
HOMEWORK #6, REAL ANALYSIS I, FALL 2012

MARIUS IONESCU

Problem 1 (Exercise 3.2.2 on page 83). Let

B =

{
(−1)nn

n + 1
: n = 1, 2, 3, . . .

}
.

(a) Find the limit points of B.
(b) Is B a closed set?
(c) Is B an open set?
(d) Find B.

Problem 2 (Exercise 3.2.3 on page 83). Decide whether the following
sets are open, closed, or neither. If a set is not open, find a point in
the set for which there is no ε-neighborhood contained in the set. If a
set is not closed, find a limit point that is not contained in the set.

(a) Q.
(b) N.
(c) {x ∈ R : x > 0}.
(d) (0, 1] = {x ∈ R : 0 < x ≤ 1}.
(e) {1 + 1/4 + 1/9 + · · ·+ 1/n2 : n ∈ N}.

Problem 3 (Exercise 3.2.7 on page 83). Let x ∈ O, where O is an
open set. If (xn) is a sequence converging to x, prove that all but a
finite number of the terms of (xn) must be contained in O.

Problem 4 (Exercise 3.2.8 on page 83). Given A ⊆ R, let L be the
set of all limit points of A.

(a) Show that the set L is closed.
(b) Argue that if x is a limit point of A∪L, then x is a limit point of

A. Use this observation to furnish a proof for Theorem 3.2.12.

Problem 5. (a) If y is a limit point of A∪B, show that y is either
a limit point of A or a limit point of B (or both).

(b) Prove that A ∪B = A ∪B.
(c) Does the result about closures in (b) extend to infinite unions

of sets?
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Problem 6. Decide whether the following statements are true or false.
Provide counterexamples for those that are false, and supply proofs for
those that are true.

(a) For any set A ⊆ R, A
c

is open.
(b) If a set A has an isolated point, it cannot be an open set.
(c) A set A is closed if and only if A = A.
(d) If A is a bounded set, then s = supA is a limit point of A.
(e) Every finite set is closed.
(f) An open set that contains every rational number must neces-

sarily be all of R.


