

Notes

Definition

lf

$$f(x,y) \leq f(a,b)$$

(or $f(x, y) \ge f(a, b)$) for all points (x, y) in the domain of f, then f has an absolute maximum (or absolute minimum) at (a, b).

Example

$$f(x,y) = (x^2 + y^2)e^{-x^2 - y^2}$$

Example

$$f(x,y) = \cos(x^2 + y^2)/(1 + x^2 + y^2)$$

Notes

Critical Points

Notes

Fact

If f has a local maximum or minimum at (a, b) and the first-order partial derivatives exist there, then $f_x(a, b) = 0$ and $f_y(a, b) = 0$.

Definition

A point (a, b) is called a critical point (or stationary point) of f if $f_{x}(a,b) = 0$ and $f_{y}(a,b) = 0$.

$$f(x, y) = x^2 + y^2 - 4x - 4y + 10.$$

Example

Example

Find the extreme values of $f(x, y) = y^2 - x^2$.

Second Derivative Test

Theorem

Suppose the second partial derivatives of f are continuous on a disk with center (a, b), and suppose that $f_x(a, b) = 0$ and $f_y(a, b) = 0$. Let

$$D = \left| \begin{array}{cc} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{array} \right| = f_{xx} f_{yy} - (f_{xy})^2.$$

- If D > 0 and $f_{xx}(a, b) > 0$, then f(a, b) is a local minimum.
- 2 If D > 0 and $f_{xx}(a, b) < 0$, then f(a, b) is a local maximum.
- If D < 0, then f(a, b) is not a local maximum or minimum. In this case the point (a, b) is called a saddle point of f.

Notes

Notes

Fact

If D = 0, the test gives no information: f could have a local maximum or local minimum at (a, b), or (a, b) could be a saddle point of f.

Example

Notes

Example

Find the local maximum and minimum values and saddle points of $f(x, y) = x^4 + y^4 - 4xy + 1$.

Marius Ionescu ()

14.7: Maxima and Minima

October 29, 2012 13 / 13

Notes