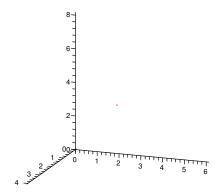
Coordinates in \mathbb{R}^2 and \mathbb{R}^3 Lecture 1

Marius Ionescu

August 29, 2012

12.1: Three-dimensional coordinate systems



Three-dimensional coordinate systems

- We chose a fixed point O (the origin)
- We also chose three directed lines through *O* that are perpendicular to each other: **the coordinate axes**
- We label them the x-axis, y-axis, and z-axis.

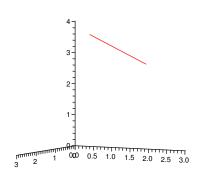
Three-dimensional coordinate systems

- A point P in space is represented by a triple (a, b, c)
- a is the x-coordinate
- b is the y-coordinate
- c is the z-coordinate

Three-dimensional coordinate systems

- A point P in space is represented by a triple (a, b, c)
- a is the x-coordinate
- b is the y-coordinate
- c is the z-coordinate
- This correspondence between points and triples (a, b, c) in \mathbb{R}^3 is called a three dimensional rectangular coordinate system.

Distance between two points

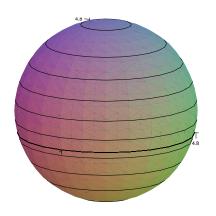


Distance formula

• The distance $|P_1P_2|$ between the points $P_1(x_1,y_1,z_1)$ and $P(x_2,y_2,z_2)$ is

$$|P_1P_2| = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$$

Equation of a sphere



Equation of a Sphere

• An equation of a sphere with center C(h, k, l) and radius r is

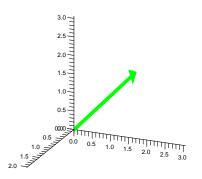
$$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2.$$

If the center is the origin

$$x^2 + y^2 + z^2 = r^2.$$

12.2: Vectors

- A vector has initial point A and terminal point B
- We write \vec{AB} or \vec{u} or \vec{u}



• Two vectors \mathbf{u} and \mathbf{v} are equivalent (or equal) and we write $\mathbf{u} = \mathbf{v}$ if the have the same length and the same direction

ullet Two vectors $oldsymbol{u}$ and $oldsymbol{v}$ are equivalent (or equal) and we write $oldsymbol{u} = oldsymbol{v}$ if the have the same length and the same direction



Vector Addition

 If u and v are vectors positioned so the initial point of v is at the terminal point of u, then the sum u + v is the vector from the initial point of u to the terminal point of v.

Scalar multiplication

• If c is a scalar and \mathbf{v} is a vector, then the scalar multiple $c\mathbf{v}$ is the vector whose length is |c| times the length of \mathbf{v} and whose direction is the same as \mathbf{v} if c>0 and is opposite to \mathbf{v} if c<0.

Scalar multiplication

- If c is a scalar and \mathbf{v} is a vector, then the scalar multiple $c\mathbf{v}$ is the vector whose length is |c| times the length of \mathbf{v} and whose direction is the same as \mathbf{v} if c > 0 and is opposite to \mathbf{v} if c < 0.
- We call $-\mathbf{v}$ the **negative** of \mathbf{v} .

Scalar multiplication

- If c is a scalar and \mathbf{v} is a vector, then the scalar multiple $c\mathbf{v}$ is the vector whose length is |c| times the length of \mathbf{v} and whose direction is the same as \mathbf{v} if c > 0 and is opposite to \mathbf{v} if c < 0.
- We call $-\mathbf{v}$ the **negative** of \mathbf{v} .
- The **difference** $\mathbf{u} \mathbf{v}$ of two vectors is

$$\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v})$$

Components

• If we place the initial point of a vector \mathbf{a} at the origin, then the terminal point of \mathbf{a} has coordinates of the form (a_1, a_2) or (a_1, a_2, a_3) .

Components

- If we place the initial point of a vector \mathbf{a} at the origin, then the terminal point of \mathbf{a} has coordinates of the form (a_1, a_2) or (a_1, a_2, a_3) .
- These coordinates are called components of a

$$\mathbf{a} = \langle a_1, a_2 \rangle$$
 or $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$.

The length of a vector

Definition

The length of a vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}.$$

Standard basis vectors

Definition

The vectors

$$\mathbf{i} = \langle 1, 0, 0 \rangle, \ \mathbf{j} = \langle 0, 1, 0 \rangle, \ \mathbf{k} = \langle 0, 0, 1 \rangle$$

are called the standard basis vectors.