Directional Derivatives and the Gradient Vector

Marius Ionescu

October 24, 2012

Marius Ionescu () Directional Derivatives and the Gradient

October 24, 2012 1 / 12

Directional Derivatives

Fact

Recall:

$$f_X(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

$$f_Y(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}.$$

Notes			
Notes			
Notes			

The Directional Derivative

Definition

• The directional derivative of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}}f(x_0,y_0) = \lim_{h\to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists.

• If $\mathbf{u} = \mathbf{i} = \langle 1, 0 \rangle$, then $D_{\mathbf{i}} f = f_{\mathsf{x}}$, and if $\mathbf{u} = \mathbf{j} = \langle 0, 1 \rangle$, then $D_{\mathbf{i}} = f_{\mathsf{y}}$.

Marius Ionescu () Directional Derivatives and the Gradient

October 24, 2012 3 / 12

The Directional Derivative

Theorem

• If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_{\mathbf{u}}f(x,y)=f_{x}(x,y)a+f_{y}(x,y)b.$$

• If the unit vector \mathbf{u} makes an angle θ with the positive x-axis, then we can write $\mathbf{u} = \langle \cos \theta, \sin \theta \rangle$ and

$$D_{\mathbf{u}}f(x,y) = f_{x}(x,y)\cos\theta + f_{y}(x,y)\sin\theta.$$

Notes		
-		
-		
Notes		
-		

Examples

Examples

• Find the directional derivative of

$$f(x,y) = x^3 - 3xy + 4y^2$$

at the point (1,2) in the direction $\theta = \pi/6$.

• Find the directional derivative of $f(x,y) = xe^y + \cos(xy)$ at the point (2,0) in the direction of $\mathbf{v} = 3\mathbf{i} - 4\mathbf{j}$.

Marius Ionescu () Directional Derivatives and the Gradient

October 24, 2012

Notes

The Gradient Vector

Definition

• If f is a function of two variables x and y, then the gradient of f is the vector function ∇f defined by

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}.$$

Notes

Example

Example

• Find the gradient of $f(x,y) = \sin x + e^{xy}$ at (0,1).

Marius Ionescu () Directional Derivatives and the Gradient '

October 24, 2012 7 / 12

Fact

• The equation of the directional derivative becomes:

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}.$$

Notes		
Notes		

Examples

Example

Find the directional derivative of the function $f(x,y) = x^2y^3 - 4y$ at the point (2,-1) in the direction of the vector $\mathbf{v} = 2\mathbf{i} + 5\mathbf{j}$.

Marius Ionescu () Directional Derivatives and the Gradient

October 24, 2012

Functions of three variables

Definition

• If w = f(x, y, z) is a function of three variables, the directional **derivative** of f at (x_0, y_0, z_0) in the direction of the unit vector $\langle a, b, c \rangle$ is

$$D_u f(x_0, y_0, z_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb, z_0 + hc) - f(x_0, y_0, z_0)}{h}$$

if the limit exists.

Then

$$D_u f(x, y, z) = f_x(x, y, z)a + f_y(x, y, z)b + f_z(x, y, z)c.$$

Notes			

Notes

Functions of three variables

Notes

Definition

• The gradient is

$$\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

• The formula for the directional derivative become

$$D_u f(x, y, z) = \nabla f(x, y, z) \cdot \mathbf{u}.$$

Marius Ionescu () Directional Derivatives and the Gradient

October 24, 2012 11 / 12

Examples

Examples

Consider the function $f(x, y, z) = xy^2 + yz^3 + xy^2$.

- Find the gradient of f.
- Find the gradient of f at the point (5, 4, -1).
- ullet Find the rate of change of the function f at the point (5,4,-1) in the direction of $\mathbf{u} = \langle 2/\sqrt{22}, -3/\sqrt{22}, -3/\sqrt{22} \rangle$.