Homework #6, Real Analysis I, Fall 2012

Marius Ionescu

Problem 1 (Exercise 3.2.2 on page 83). Let

\[B = \left\{ \frac{(-1)^n n}{n+1} : n = 1, 2, 3, \ldots \right\} . \]

(a) Find the limit points of \(B \).
(b) Is \(B \) a closed set?
(c) Is \(B \) an open set?
(d) Find \(B \).

Problem 2 (Exercise 3.2.3 on page 83). Decide whether the following sets are open, closed, or neither. If a set is not open, find a point in the set for which there is no \(\varepsilon \)-neighborhood contained in the set. If a set is not closed, find a limit point that is not contained in the set.

(a) \(\mathbb{Q} \).
(b) \(\mathbb{N} \).
(c) \(\{ x \in \mathbb{R} : x > 0 \} \).
(d) \([0, 1] = \{ x \in \mathbb{R} : 0 < x \leq 1 \} \).
(e) \(\{ 1 + 1/4 + 1/9 + \cdots + 1/n^2 : n \in \mathbb{N} \} \).

Problem 3 (Exercise 3.2.7 on page 83). Let \(x \in O \), where \(O \) is an open set. If \((x_n) \) is a sequence converging to \(x \), prove that all but a finite number of the terms of \((x_n) \) must be contained in \(O \).

Problem 4 (Exercise 3.2.8 on page 83). Given \(A \subseteq \mathbb{R} \), let \(L \) be the set of all limit points of \(A \).

(a) Show that the set \(L \) is closed.
(b) Argue that if \(x \) is a limit point of \(A \cup L \), then \(x \) is a limit point of \(A \). Use this observation to furnish a proof for Theorem 3.2.12.

Problem 5. (a) If \(y \) is a limit point of \(A \cup B \), show that \(y \) is either a limit point of \(A \) or a limit point of \(B \) (or both).
(b) Prove that \(\overline{A \cup B} = \overline{A} \cup \overline{B} \).
(c) Does the result about closures in (b) extend to infinite unions of sets?

Date: Due Friday, 10/26/2012.
Problem 6. Decide whether the following statements are true or false. Provide counterexamples for those that are false, and supply proofs for those that are true.

(a) For any set $A \subseteq \mathbb{R}$, $\overline{A^c}$ is open.
(b) If a set A has an isolated point, it cannot be an open set.
(c) A set A is closed if and only if $\overline{A} = A$.
(d) If A is a bounded set, then $s = \sup A$ is a limit point of A.
(e) Every finite set is closed.
(f) An open set that contains every rational number must necessarily be all of \mathbb{R}.