14.1 Functions of Several Variables

October 1, 2012

• A function of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by f(x, y).

- A function of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by f(x, y).
- The set *D* is the domain of *f* and its range is the set of values that *f* takes on.

- A function of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by f(x, y).
- The set *D* is the domain of *f* and its range is the set of values that *f* takes on.
- We also write z = f(x, y)

- A function of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by f(x, y).
- The set *D* is the domain of *f* and its range is the set of values that *f* takes on.
- We also write z = f(x, y)
- The variables x and y are independent variables and z is the dependent variable.

 ${\sf Examples}$

Examples

• Find the domain of the function

$$f(x,y) = \frac{2x + 3y}{x^2 + y^2 - 9}$$

Examples

• Find the domain of the function

$$f(x,y) = \frac{2x + 3y}{x^2 + y^2 - 9}$$

• Find the domain and range of

$$f(x,y) = \sqrt{4 - x^2 - y^2}$$

Graphs

Definition

• If f is a function of two variables with domain D, then the graph of f is the set of all points $(x, y, z) \in \mathbb{R}^3$ such that z = f(x, y) and (x, y) is in D.

 ${\sf Example}$

Example

• A linear function is a function

$$f(x) = ax + by + c$$

5 / 17

Example

• A linear function is a function

$$f(x) = ax + by + c$$

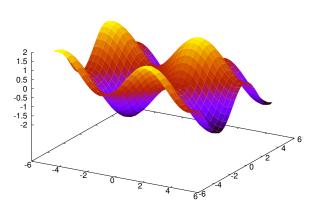
• The graph of such a function is a plane.

Example

 $f(x,y) = \sin(x) + \sin(y)$

Example

 $f(x,y) = \sin(x) + \sin(y)$

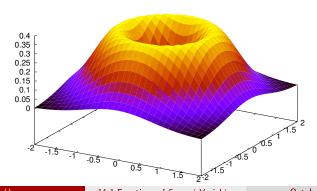


${\sf Example}$

• $f(x,y) = (x^2 + y^2)e^{-x^2-y^2}$

Example

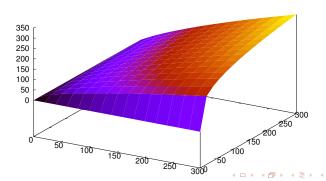
•
$$f(x,y) = (x^2 + y^2)e^{-x^2-y^2}$$



The Cobb-Douglas production function

Example

•
$$P(L, K) = bL^{\alpha}K^{1-\alpha}$$



Level Curves

Definition

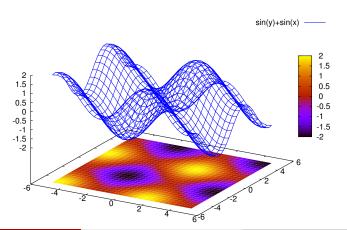
• The level curves of a function f of two variables are the curves with equations f(x, y) = k, where k is constant.

Example

 $f(x,y) = \sin(x) + \sin(y)$

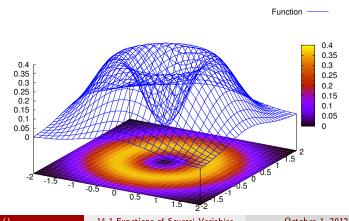
Example

 $f(x,y) = \sin(x) + \sin(y)$



Example

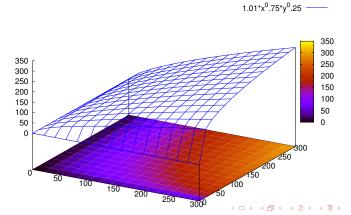
•
$$f(x,y) = (x^2 + y^2)e^{-x^2-y^2}$$



The Cobb-Douglas production function

Example

• $P(L, K) = 1.01L^{0.75}K^{0.25}$



14.2 Limits and Continuity

Definition

The limit of f(x, y) as (x, y) approaches (a, b) is L and we write

$$\lim_{(x,y)\to(a,b)}f(x,y)=L$$

if for every number $\varepsilon>0$ there is a corresponding number $\delta>0$ such that if $(x,y)\in D$ and $0<\sqrt{(x-a)^2+(y-b)^2}<\delta$ then $|f(x,y)-L|<\varepsilon$. We also write $f(x,y)\to L$.

14.2 Limits and Continuity

Definition

The limit of f(x, y) as (x, y) approaches (a, b) is L and we write

$$\lim_{(x,y)\to(a,b)}f(x,y)=L$$

if for every number $\varepsilon>0$ there is a corresponding number $\delta>0$ such that if $(x,y)\in D$ and $0<\sqrt{(x-a)^2+(y-b)^2}<\delta$ then $|f(x,y)-L|<\varepsilon$. We also write $f(x,y)\to L$.

WHAT?

It is easier to show that a function does not have a limit!

Fact

If $f(x,y) \to L_1$ as $(x,y) \to (a,b)$ along a path C_1 and $f(x,y) \to L_2$ as $(x,y) \to (a,b)$ along a path C_2 , where $L_1 \neq L_2$, then $\lim_{(x,y)\to(a,b)} f(x,y)$ does not exist.

Examples

Show that the following limits do not exist:

Examples

Show that the following limits do not exist:

•
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$
.

Examples

Show that the following limits do not exist:

- $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$. $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$.

Continuity

Definition

Continuity

Definition

• A function f of two variables is called **continuous at** (a, b) if

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$$

Continuity

Definition

• A function f of two variables is called **continuous at** (a, b) if

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$$

• Examples: polynomials, rational, trigonometric, exponential, logarithmic functions are continuous on theirs domain.

 ${\sf Example}$

Example

• Find the largest set on which the function

$$\frac{2xy}{9-x^2-y^2}$$

is continuous.