3.5 Implicit Differentiation

Marius Ionescu

10/04/2010

Implicit functions

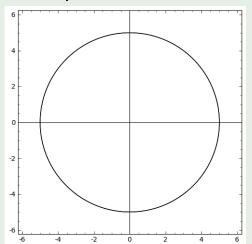
Example

Some functions are defined implicitly by a relation between \boldsymbol{x} and \boldsymbol{y}

Implicit functions

Example

Some functions are defined implicitly by a relation between \boldsymbol{x} and \boldsymbol{y}

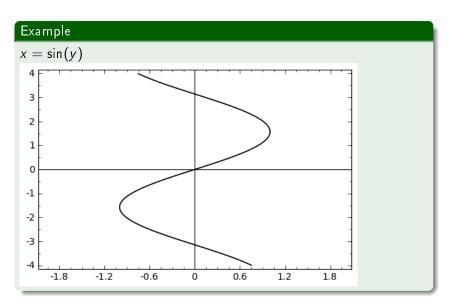

•
$$x^2 + y^2 = 25$$

Implicit functions

Example

Some functions are defined implicitly by a relation between \boldsymbol{x} and \boldsymbol{y}

•
$$x^2 + y^2 = 25$$

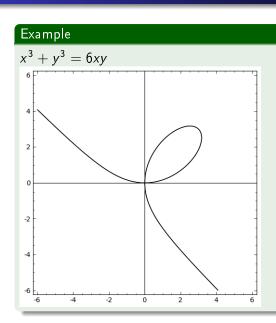


Other implicit functions

Example

$$x = \sin(y)$$

Other implicit functions



The folium of Descartes

Example

$$x^3 + y^3 = 6xy$$

The folium of Descartes

Implicit differentiation

Definition

Method of implicit differentiation: differentiate both sides of the equation with respect to x and then solve the resulting equation for y'.

${\sf Example}$

Example

• if
$$x^2 + y^2 = 25$$

Example

• if
$$x^2 + y^2 = 25$$

Example

• if
$$x^2 + y^2 = 25$$

• if
$$x^3 + y^3 = 6xy$$

Example

- if $x^2 + y^2 = 25$
- if $x^3 + y^3 = 6xy$

Example

- if $x^2 + y^2 = 25$
- if $x^3 + y^3 = 6xy$
- if $2\sqrt{x} + \sqrt{y} = 3$

Example

- if $x^2 + y^2 = 25$
- if $x^3 + y^3 = 6xy$
- if $2\sqrt{x} + \sqrt{y} = 3$

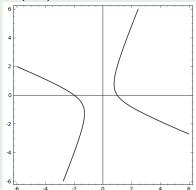
Example

- if $x^2 + y^2 = 25$
- if $x^3 + y^3 = 6xy$
- if $2\sqrt{x} + \sqrt{y} = 3$
- if $1 + x = \sin(xy^2)$

Example

Find an equation of the tangent line to the curve

$$x^2 + 2xy - y^2 + x = 2$$


at (1,2).

Example

Find an equation of the tangent line to the curve

$$x^2 + 2xy - y^2 + x = 2$$

at (1,2).

Derivatives of Inverse Triconometric Functions

Example

Find $\frac{dy}{dx}$ if $\sin y = x$, $-1 \le x \le 1$.

Derivatives of Inverse Trigonometric Functions

Fact (Derivatives)

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}.$$

Derivatives of Inverse Trigonometric Functions

Fact (Derivatives, cont'd)

$$\frac{d}{dx}(\csc^{-1}x) = -\frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1 + x^2}.$$

Example

Example

•
$$y = \sqrt{\tan^{-1} x}$$

Example

•
$$y = \sqrt{\tan^{-1} x}$$

•
$$y = \sin^{-1}(x^2 + 1)$$

Example

•
$$y = \sqrt{\tan^{-1} x}$$

•
$$y = \sin^{-1}(x^2 + 1)$$

•
$$y = \cos^{-1}(e^{x^2})$$
.