HOMEWORK #7, REAL ANALYSIS I, FALL 2012

MARIUS IONESCU

Problem 1 (Exercise 4.3.5 on page 113). In Theorem 4.3.4, statement (iv) says that f(x)/g(x) is continuous at c if both f and g are, provided that the quotient is defined. Show that if g is continuous at c and $g(c) \neq 0$, then there exists an open interval containing c on which f(x)/g(x) is defined.

Problem 2 (Exercise 4.3.7 on page 113). Assume that $h : \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and let $K := \{x : h(x) = 0\}$. Show that K is a closed set.

Problem 3 (Exercise 4.4.4 on page 119). Show that if f is continuous on [a, b] with f(x) > 0 for all $a \le x \le b$, then 1/f is bounded on [a, b].

- **Problem 4** (Exercise 4.4.8 on page 119). (a) Assume that $f : [0, \infty) \rightarrow \mathbb{R}$ is continuous at every point in its domain. Show that if there exists b > 0 such that f is uniformly continuous on the set $[b, \infty)$, then f is uniformly continuous on $[0, \infty)$.
 - (b) Prove that $f(x) = \sqrt{x}$ is uniformly continuous on $[0, \infty)$.

Problem 5 (Exercise 4.4.9 on page 120). A function $f : A \to \mathbb{R}$ is called *Lipschitz* if there exists a bound M > 0 such that

$$\left|\frac{f(x) - f(y)}{x - y}\right| \le M$$

for all $x, y \in A$. Geometrically speaking, a function f is Lipschitz if there is a uniform bound on the magnitude of the slopes of lines drawn through any two points on the graph of f.

- (a) Show that if $f : A \to \mathbb{R}$ is Lipschitz, then it is uniformly continuous on A.
- (b) Is the converse statement true? Are all uniformly continuous functions necessarily Lipschitz?

Problem 6 (Exercise 4.5.3 on page 124). Is there a continuous function on all of \mathbb{R} with range $f(\mathbb{R})$ equal to \mathbb{Q} ?

Date: Due Friday, 11/9/2012.