MATH 300, IN CLASS PROBLEMS WEEK 1

MARIUS IONESCU

Problem 1. If (a_n) is a sequence of real numbers, then in any closed interval of \mathbb{R} with positive length there exists a real number x such that $x \neq a_n$ for each n.

Problem 2. Let f be a strictly increasing mapping of \mathbb{R} onto \mathbb{R}^+ such that f(0) = 1 and f(x+y) = f(x)f(y). Prove that $f(x) = a^x$, where a = f(1) > 1.

Problem 3. Let (a_n) be a sequence in \mathbb{R} . Prove that if the three subsequences $(a_{2n}), (a_{2n+1}), and (a_{3n})$ are convergent, then so is (a_n) .

Problem 4. What is the last digit of 3^{4798} ?

Problem 5. You have a well-shuffled deck of 52 playing cards. You ask a friend to divide the deck into 3 piles. You then be that one of the top 3 cards is a face card (Jack, Queen, or King). Who has a better chance of winning, you or your friend?

Problem 6. Let f be a real-valued function on the plane such that for every square ABCD in the plane, f(A) + f(B) + f(C) + f(D) = 0. Does it follow that f(P) = 0 for all points P in the plane?