ)) are dense in Γc(G; r∗S) in the induc-
tive limit topology.) The primary conclusion of [16, Theorem 2.2] is that L′′ is
equivalent to the representation defined by

L′(f )h(P) =
∫
G
r̃P
(
f(γ)

)
L(P, γ)∆(P, γ)−1/2h(P · γ)dλσ(P)(γ),

where ∆ is the Radon-Nikodym derivative of ν ◦ λ−1 with respect to ν ◦ λ. Then
L′ is what we meant by a covariant ideal center decomposition of L′′ (see Remark
3.8 below and compare with [19, Proposition G.24 and Lemma 9.9]).

Notice that (3.8) implies that

(3.9) r̃P·γ � γ · r̃P for all (P, γ) ∈ G
∣∣
U.
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On the other hand, in view of (3.7), we can form the direct integral represen-
tation of C∗(Σ) given by

(3.10) r̃ B
∫ ⊕

PrimC∗(Σ) r̃P dν(P).

Lemma 3.7. Let R be an irreducible representation of C∗(G) and suppose that
r and r̃ are the representations of C∗(Σ) defined in (3.6) and (3.10), respectively.
Then r and r̃ are equivalent.

Remark 3.8. As a consequence of Lemma 3.7, we note that r̃ is an ideal
center decomposition of r as defined in [19, Definition G.18]. This justifies the
terminology used above.

Proof of Lemma 3.7. If a ∈ C∗(Σ) = Γ0(G(0);S) and f ∈ Γc(G; r∗S), then
we can define a · f ∈ Γc(G; r∗S) by

a · f(γ) B a(r(γ))f(γ).
Then, viewing r̃P as a representation of the fibre C∗(Σ)(σ(P)), we have
r̃P (a · f(γ)) = r̃P (a)r̃P (f (γ)). Thus,

L′(a · f)h(P) =
∫
G
r̃P
(
a · f(γ))L(P, γ)∆(P, γ)−1/2h(P · γ)dλσ(P)(γ)

= r̃P (a)
∫
G
r̃P
(
f(γ)

)
L(P, γ)∆(P, γ)−1/2h(P · γ)dλσ(P)(γ)

= r̃P (a)L′(f )h(P).

That is, L′(a · f) = r̃ (a)L′(f ). Similarly, L′′(a · f) = r(a)L′′(f ).
Now letMR : L2(G(0)∗H, µ)→ L2(PrimC∗(Σ), ν) be a unitary isomorphism

intertwining L′′ and L′. Then we compute that for all a ∈ Cc(Σ) and f ∈Γc(G; r∗S) we have

MRr(a)L′′(f )h =MRL′′(a · f)h
= L′(a · f)MRh
= r̃ (a)L′(f )MRh
= r̃ (a)MRL′′(f )h.

Since L′′ is nondegenerate, MRr(a) = r̃ (a)MR for all a ∈ Cc(Σ). Thus r and r̃
are equivalent as claimed. ❐

A subset U ⊂ PrimC∗(Σ) is G-invariant if U · G ⊂ U . If ν is a quasi-invariant
measure on PrimC∗(Σ) and if V is ν-conull, then G|V is conull with respect to
ν ◦ λ. We say that U ⊂ PrimC∗(Σ) is ν-essentially invariant if there is a ν-conull
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set V such that U · G|V ⊂ U . Notice that if U is ν-essentially invariant, then
ϕ = 1U is invariant in the sense that ϕ ◦ s = ϕ ◦ r for ν ◦ λ-almost all (P, γ).
In general, a quasi-invariant measure ν is called ergodic for the action of G on
PrimC∗(Σ) if every Borel function ϕ on PrimC∗(Σ) which is invariant in the
above sense is constant ν-almost everywhere (see [12, p. 274]). It is not hard to
see that it suffices to consider ϕ which are characteristic functions of a Borel set.
Furthermore, it follows from the above and [12, Lemma 5.1] or [8, Lemma 4.9]
that ϕ = 1U is invariant if and only if U is ν-essentially invariant.4

Proposition 3.9. Let G be a second countable Hausdorff groupoid G with Haar
system {λu}u∈G(0) . Assume that R is an irreducible representation of C∗(G). Let r
be the restriction of R to the isotropy groups of G defined by (3.6). Then the quasi-
invariant measure ν on PrimC∗(Σ) in the ideal center decomposition (3.10) of r is
ergodic with respect to the action of G on PrimC∗(Σ).

For the proof, it will be convenient to make the following observation (com-
pare with the first part of the proof of [10, Theorem 7.12]).

Lemma 3.10. If f ∈ Γc(G; r∗S) and ϕ ∈ Cc(G), then define ϕ · f ∈Γc(G; r∗S) by

ϕ · f(γ) =
∫
G
ϕ(η)αη

(
f(η−1γ)

)
dλr(γ)(η).

Then L′′(ϕ · f) = R(ϕ)L′′(f ).

Proof. We simply compute using Fubini’s Theorem as follows:

L′′(ϕ · f)h(u) =
∫
G
ru
(
ϕ · f(γ))Vγh(r(γ))δ(γ)−1/2 dλu(γ)

=
∫
G

∫
G
ϕ(η)ru

(
αη
(
f(η−1γ)

))
Vγh

(
s(γ)

)
δ(γ)−1/2 dλu(γ)dλu(η)

which, after sending γ , ηγ, is

=
∫
G

∫
G
ϕ(η)ru

(
αη
(
f(γ)

))
Vηγh

(
s(γ)

)
δ(ηγ)−1/2 dλs(η)(γ)dλu(η)

which, in view of Lemma 3.6, is

=
∫
G
ϕ(η)Vη

(∫
G
ru
(
f(γ)

)
Vγh

(
s(γ)

)
δ(γ)−1/2 dλs(η)(γ)

)
δ(η)−1/2 dλu(η)

=
∫
G
ϕ(η)VηL′′(f )h

(
s(η)

)
δ(η)−1/2 dλu(η)

= R(ϕ)L′′(f )h(u). ❐

4We thank the referee for pointing out the proper relationship between “ν-essentially invariant”
sets and the usual notion of ergodicity for measured groupoids as laid out in [12].
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Proof of Proposition 3.9. Recall that the diagonal operators are the multiplica-
tion operators Tϕ for ϕ a bounded Borel function on PrimC∗(Σ) (see [19, Defi-
nition F.13]). Let B ⊂ PrimC∗(Σ) be a G|V -invariant Borel subset for a ν-conull
set V ⊂ PrimC∗(Σ), and let ϕ = 1B . Then ϕ is a bounded Borel function
on PrimC∗(Σ) and we can let E = Tϕ be the corresponding diagonal operator
on L2(PrimC∗(Σ) ∗ K, ν). It will suffice to show that E is either the identity
or the zero operator. Since for ν-almost all P , ϕ(P · γ) = ϕ(P) for λσ(P)-
almost all γ, it is clear from the definition of L′ that E commutes with L′(f )
for all f ∈ Γc(G; r∗S). Thus E′′ B (MR)−1EMR commutes with L′′(f ) for all
f ∈ Γc(G; r∗S). But if ϕ ∈ Cc(G), then using Lemma 3.10, we have

R(ϕ)E′′L′′(f )h = R(ϕ)L′′(f )E′′h

= L′′(ϕ · f)E′′h

= E′′R(ϕ)L′′(f )h

for all ϕ ∈ Cc(G), f ∈ Γc(G; r∗S) and h ∈ L2(G(0) ∗ H, µ). Since L′′ is
nondegenerate, E′′ commutes with every R(ϕ). Since R is assumed irreducible,
E′′, and therefore E, must be trivial. ❐

Let Cb(G(0)) and Bb(G(0)) denote, respectively, the bounded continuous
and bounded Borel functions on G(0). If ϕ ∈ Bb(G(0)), then we will write
Tϕ and TΣϕ◦σ for the corresponding diagonal operators in L2(G(0) ∗ H, µ) and
L2(PrimC∗(Σ)∗K, ν), respectively. Notice that if {ϕi} ⊂ Bb(G(0)) is a bounded
sequence converging to ϕ ∈ Bb(G(0)) µ-almost everywhere, then by the domi-
nated convergence theorem, Tϕi → Tϕ in the strong operator topology.

Lemma 3.11. The isomorphism MR which implements the equivalence between
r and r̃ intertwines the diagonal operators on

L2(G(0) ∗H, µ) and L2(PrimC∗(Σ)∗K, ν).
In fact, we have

(3.11) MRTϕ = TΣϕ◦σMR for all ϕ ∈ Bb(G(0)).

Proof. If ϕ ∈ C0(G(0)) and F ∈ Cc(Σ), then [19, Proposition C.5] (and
the discussion preceding it) implies that r̃P (ϕ · F) = ϕ(σ(P))r̃P (F), and it is
not hard to see that this formula still holds when ϕ ∈ Cb(G(0)).5 Thus if ϕ ∈
Cb(G(0)) and F ∈ Cc(Σ), then

5The action of C0(G(0)) is given by a nondegenerate homomorphism of C0(G(0)) into the center
of M(C∗(Σ)) and so extends to Cb(G(0)) =M(C0(G(0))).
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MRTϕr(F) =MRr(ϕ · F)
= r̃ (ϕ · F)MR

= TΣϕ◦σ r̃ (F)MR
= TΣϕ◦σMRr(F).

Since r is nondegenerate, we have shown that (3.11) holds for all ϕ ∈ Cb(G(0)).
Now suppose that M is a µ-null set. We claim that σ−1(M) is ν-null. Since

µ is a Radon measure and G(0) is second countable, we may as well assume that
M is a Gδ subset of a compact set. But then there is a bounded sequence {ϕi} ⊂
C+0 (G(0)) such that ϕi ↘ 1M everywhere. Then ϕi ◦ σ ↘ ϕ ◦ σ everywhere.
It follows that in the strong operator topology, we have Tϕi → T1M = 0 and
TΣϕi◦σ → TΣ1σ−1(M)

. Since (3.11) holds for continuous functions, it follows that
TΣ1σ−1(M)

= 0. That is, σ−1(M) is ν-null.
Now ifϕ ∈ Bb(G(0)), then we can find a bounded sequence {ϕi} ⊂ Cb(G(0))

such that ϕi → ϕ µ-almost everywhere. In view of the previous paragraph,
ϕi ◦ σ → ϕ ◦ σ ν-almost everywhere. Therefore Tϕi → Tϕ and TΣϕi◦σ → TΣϕ◦σ
in the strong operator topology, and since (3.11) holds for eachϕi, it follows that
(3.11) holds for all ϕ. ❐

As we saw in the previous proof, σ∗ν � µ, where σ∗ν is the push-forward of
ν under σ : σ∗ν(E) = ν(σ−1(E)). Therefore, using [19, Corollary I.9], we can
disintegrate ν with respect to µ. This means that there are finite measures νu on
PrimC∗(Σ) supported in σ−1(u) such that

∫
PrimC∗(Σ) ϕ(P)dν(P) =

∫
G(0)

∫
PrimC∗(Σ) ϕ(P)dνu(P)dµ(u)

for any bounded Borel function ϕ on PrimC∗(Σ). Since P , r̃P is a Borel field
of representations, we can form the direct integral representation

(3.12) r̂u B
∫ ⊕

PrimC∗(Σ) r̃P dνu(P)

on Vu B L2(PrimC∗(Σ) ∗ K, νu). We can form then the Borel Hilbert bun-
dle G(0) ∗ V induced from L2(PrimC∗(Σ) ∗ K, ν) via the disintegration of ν
with respect to µ (see [19, Example F.19]). Given the fact that we can identify
L2(PrimC∗(Σ)∗K, ν) with L2(G(0) ∗ V, µ), it follows that r̃ is equivalent to

r̂ =
∫ ⊕
G(0)
r̂u dµ(u).
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Ifϕ ∈ Bb(G(0)) and T ′ϕ is the corresponding diagonal operator on L2(G(0)∗V, µ),
then

MRTϕ = T ′ϕMR.

Therefore [19, Corollary F.34] implies that ru and r̂u are equivalent for µ-almost
all u.

Since ker r̂u is separable, equation (3.12) implies that there exists a νu-null
set N(u) such that

ker r̂u ⊂ ker r̃P if P ∉ N(u).

Since suppνu ⊂ σ−1(u) we can rewrite this as

(3.13) ker r̂σ(P) ⊂ ker r̃P

for νu-almost all P and for all u. It follows that (3.13) holds for ν-almost all P .
Thus off a ν-null set N, r̃P factors through C∗(G(σ(P))).

3.2. The induced representation. We are retaining the notation and as-
sumptions from the previous section: R is an irreducible representation of C∗(G)
with kernel K and r is the restriction of R to the isotropy groups of G. We have
seen that if

r̃ =
∫ ⊕

PrimC∗(Σ) r̃P dν(P)

is the ideal center decomposition of r defined in (3.10), then r̃P factors through
C∗(G(σ(P))) for almost all P . Next we want to form an induced representation
ind r̃ of C∗(G). First we recall some of the basics of induced representations of
groupoids.

Suppose that ρ is a representation of C∗(G(u)). Then, using the notation
from [7, Section 2], we define IndGG(u) ρ to be representation of C∗(G) on the
completion of the Cc(Gu) � Hρ with respect to the inner product defined on
elementary tensors by

(ϕ ⊗ h | ψ⊗ k) = (ρ(〈ψ , ϕ〉?)h | k).
Then

IndGG(u) ρ(f )(ϕ ⊗ h) = f ∗ϕ ⊗ h.

If I(A) denotes the space of (closed two-sided) ideals in A, then, as in [11, Propo-
sition 3.34 and Corollary 3.35], there is a continuous map

IndGG(u) : I(C∗(G(u)))→ I(C∗(G))
characterized by

ker(IndGG(u) ρ) = IndGG(u)(kerρ).
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Since IndGG(u) ρ is irreducible if ρ is [7, Theorem 5], it follows that IndGG(u) J ∈
PrimC∗(G) if J ∈ PrimC∗(G(u)). Recall that we call K an induced primitive
ideal if K is primitive and K = IndGG(u) J for some J ∈ PrimC∗(G(u)).

The following is a straightforward consequence of the definitions.

Lemma 3.12. Let ρ be a representation of C∗(G(u)) and let γ ∈ Gu. Let
γ · ρ be the representation of C∗(G(r(γ))) given by γ · ρ(a) B ρ(γ−1aγ). Then
IndGG(u) ρ and IndGG(r(γ)) γ · ρ are equivalent representations.

Sketch of the Proof. Define V : Cc(Gu)→ Cc(Gr(γ)) by

V(f)(h) =ω(γ,G(u))1/2f(hγ).
Then

ρ
(〈ψ , ϕ〉?)
=
∫
G(u)

〈ψ , ϕ〉?(h)ρ(h)dβG(u)(h)

=
∫
G(u)

∫
G
ψ(η)ϕ(ηh)ρ(h)dλu(η)dβG(u)(h)

=
∫
G(u)

∫
G
ψ(ηγ)ϕ(ηγh)ρ(h)λr(γ)(η)dβG(u)(h)

which, in view of Lemma 3.1, is

=ω(γ,G(u))
∫
G(r(γ))

∫
G
ψ(ηγ)ϕ(ηhγ)γ · ρ(h)dλr(γ)(η)dβG(r(γ))(h)

= γ · ρ(〈V(ψ) , V(ϕ)〉?).
Since V is clearly onto, f ⊗ h , V(f) ⊗ h extends to a unitary intertwining the
two representations. ❐

Let K̃(P) be the space of the induced representation indGG(σ(P)) r̃P . Thus, K̃(P)
is the completion of Cc(Gσ(P))�K(P) as described above. Let

PrimC∗(Σ)∗ K̃ = {(P, K̃(P)) : P ∈ PrimC∗(Σ)}
be the disjoint union of the K̃(P). Since

P ,
(
(ϕ ⊗ h)(P) | (ψ ⊗ k)(P))

is Borel, there is a unique Borel structure on PrimC∗(Σ) ∗ K̃ making it into an
analytic Borel Hilbert bundle such that each ϕ ⊗ h defines a Borel section (see
[19, Proposition F.8]). Since

IndGG(σ(P)) r̃P (ψ)
(
(ϕ ⊗ h)(P)) = ψ∗ϕ ⊗ h(P),
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P , IndGG(σ(P)) r̃P is a Borel field of representations of C∗(G). Therefore, we can
define the direct integral representation

(3.14) ind r̃ B
∫ ⊕

PrimC∗(Σ) IndGG(σ(P)) r̃P dν(P).

Lemma 3.13. Let U ⊂ PrimC∗(Σ) be the ν-conull set associated to the equi-
variant ideal center decomposition r̃ of r . Let IP B ker(IndGG(σ(P)) r̃P ). Then for all
P ∈ U , IP ∈ PrimC∗(G). Furthermore, P , IP is a Borel map of U ⊂ PrimC∗(Σ)
into PrimC∗(G) such that IP·γ = IP for all (P, γ) ∈ G|U .

Proof. Since r̃P has kernel P , IP is primitive by the remarks preceding Lemma
3.12, and P , IP is Borel by [19, Lemma F.28]. Recall that by (3.9), there is a
ν-conull set U such that r̃P·γ is equivalent to γ · r̃P if (P, γ) ∈ G|U . Then for
(P, γ) ∈ G|U ,

IP·γ = ker(IndGG(σ(P·γ)) r̃P·γ)

= ker(IndGG(s(γ)) γ
−1 · r̃P )

which, by Lemma 3.12, is

= ker(IndGG(σ(P)) r̃P )
= IP . ❐

Proposition 3.14. Let ind r̃ be the induced representation associated to an irre-
ducible representation R of C∗(G) defined by (3.14). Then the kernel of ind r̃ is an
induced primitive ideal.

Proof. Let κ : PrimC∗(Σ)→ PrimC∗(G) be a Borel map such that κ(P) B IP
for P ∈ U . If B ⊂ PrimC∗(G) is Borel, then κ−1(B) is ν-essentially invariant.
Since ν is ergodic by Proposition 3.9, the proof of [19, Lemma D.47] implies that
κ is essentially constant; that is, there is a P0 such that ker(IndGG(σ(P)) r̃P ) = IP0

for ν-almost all P . But then ker(ind r̃ ) = IP0 . This is what we wanted. ❐

Let ru be as in (3.6) and let H̃(u) be the space of the induced representation
IndGG(u) ru. Thus H̃(u) is the completion of Cc(Gu)�H (u) with respect to the
inner product

(ϕ ⊗ h | ψ⊗ k) = (ru(〈ψ , ϕ〉?)h | k).
(There is no harm in takingϕ andψ in Cc(G) above.) LetG(0)∗H̃ = {(u, H̃(u)) :
u ∈ G(0)} be the disjoint union. Then for eachϕ⊗h ∈ Cc(G)⊗L2(G(0)∗H, µ)
we get a section of G(0) ∗ H̃ by

(f ⊗ h)(u) = f ⊗ h(u).
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Then (
ϕ ⊗ h(u) | ψ⊗ k(u))(3.15)

= (ru(〈ψ , ϕ〉?)h | k)
=
∫
G(u)

(
ψ∗ ∗ϕ(η)Vηh(u) | k(u)

)∆G(u)(η)−1/2 dβG(u)(η),

which is Borel in u. Thus by [19, Proposition F.8], there is a unique Borel struc-
ture on G(0) ∗ H̃ making it into an analytic Borel Hilbert bundle such that each
f ⊗ h is a Borel section. Since

IndGG(u) ru(ψ)
(
ϕ ⊗ h(u)) = ψ∗ϕ ⊗ h,

it follows that u , IndGG(u) ru is a Borel field of representations and that we can
make sense out of the direct integral representation

ind r B
∫ ⊕
G(0)

IndGG(u) ru dµ(u)

on L2(G(0) ∗ H̃, µ).
Proof of Theorem 2.1. Let L be the induced representation of C∗(G) con-

structed by Renault on pages 16–17 of [16]. After a bit of untangling and after
specializing [16, Lemma 2.3] to our case, we see that there is a unitary U mapping
the space of L onto the completion of Cc(G)�L2(G(0)∗H, µ) with respect to the
inner product

(
ϕ ⊗ h | ψ⊗ k) = ∫

G(0)

(
ϕ ⊗ h(u) | ψ⊗ k(u))dµ(u),

where the integrand on the right-hand side is given by (3.15). Moreover,

(U∗L(ψ)U)(ϕ ⊗ h) = ψ∗ϕ ⊗ h.

Simply said: L is equivalent to ind r .
Let MR : L2(G(0) ∗H, µ) → L2(PrimC∗(Σ) ∗ K, ν) be the unitary imple-

menting the equivalence between r and r̃ , and then define

W : Cc(G)� L2(G(0) ∗H, µ)→ Cc(G)� L2(PrimC∗(Σ)∗K, ν))
by W(ϕ ⊗ h) B ϕ ⊗MRh. Since

W ◦ ind r(ψ)(ϕ ⊗ h) = W(ψ ∗ϕ ⊗MRh)
= ind r̃ (ψ)(f ⊗MRh)
= ind r̃ (ψ) ◦W(ϕ ⊗ h),
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it is not hard to see that W extends to a unitary intertwining indr and ind r̃ .
Therefore, ind r̃ and L have the same kernel. But then [16, Theorem 3.3] implies
that kerR ⊂ ker(ind r̃ ). On the other hand, if G is amenable as in the statement of
the theorem, then [16, Theorem 3.6] implies that K = kerR = ker(ind r̃ ). How-
ever, ker(ind r̃ ) is an induced primitive ideal by Proposition 3.14. This completes
the proof. ❐
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