2.1 The tangent and Velocity Problems

Marius Ionescu

09/01/2010

Marius lonescu 2.1 The tangent and Velocity Problems

• • = • •

-

• The word tangent is derived from the Latin word tangens, which means 'touching.'

・ロト ・回ト ・ヨト ・ヨト

臣

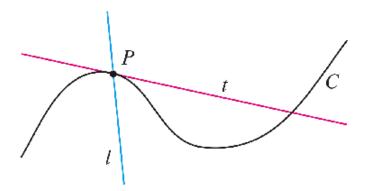
- The word tangent is derived from the Latin word tangens, which means 'touching.'
- Thus, a tangent to a curve is a line that touches the curve.

▲帰▶ ▲臣▶ ★臣▶

- The word tangent is derived from the Latin word tangens, which means 'touching.'
- Thus, a tangent to a curve is a line that touches the curve.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

- The word tangent is derived from the Latin word tangens, which means 'touching.'
- Thus, a tangent to a curve is a line that touches the curve.



Example

Example

Find an equation of the tangent line to the parabola $y = x^2$ at the point P(1, 1).

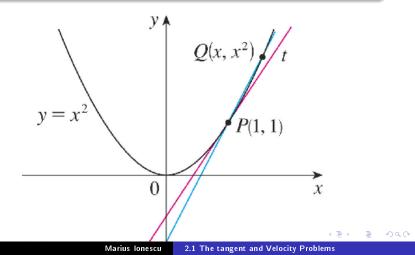
イロン イヨン イヨン イヨン

æ

Example

Example

Find an equation of the tangent line to the parabola $y = x^2$ at the point P(1, 1).



Example (cont'd)

X	<i>m_{PQ}</i>
2	3
1.5	2.5
1.1	2.1
1.01	2.01
1.001	2.001

X	m_{PQ}	
0	1	
0.5	1.5	
0.9	1.9	
0.99	1.99	
0.999	1.999	→ ∢@→
Marius Jonescu	2.1 The tangent	and Valacity

< 置→

문 🛌 문

time (s)	distance (m)
0.10	0.049
0.20	0.196
0.30	0.441
0.40	0.784
0.50	1.225
0.60	1.764
0.70	2.401
0.80	3.136
0.90	3.969
1.00	4.900

・ロト ・西ト ・ヨト ・ヨト

æ

Fact

If the distance fallen after t seconds is denoted by s(t) and measured in meters, then Galileo's law is expressed by the following equation.

$$s(t) = 4.9t^2$$

- 同下 - 三下 - 三日

Fact

If the distance fallen after t seconds is denoted by s(t) and measured in meters, then Galileo's law is expressed by the following equation.

$$s(t) = 4.9t^2$$

Definition

Average speed is defined to be change in distance divided by change in time.

(D) (A) (A) (A)

Derived Table of the average speed [t, t + 0.1]

time (s)	distance (m)	speed (m/s)
0.10	0.049	1.470000
0.20	0.196	2.450000
0.30	0.441	3.430000
0.40	0.784	4.410000
0.50	1.225	5.390000
0.60	1.764	6.370000
0.70	2.401	7.350000
0.80	3.136	8.330000
0.90	3.969	9.310000
1.00	4.900	10.290000

臣

Definition

The instantaneous speed is a *limiting value* of the average speeds as the interval h between successive times shrinks to zero.

$$v(t) = \lim_{h \to 0} \frac{s(t+h) - s(t)}{h}.$$

(4) (3) (4) (4) (4)

Approximating instantaneous velocity for t = 0.5

h	$\frac{s(t+h)-s(t)}{h}$
0.1	5.39
0.05	5.145
0.02	4.998
0.01	4.949
0.001	4.9005
0.0001	4.9000003

▲□→ ▲ □→ ▲ □→ ----

臣