6.1 Area between curves

12/09/2010

6.1 Area between curves

- We know that if f is a continuous nonnegative function on the interval [a, b], then $\int_{a}^{b} f(x) dx$ is the area under the graph of f and above the interval.
- Suppose we are given two continuous functions, f_{top} and g_{bottom} defined on the interval [a, b], with $g_{bottom}(x) \le f_{top}(x)$ for all x in the interval.
- How do we find the area bounded by the two functions over that interval?

Area between curves

$$\int_a^b f_{top}(x) \, dx - \int_a^b g_{bottom}(x) \, dx = \int_a^b \left(f_{top}(x) - g_{bottom}(x) \right) \, dx$$

Example

Find the area of the region between the graphs of $y = x^2$ and $y = x^3$ for $0 \le x \le 1$.

Example

Find the area of the region between $y = e^x$ and y = 1/(1 + x) on the interval [0, 1].

^{6.1} Area between curves

Example

Find the area of the region bounded by $y = x^2 - 2x$ and $y = 4 - x^2$.

Find the area of the region bounded by the two curves $y = x^3 - 9x$ and $y = 9 - x^2$.

Example

Find the area between sin x and cos x on $[0, \pi/4]$.

Functions of y

We could just as well consider two functions of y, say,
x = f_{Left}(y) and x = g_{Right}(y) defined on the interval [c, d].

Example

Find the area under the graph of $y = \ln x$ and above the interval [1, e] on the x-axis.

