3.10 Linear approximations and Differentials

Marius Ionescu

10/21/2010

Marius Ionescu 3.10 Linear approximations and Differentials

Linear approximations

Marius Ionescu 3.10 Linear approximations and Differentials

Definition

• The approximation

$$f(x) \approx f(a) + f'(a)(x-a)$$

is called the linear approximation or tangent line approximation of f at a.

• The function whose graph is the tangent line

$$L(x) = f(a) + f'(a)(x - a)$$

is called the **linearization** of f at a.

Example

Find the linearization of $y = \sqrt{x+1}$ at a = 1 and use it to approximate the numbers $\sqrt{0.98}$ and $\sqrt{1.02}$.

Definition

• Recall that if Δx is the change in x then the change in y is

$$\Delta y = f(x + \Delta x) - f(x).$$

- The differential dx is an independent variable.
- The differential dy is

$$dy = f'(x)dx.$$

Differentials: graph

Example

Find the differential of the following functions

•
$$y = x^2 cos(x)$$

• $y = \ln \sqrt{1 + x^2}$

Example

Find the differential dy, evaluate dy for the given values of x and dx, and compare it to Δy :

•
$$y = \frac{1}{x+1}$$
, $x = 1$, $dx = -0.01$.

•
$$y = \sqrt{x}, x = 1, dx = 0.1.$$