

Notes

Examples

• Find the domain of the function

$$f(x,y) = \frac{2x+3y}{x^2+y^2-9}$$

• Find the domain and range of

$$f(x,y)=\sqrt{4-x^2-y^2}$$

()	14.1 Functions of Several Variables	October 1, 2012	3 / 17
Graphs			
Definition • If f is a function of two variables with domain D, then the graph of f is the set of all points $(x, y, z) \in \mathbb{R}^3$ such that $z = f(x, y)$ and (x, y) is in D.			of <i>f</i> , y)

Notes

Example

• A linear function is a function

$$f(x) = ax + by + c$$

• The graph of such a function is a plane.

Example

The Cobb-Douglas production function

Example

•
$$P(L, K) = bL^{\alpha}K^{1-\alpha}$$

Notes

Notes

8 / 17

Definition

• The level curves of a function f of two variables are the curves with equations f(x, y) = k, where k is constant.

October 1, 2012 9 / 17

Examples

Example

• $f(x,y) = \sin(x) + \sin(y)$

Notes

Notes

Example

The Cobb-Douglas production function

Example

• $P(L, K) = 1.01L^{0.75}K^{0.25}$

Notes

14.2 Limits and Continuity

Notes

Definition

The limit of f(x, y) as (x, y) approaches (a, b) is L and we write

$$\lim_{(x,y)\to(a,b)}f(x,y)=L$$

if for every number $\varepsilon > 0$ there is a corresponding number $\delta > 0$ such that if $(x, y) \in D$ and $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$ then $|f(x, y) - L| < \varepsilon$. We also write $f(x, y) \to L$.

WHAT?

It is easier to show that a function does not have a limit!

Notes

Fact

If $f(x, y) \rightarrow L_1$ as $(x, y) \rightarrow (a, b)$ along a path C_1 and $f(x, y) \rightarrow L_2$ as $(x, y) \rightarrow (a, b)$ along a path C_2 , where $L_1 \neq L_2$, then $\lim_{(x,y)\to(a,b)} f(x, y)$ does not exist.

Notes

Notes

Examples

Show that the following limits do not exist:

•
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$

•
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$
.

() 14.1 Functions of Several Variables October 1, 2012 15 / 17

Continuity

Definition

• A function f of two variables is called **continuous at** (a, b) if

$$\lim_{(x,y)\to(a,b)}f(x,y)=f(a,b)$$

• **Examples:** polynomials, rational, trigonometric, exponential, logarithmic functions are continuous on theirs domain.

Notes

Example

• Find the largest set on which the function

$$\frac{2xy}{9-x^2-y^2}$$

is continuous.

()	

14.1 Functions of Several Variables

October 1, 2012 17 / 17

Notes