The Cross Product Lecture 3

September 7, 2012

Given two vectors **a** and **b** we want to build a vector $\mathbf{a} \times \mathbf{b}$ called the **cross product** of **a** and **b** with the following properties:

- The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} .
- If θ is the angle between **a** and **b** then

$$|a \times b| = |a||b|\sin\theta$$

- Two nonzero vectors are parallel if and only if $\mathbf{a} \times \mathbf{b} = 0$
- The length of the cross product **a** × **b** is equal to the area of the parallelogram determined by **a** and **b**.

The Cross Product

• If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **cross product** of **a** and **b** is the vector

$$\mathbf{a} \times \mathbf{b} = \langle a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1 \rangle$$

-0

Examples

- Find the crossed product of the vectors $\langle -1,2,1\rangle$ and $\langle 1,-2,2\rangle.$
- Find the crossed product of the vectors $\langle \sqrt{2}, -\sqrt{2}, 1\rangle$ and $\langle 1/2, 1, 1\rangle.$

0

Examples

- Find a vector perpendicular to both $\langle -2,2,0\rangle$ and $\langle 0,1,2\rangle$ of the form $\langle 1,___,___\rangle$
- Find the area of the triangle with vertices P(0,0,0), Q(-2,2,5), R(0,3,-3).

Other Properties of the Cross Product

- You can check Theorem 11 on page 836 for the complete list of the properties of the cross product of vectors. I will mention only one:
- $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$.

The volume of a parallelepiped

The volume of a parallelepiped determined by the vectors
a, b, and c is the magnitude of their scalar triple product:

$$V = |a \cdot (b \times c)|$$

• Find the volume of the parallelepiped with adjacent edges *PQ*, *PR*, *PS* where *P*(1, 4, -3), *Q*(3, 7, 0), *R*(0, 3, -4), *S*(7, 2, -1).