2.6 Limits at Infinity: Horizontal asymptotes

Marius Ionescu

09/10/2010

Limits at Infinity

Definition

Let f be a function defined on some interval (a, ∞) . Then

$$\lim_{x\to\infty}f(x)=L$$

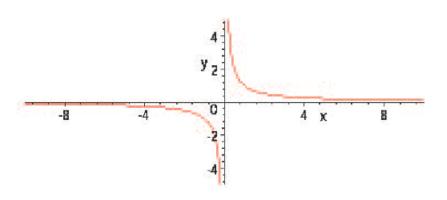
means that the value of f(x) approaches L as the value of x approaches $+\infty$. This means that f(x) can be made as close to L as we please by taking the value of x sufficiently large. Similarly,

$$\lim_{x\to-\infty}f(x)=L$$

means that f(x) can be made as close to L as we please by taking the value of x sufficiently small (in the negative direction).

Example

 $\lim_{x\to\infty} 1/x = 0.$



More Examples

Examples

Evaluate the limits:

- $\bullet \lim_{x\to\infty} \frac{x-1}{x^3+2}$
- 2 $\lim_{x\to\infty} \frac{3x^2-2x+1}{4x^2-1}$

Horizontal Asymptotes

Definition

The line y = L is called a horizontal asymptote of the curve y = f(x) if either

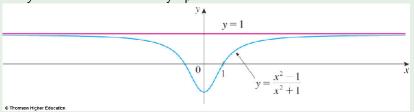
$$\lim_{x\to\infty} f(x) = L \text{ or } \lim_{x\to-\infty} f(x) = L.$$

Example

The function

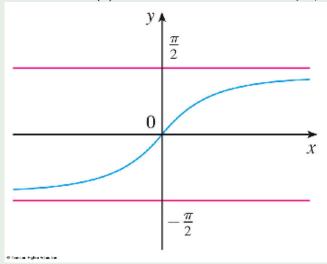
$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$

has y = 1 as a horiontal asymptote.



Example

The function $f(x) = \tan x$ has two horizontal asymptotes



Infinite limits at infinity

Definition

We write

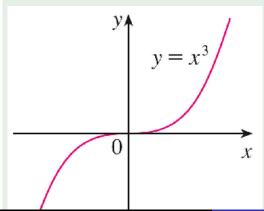
$$\lim_{x\to\infty}f(x)=\infty$$

if the values of f(x) become large as x becomes large.

Example

Let
$$f(x) = x^3$$
. Then

$$\lim_{x\to\infty} x^3 = \infty \text{ and } \lim_{x\to\infty} x^3 = \infty.$$



Examples

Compute the following limits

- **1** $\lim_{x \to \infty} \frac{x^4 x^2 + 2}{x^3 + 3}$

Dominant Term Rule

Fact

Dominant Term Rule For the limit $\lim_{x\to\infty} P(x)/Q(x)$, where P(x) is a polynomial of degree m,

- If n < m, the limit is 0,
- 2 If n > m, the limit is $\pm \infty$,
- If n = m, the limit is the quotient of the coefficients of the highest powers.