List of formulas for Math 113, Fall 2012

- Distance formula: $|P_1P_2| = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2 + (z_2 z_1)^2}$
- Equation of a sphere with center C(h, k, l) and radius r

$$(x-h)^{2} + (y-k)^{2} + (z-l)^{2} = r^{2}.$$

• The **length** of a vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}.$$

• If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **dot product** of \mathbf{a} and \mathbf{b} is the number

 $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3.$

• If θ is the angle between the vectors **a** and **b**, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

• The direction cosines of the the vector **a**:

$$\cos \alpha = \frac{a_1}{|\mathbf{a}|}, \ \cos \beta = \frac{a_2}{|\mathbf{a}|}, \ \cos \gamma = \frac{a_3}{|\mathbf{a}|}.$$

• Scalar projection of **b** onto **a**:

$$\operatorname{comp}_{a}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$$

$$\operatorname{proj}_a b = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a}$$

 $\bullet\,$ The work done by a constant force ${\bf F}$ is

 $\mathbf{F}\cdot\mathbf{D}.$

• $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **cross product** of \mathbf{a} and \mathbf{b} is the vector

	i	j	\mathbf{k}
$\mathbf{a} \times \mathbf{b} =$	a_1	a_2	a_3
	b_1	b_2	b_3

• The volume of a parallelepiped determined by the vectors **a**, **b**, and **c** is the magnitude of their scalar triple product:

$$V = |a \cdot (b \times c)|$$

• If v is a vector parallel to L and let r_0 is the position vector of P_0 , the vector equation of the line L through P is

 $\mathbf{r} = \mathbf{r_0} + t\mathbf{v},$

where t is the **parameter**.

• The parametric equations of a line:

$$x = x_0 + at$$

$$y = y_0 + bt$$

$$z = z_0 + ct$$

• The line segment from \mathbf{r}_0 and \mathbf{r}_1 is given by the vector equation

$$\mathbf{r}(t) = (1-t)\mathbf{r}_0 + t\mathbf{r}_1 \quad 0 \le t \le 1$$

• A plane is determined by a point $P_0(x_0, y_0, z_0)$ in the plane and a vector **n** that is orthogonal to the plane.

$$\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0$$

• The scalar equation of the plane through $P_0(x_0, y_0, z_0)$ with normal vector $n = \langle a, b, c \rangle$ is

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.$$

• The linear equation of a plane

$$ax + by + cz + d = 0$$

• If two planes are not parallel, then they intersect in a straight line and the angle between them is the (acute) angle between their normal vectors.

• If
$$\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$$
, then

$$\lim_{t \to a} \mathbf{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle$$

• If $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$, where f, g, and h are differentiable functions, then

$$\mathbf{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle$$

- The vector $\mathbf{r}'(t)$ is called the **tangent vector**.
- The unit tangent vector is

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$$

• The **length** of a space curve $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$ is

$$L = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2} + [h'(t)]^{2}} dt$$
$$= \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt$$
$$= \int_{a}^{b} |r'(t)| dt$$

• The arc length function s is

$$s(t) = \int_{a}^{t} |r'(u)| du = \int_{a}^{t} \sqrt{\left(\frac{dx}{du}\right)^{2} + \left(\frac{dy}{du}\right)^{2} + \left(\frac{dz}{du}\right)^{2}} du.$$

• The **curvature** of a curve is

$$k = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|r'(t)|^3}.$$

• Let $\mathbf{r}(t)$ be a space curve. The velocity vector $\mathbf{v}(t)$ at time t is

$$\mathbf{v}(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h} = \mathbf{r}'(t).$$

- The **speed** of the particle at time t is the magnitude of the velocity, that is, $|\mathbf{v}(t)|$.
- The **acceleration** of the particle is defined as the derivative of the velocity:

$$\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t).$$