Problem 1 (Exercise 5.2.2 on page 136). (a) Use Definition 5.2.1 to product the proper formula for the derivative of \(f(x) = 1/x \).
(b) Combine the result of (a) with the chain rule (Theorem 5.2.5) to supply a proof for part (iv) of Theorem 5.2.4 [the derivative rule for quotients].
(c) Supply a direct proof of Theorem 5.2.4 (iv) by algebraically manipulating the difference quotient for \((f/g)\) in a style similar to the proof of Theorem 5.2.4 (iii).

Problem 2 (Exercise 4.2.4 on page 136). Let \(f_a(x) = \begin{cases} x^a & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases} \).
(a) For which values of \(a \) is \(f \) continuous at zero?
(b) For which values of \(a \) is \(f \) differentiable at zero? In this case, is the derivative function continuous?
(c) For which values of \(a \) is \(f \) twice-differentiable?

Problem 3 (Exercise 5.3.1 on page 143). Recall from Exercise 4.4.9 that a function \(f : A \to \mathbb{R} \) is “Lipschitz on \(A \)” if there exists an \(M > 0 \) such that
\[
\left| \frac{f(x) - f(y)}{x - y} \right| \leq M
\]
for all \(x, y \in A \). Show that if \(f \) is differentiable on a closed interval \([a, b]\) and if \(f' \) is continuous on \([a, b]\), then \(f \) is Lipschitz on \([a, b]\).

Problem 4 (Exercise 5.3.5 on page 143). A fixed point of a function \(f \) is a value \(x \) where \(f(x) = x \). Show that if \(f \) is differentiable on an interval with \(f'(x) \neq 1 \), then \(f \) can have at most one fixed point.

Problem 5 (Exercise 5.3.7 on page 143). Recall that a function \(f : (a, b) \to \mathbb{R} \) is increasing on \((a, b)\) if \(f(x) \leq f(y) \) whenever \(x \leq y \) in \((a, b)\). Assume \(f \) is differentiable on \((a, b)\). Show that \(f \) is increasing on \((a, b)\) if and only if \(f'(x) \geq 0 \) for all \(x \in (a, b)\).

Problem 6 (Exercise 6.2.1 on page 160). Let
\[
f_n(x) = \frac{nx}{1 + nx^2}.
\]
(a) Find the pointwise limit of \((f_n)\) for all \(x \in (0, \infty)\).
(b) Is the convergence uniform on \((0, \infty)\)?
(c) Is the convergence uniform on \((0, 1)\)?
(d) Is the convergence uniform on \((1, \infty)\)?