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If you pick any of the following topics feel free to discuss with me if you need
any further background that we did not discuss in class.

1. Iterations of Dynamical Systems and Chaos

For α ∈ [0, 2] de�ne the tent map

Tα(x) =

{
αx 0 ≤ x < 1

2

α(1− x) 1
2 ≤ x ≤ 1

.

We discussed in class a few properties for α = 2. Possible problems and questions
for a project

• For what values of α are periodic points of period N for any N ≥ 1?
• For what values of α are aperiodic orbits?
• Is the system is sensitive to the initial conditions? What is the error prop-
agation?

• For what values of α does Tα satisfy the mixing property? (mixing property:
for any two intervals I and J one can �nd initial values in I which, when
iterated, will eventually lead to points in J . A dynamical system that is
mixing, sensitive to the initial conditions, and has dense periodic orbits is
called a chaotic dynamical system.

• Prove that mixing implies sensitive to the initial conditions.
• Use the computer to draw orbits of each type.

A similar analysis can be performed for other maps:

(1) the logistic map: fa : [0, 1]→ [0, 1], a ∈ [0, 4],

fa(x) = ax(1− x).

The study of the orbits when a varies leads to a so called �bifurcation
diagram� (courtesy of Wikipedia):
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You need to create this diagram as part of the project.

(2) The guassian map: G(x) = e−ax
2

+ β.
(3) The Henon map F : R2 → R2

F (x, y) = (1 + y − ax2, bx)

where a > 0 and |b| < 1. The �atractor� of the Henon map is

2. Julia and Mandelbrot sets

Let fc : C→ C be de�ned via fc(z) = z2+c. The Julia set J(c) is the set of points
that lie at the boundary between the points whose orbit under f are bounded and
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those points whose orbit under f are undbounded. Prove the following properties
of the Julia set (some are harder than the other; you don't have to prove all of
them):

(1) The set J(c) is a repeller.
(2) The set J(c) is an invariant (f(J(c)) = J(c) and f−1(J(c)) = J(c))). Use

this property to build an algorithm to draw Julia sets on the computer.
(3) An orbit on J is either periodic or chaotic.
(4) All unstable periodic points of f are on J(c).
(5) If one point zn in the orbit of z0 has the property that |zn| > max{|c|, 2}

then z0 escapes. Use this property to construct an algorithm to draw Julia
sets on the computer.

(6) The set J(c) is either connected or totally disconnected.
(7) The set J(c) is connected i� the orbit generated by 0 under the map fc is

bounded.
(8) The set {c ∈ C : J(c) is connected}is called the Mandelbrot set. Draw this

set on the computer.

Here is a picture of a Julia set (I forgot for what value of c). It is the same picture
as on the course websites.

3. Random Walks

Let {Sn} be a random walk in Rn, n = 1, 2, 3 (as de�ned in class).

(1) What is the probability of return in 2m steps? (We will do n = 1 in class)
(2) What is the probability of the �rst return in 2m steps? (n = 1 in class)
(3) What is the probability of eventual return? That is, what is the probability

that one will come back to the origin eventually?
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(4) What is the probability of no equalizations in a walk of length 2m?
(5) What if (for n = 1) the distribution function is

fX(x) =

{
p if x = 1

q if x = −1
,

where 0 ≤ p, q ≤ 1 and p + q = 1. This problem is called the Gambler's
ruin. Why?

4. Iterated Function Systems

An iterated function system (i.f.s.) on Rn (you can assume, for simplicty, that
n = 1 in the proofs) is a collection of contraction maps (f1, f2, . . . , fN ). We let
K(Rn) be the set of nonempty compact subset of Rn and let D be the �Hausdor�
metric� on K(Rn).

(1) Let F (A) = f1(A)
⋃
· · ·

⋃
fn(A) for all A ∈ K(Rn). Show that F is a

contraction on K(Rn). This implies that there is a unique compact subset
K of Rn such that

f1(K)
⋃
. . . fn(K) = K.

We say that K is self-similar. In general K is a fractal. Here is a picture
of the Sierpinski gasket:

(2) Let k1, k2, k3, . . . be an in�nite sequence in the set {1, 2, . . . , N}]. Let a ∈
R2. Let the sequence {xn} be de�ned by

x0 = a; xn = fkn(xn−1) for n ≥ 1.

Then every cluster point of the sequence {xn} belongs to K; every point on
K is a cluster point of such a sequence {xn} �r some choice of ki. Moreover,
there is a point a and choice sequence ki so that K is exactly equal to the
set of all cluster points of {xn}.
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(3) A point x in K is periodic for the i.f.s. if there is a �nite sequence k1, . . . , kn
such that

x = fk1 ◦ fk2 ◦ · · · ◦ fkn(x).

Prove that K is the closure of the periodic points of the i.f.s.
(4) If fi(K)

⋂
fj(K) = ∅ then we call the i.f.s. totally disconnected. For

example, the i.f.s. that generates the Cantor set is totally disconnected. If
the i.f.s. is totally disconnected then one can de�ne a dynamical system
T : K → K with the property that T ◦ fi(x) = x for all x ∈ K. Prove that
T is a chaotic dynamical system (see the �rst project).

(5) If the i.f.s. is totally disconnected thenK is totally disconnected. Otherwise
K is connected.

(6) Suppose now that the maps fi depend also on a parameter p ∈ [0, 1]. That
is, each map is de�ned now fi : [0, 1] × Rn → Rn such that fi(p, ·) is a
contraction for all p ∈ [0, 1]. Fixing a given p we have just a regular i.f.s.
Let K(p) be its self-similar set. Prove that the map p ∈ [0, 1] 7→ K(p) ∈
K(Rn) is a continuous map with respect to the Hausdor� metric. That is,
prove that for any ε > 0 there is δ > 0 such that if |p1 − p2| < δ then
D(K(p1),K(p2)) < ε.

5. Energy and Laplacian on P.C.F. Fractals

The P.C.F. fractals are de�ned in the fourth chapter of the notes that I photo-
copied for you. You can see a few examples of them on page 92 (Example 4.1.1
through Example 4.1.5). The goal of this project is to redo explicitly the computa-
tions from Sections 1.3, 3.2 and 3.3 for one of these examples. Each fractal counts as
a separate project. In addition, you should use your computations and algorithms
to study numerically the harmonic functions, eigenvalues, and eigenfunctions on
fractals. That is, you should write programs which graph harmonic functions on a
fractal based on the initial values (the initial values can be de�ned only on some
n-cell, by Exercise 1.3.1), describe a list of the �rst 100 eigevalues (maybe less or
maybe more, depending on how good your program is), as well as graphing ap-
proximations of eigenfunctions corresponding to a few of those eigenvalues. Do you
notice any �gap� in the quotient λi/λj , where λi and λj are distinct eigenvalues of
−∆?

6. Map Coloring

A map is a �nite graph on the sphere such that no face lies on two sides of an
edge. A xoloring of the map connsists in assigning a color to each face (country) so
that no two faces that share an edge (boundary) have the same color. Questions:

• When can a map be colored using only two colors?
• Prove that every map can be colored with 5 or fewer colors. (Actually,
there is a theorem which says that every map can be colored with 4 or
fewer colors; this result is, however, much harder to prove).

7. The general linear group

LetMn be the set of invertible matrices and de�ne GLn the set of invertible ma-
trices inMn. GLn is called the general linear group. Prove the following properties
of GLn:
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• GLn is an open subset of Mn.
• The function A 7→ A−1 is continuous on GLn.
• GLn is dense in Mn.
• GLn(C) is arcwise connected.
• GLn(R) has two components:

{T ∈ GLn(R) : detT > 0}
and

{T ∈ GLn(R) : detT < 0}.

8. Fourier Series

In this project you are asked to prove a few results about the convergence of
Fourier series. Recall that for a 2π-periodic integrable function f the n-th Fourier
coe�cient is

f̂(n) =
1

2π

ˆ 2π

0

f(x)e−inxdx,

for all n ∈ Z. De�ne the partial sum

SN (f)(x) =

N∑
n=−N

f̂(n)einx.

The big question is: does SN (f)(x) converges to f(x)? The short answer is that not
always! Even if f is continuous. Prove, however, the following results (we assume
always that the function f is Riemann integrable):

• (uniqueness of the Fourier series) If f̂(n) = 0 for all n and f is continuous
at x then f(x) = 0.

• If the Fourier series is absolutely convergent then SN (f)(x) converges uni-
formly at f(x).

• Prove that SN (f)(x) is Cesaro summable to f(x) whenever x is a continuity
point of f . Moreover, if f is continuous on [0.2π] then the Fourier series is
uniformly Cesaro summable to f(x).

• Prove that
1

2π

ˆ 2π

0

|f(x)− SN (f)(x)|2dx→ 0

as N →∞ (mean-square convergence).
• If f is di�erentiable at x0 then SN (f)(x0)→ f(x0) as N →∞.
• Finally, show that there is a continuous function whose Fourier series di-
verges at a point.


