
If you see	use the sub	where	so that	and
$\sqrt{a^2 - x^2}$	$x = a\sin\theta$	$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$	$dx = a\cos\theta d\theta$	$\sqrt{a^2 - x^2} = a\cos\theta$
$\sqrt{a^2 + x^2}$	$x = a \tan \theta$	$-\frac{\pi}{2} < heta < \frac{\pi}{2}$	$dx = a\sec^2\theta d\theta$	$\sqrt{a^2 + x^2} = a \sec \theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$	$0 \le \theta < \frac{\pi}{2} \text{ or } \pi \le \theta < \frac{3\pi}{2}$	$dx = a \sec \theta \tan \theta d\theta$	$\sqrt{x^2 - a^2} = a \tan \theta$

Below are right triangles that show the relationship between a, x, and θ for $x = a \sin \theta, x = a \tan \theta,$ and $x = a \sec \theta$, respectively.

