15.2: Iterated Integrals

Marius Ionescu

November 16, 2012

Marius Ionescu ()

15.2: Iterated Integrals

November 16, 2012 1 / 7

Notes

Iterated Integrals

Definition

Let f be a function of two variables that is integrable on the rectangle $R = [a, b] \times [c, d].$

There are two iterated integrals

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$

and

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$
$$\int_{c}^{d} \int_{a}^{b} f(x, y) dx dy.$$

Notes			

Example

Notes

Example

Evaluate the iterated integrals

- $\bullet \int_0^2 \int_1^2 x^2 y dy dx$
- $\int_{1}^{2} \int_{0}^{2} x^{2} y dx dy$

Marius Ionescu ()

15.2: Iterated Integrals

November 16, 2012 3 / 7

Fubini's Theorem

Theorem

If f is continuous on the rectangle $R = [a, b] \times [c, d]$, then

$$\iint_{R} f(x,y)dA = \int_{a}^{b} \int_{c}^{d} f(x,y)dydx = \int_{c}^{d} \int_{a}^{b} f(x,y)dxdy.$$

Notes

Examples

Examples

Calculate the following integrals

- $\iint_R (1-xy^2) dA$, where $R = [0,4] \times [-1,2]$
- $\iint_R (x 3y^2) dA$, where $R = [0, 2] \times [1, 2]$.
- $\iint_R \frac{1+x^2}{1+y^2} dA$, where $R = [0,1] \times [0,1]$.
- $\iint_R xe^{-xy} dA$, where $R = [0,3] \times [0,2]$.
- $\iint_R \cos(x-y)dA$, where $R=[0,\pi/2]\times[0,\pi/2]$.

Marius Ionescu ()

15.2: Iterated Integrals

November 16, 2012

5 / 7

Example

Example

Find the volume of the solid S that is bounded by the elliptic paraboloid $x^2 + 2y^2 + z = 16$, the planes x = 2 and y = 2, and the coordinate planes.

Notes

Notes

Example

Example

Find the volume of the solid that lies under the hyperbolic paraboloid $z=3y^2-x^2+2$ and above the rectangle $R=[-1,1]\times[1,2]$.

Notes			
-			
-			
-			
-			
Notes			
-			
-			
-			