
# 3.10 Linear approximations and Differentials

Marius Ionescu

10/21/2010





#### Definition

• The approximation

$$f(x) \approx f(a) + f'(a)(x - a)$$

is called **the linear approximation** or **tangent line approximation** of f at a.

#### Definition

• The approximation

$$f(x) \approx f(a) + f'(a)(x - a)$$

is called **the linear approximation** or **tangent line approximation** of f at a.

• The function whose graph is the tangent line

$$L(x) = f(a) + f'(a)(x - a)$$

is called the **linearization** of f at a.



### Example

Find the linearization of  $y = \sqrt{x+1}$  at a = 1 and use it to approximate the numbers  $\sqrt{0.98}$  and  $\sqrt{1.02}$ .



### Definition

• Recall that if  $\Delta x$  is the change in x then the change in y is

$$\Delta y = f(x + \Delta x) - f(x).$$

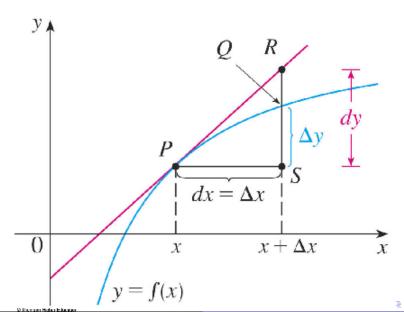
### Definition

• Recall that if  $\Delta x$  is the change in x then the change in y is

$$\Delta y = f(x + \Delta x) - f(x).$$

 $\bullet$  The differential dx is an independent variable.

#### Definition


• Recall that if  $\Delta x$  is the change in x then the change in y is

$$\Delta y = f(x + \Delta x) - f(x).$$

- The differential dx is an independent variable.
- The differential dy is

$$dy = f'(x)dx$$
.

# Differentials: graph



### Example

Find the differential of the following functions

### Example

Find the differential of the following functions

$$y = x^2 cos(x)$$

### Example

Find the differential of the following functions

- $y = x^2 cos(x)$
- $y = \ln \sqrt{1 + x^2}$

### Example

Find the differential dy, evaluate dy for the given values of x and dx, and compare it to  $\Delta y$ :

#### Example

Find the differential dy, evaluate dy for the given values of x and dx, and compare it to  $\Delta y$ :

• 
$$y = \frac{1}{x+1}$$
,  $x = 1$ ,  $dx = -0.01$ .

#### Example

Find the differential dy, evaluate dy for the given values of x and dx, and compare it to  $\Delta y$ :

- $y = \frac{1}{x+1}$ , x = 1, dx = -0.01.
- $y = \sqrt{x}$ , x = 1, dx = 0.1.