- 1. True or false? Give a short explanation.
- (5pts) (a) $\sum (-1)^{n+1} (1/n^p)$ converges for all p > 0.
- (5pts) (b) The set of irrational numbers is a closed set.
- (5pts) (c) If the sequence (b_n) converges to b, then the set $B = \{b, b_1, b_2, b_3, \ldots\}$ is a closed set.
- (5pts) (d) The set $\{(-1)^n(1-\frac{1}{n}): n \in \mathbb{N}\}$ is an open set.

Solution:

- (a) True, by the Alternating Series Test. (It converges absolutely only for p > 1.)
- (b) False: For example, $(\sqrt{2}/n)$ is a sequence of irrationals converging to the rational 0.
- (c) True: The only limit point of B is b, which is in the set.
- (d) False: It does not contain open intervals around any of its elements.

(10pts) 2. (a) Determine whether the series

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n+3}{n^3 - 5n + 6}$$

converges absolutely, converges conditionally, or diverges, and give a reason.

Solution: Intuitively, this series should behave like the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2}$. Therefore, we expect that it is absolutely convergent. We will use the comparison test. If $n \ge 3$, then $n+3 \le 2n$. Also, $n^3 - 5n + 6 \ge n^3 - 5n$. Therefore, for $n \ge 3$, we have that

$$\frac{n+3}{n^3-5n+6} \le \frac{2n}{n^3-5n} = \frac{2}{n^2-5} \le \frac{5}{n^2}$$

The last inequality is also valid only for $n \ge 3$. Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, it follows using the ALT that $\sum_{n=1}^{\infty} \frac{5}{n^2}$ converges. The comparison test implies that $\sum_{n=1}^{\infty} \frac{n+3}{n^3-5n+6}$ converges. Therefore $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n+3}{n^3-5n+6}$ is absolutely convergent.

(10pts) (b) Prove that

$$\sum_{n=2}^{\infty} \frac{1}{n \log^p(n)}$$

converges for all p > 1.

Solution: We can use the integral test to solve this problem. Let $f(x) = \frac{1}{x \log^p(x)}$ (we assume that we have natural log). Then, using the *u*-substitution $u = \log(x)$, we have that

$$\int_{1}^{n} f(x) \, \mathrm{d}\, x = \int_{1}^{n} \frac{1}{x \log^{p}(x)} \, \mathrm{d}\, x = \int_{0}^{\log(n)} \frac{1}{u^{p}} du = \begin{cases} \frac{(\log n)^{-p+1}}{-p+1} & \text{if } p \neq 1\\ \log(\log(n)) & \text{if } p = 1. \end{cases}$$

Therefore, the limit $\lim_{n\to\infty} \int_1^n f(x) \, dx$ exists (and is finite) iff p > 1. Thus, by the integral test, the series $\sum_{n=2}^{\infty} \frac{1}{n \log^p(n)}$ converges iff p > 1.

(20pts) 3. If A is bounded, prove that \overline{A} is bounded.

Solution: Let M > 0 such that |x| < M for all $x \in A$. We need to find M' such that |x| < M' for all $x \in \overline{A}$. Let $x \in \overline{A}$. If $x \in A$, then |x| < M. If $x \notin A$, then x is a limit point of A. Therefore, there exists a sequence (x_n) in A such that $\lim x_n = x$. Since $|x_n| < M$, it follows from the Order Limit Theorem (Theorem 2.3.4 in the textbook) that $|x| \leq M$. Therefore |x| < M + 1 for all $x \in \overline{A}$, and \overline{A} is bounded.

(20pts) 4. Let $f : [a, b] \to \mathbb{R}$ be continuous. Show that there are two numbers $c \le d$ such that f([a, b]) = [c, d] (the image of a closed interval is a closed interval).

Solution: We know from class that [a, b] is a compact set. Since f is continuous, there are two numbers x_m and x_M in [a, b] such that $f(x_m)$ is the minimum value of f on [a, b] and $f(x_M)$ is the maximum value of f on [a, b]. Let $x = f(x_m)$ and $d = f(x_M)$. Since $c \leq f(x) \leq d$ for all $x \in [a, b]$ it follows that $f([a, b]) \subset [c, d]$. We need to prove the converse inclusion as well. If c = d, then f is constant and the result is trivially true. Assume now that c < d. Let $y \in [c, d]$. By the intermediate value theorem, there is a number x between x_m and x_M such that f(x) = y. Then x has to belong to [a, b]. Therefore $y \in f([a, b])$ and we have that $f([a, b]) \supset [c, d]$. Thus f([a, b]) = [c, d]. (20pts) 5. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous and let $L \in \mathbb{R}$. Prove that $\{x : f(x) < L\}$ is an open set.

Solution: Let $c \in \{x : f(x) < L\}$. We need to find a neighborhood of c completely contained in the set. Let $\varepsilon = L - f(c)$. Since f is continuous, there is $\delta > 0$ such that if $|x - c| < \delta$, then $|f(x) - f(c)| < \varepsilon$. Therefore $f(x) < \varepsilon + f(x) = L - f(x) + f(x) = L$ for all $x \in V_{\delta}(c)$. Therefore $V_{\delta}(c) \subset \{x : f(x) < L\}$. So our set is open.