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Abstract

Properties of local fields inside mixtures of two nonlinear power law ma-
terials are studied. This simple constitutive model is frequently used to
describe several phenomena ranging from plasticity to optical nonlinear-
ities in dielectric media. This work addresses a prototypical problem in
the scalar setting. We provide the corrector theory for the strong ap-
proximation of fields inside composites made from power law materials.
These results are applied to deliver new multiscale tools for bounding the
local singularity strength inside micro-structured media in terms of the
macroscopic applied fields.

1. Notation and Statement of the Problem

Since the mixture is periodic, the unit period cell Y is used to define χε1
and χε2. Let F be an open subset of Y of material one, with smooth
boundary ∂F , such that F ⊂ Y . The function χ1(y) = 1 inside F and
0 outside and χ2(y) = 1− χ1(y). Denote by F

ε
i the set of all translated

images ε
(
i + F

)
of εF by the vector εi, i ∈ Zn. Then the ε-periodic

mixture inside Ω is described by

χε1(x) = χ1(x/ε) and χε2(x) = χ2(x/ε).

This kind of microstructure made of inclusions of one material surrounded
by the other material phase is often referred as disperse microstructure
(See Figure 1).

Figure 1: Disperse Microstructure

Results in the case of layered materials are also obtained. In this case the
representative unit cell consists of a layer of material one, denoted by R1,
sandwiched between layers of material two, denoted by R2. The interior
boundary of R1 is denoted by Γ. Here χ1(y) = 1 for y ∈ R1 and 0 in R2,
and χ2(y) = 1− χ1(y) (See Figure 2).

Figure 2: Layered Microstructure

The exponents for material one and material two are denoted p1 and p2
respectively and satisfy 2 ≤ p1 ≤ p2, and their Hölder conjugates are
denoted by q2 and q1 respectively.
The piecewise power law material is defined by the constitutive law
A : Rn × Rn→ Rn given by

A (x, ξ) = σ(x) |ξ|p(x)−2 ξ = σ1χ1 (x) |ξ|p1−2 ξ + σ2χ2 (x) |ξ|p2−2 ξ

with

σ(x) = χ1 (x)σ1 + χ2 (x)σ2 , and p(x) = χ1 (x) p1 + χ2 (x) p2 ,

and the constitutive law for the ε-periodic composite is given by

Aε(x, ξ) = A
(x
ε
, ξ
)

, for every ε > 0,

for every x ∈ Rn and for every ξ ∈ Rn.

2. Homogenization Theory

2.1 Dirichlet Problem{
−div (Aε (x,∇uε)) = f on Ω,

uε ∈ W 1,p1

0 (Ω);
(1)

where f ∈ W−1,q2(Ω).

The differential operator appearing on the left hand side of (1) is
commonly referred to as the pε(x)-Laplacian. For the case at hand the
exponents p(x) and coefficients σ(x) are taken to be simple functions.
Because the level sets associated with these functions can be quite
general and irregular they are referred to as rough exponents and
coefficients. In this context all solutions are understood in the usual
weak sense.

2.2 Homogenization Theorem

As ε→ 0, the solutions uε of (1) converge weakly to u in W 1,p1(Ω),
where u is the solution of{

−div (b (∇u)) = f on Ω,

u ∈ W 1,p1

0 (Ω);
(2)

and the function b : Rn→ Rn is defined for all ξ ∈ Rn by

b(ξ) =
∫
Y A(y, p(y, ξ))dy , (3)

where p : Rn × Rn→ Rn is defined by

p(x, ξ) = ξ +∇υξ(x) , (4)

where υξ is the solution to the cell problem:
∫
Y

(
A(y, ξ +∇υξ),∇w

)
dy = 0 for every w ∈ W 1,p1

per (Y ),

υξ ∈ W
1,p1
per (Y ).

(5)

For i = 1, 2, W
1,pi
per (Y ) denotes the set of all functions u ∈ W 1,pi(Y )

with mean value zero which have the same trace on the opposite faces of
Y .

3. Regularity Theory

If we assume that we have a periodic disperse structure or a
layered material, then the solution u of (2) belongs to

W
1,p2

0 (Ω).

4. Statement of the Corrector Theorem

In this section, we construct a family of correctors that approximate the
sequence

{
χεi∇uε

}
ε>0 strongly in Lpi(Ω,Rn).

4.1 Notation

• Y iε = ε(i + Y ), where i ∈ Zn and ε > 0, i.e. the translated image of
Yε = εY by the vector εi.

• Iε =
{
i ∈ Zn : Y iε ⊂ Ω

}
.

Let ϕ ∈ Lp2(Ω; Rn) and Mεϕ : Rn→ Rn be the function defined by

Mε(ϕ)(x) =
∑
i∈Iε χY i

ε
(x) 1
|Y i
ε |
∫
Y i
ε
ϕ(y)dy , (6)

4.2 Corrector Theorem

Let f ∈ W−1,q2(Ω), let uε be the solutions to the problem (1), and let u
be the solution to problem (2). Then, for periodic disperse structures
and layered materials, we have

∫
Ω

∣∣χεipε (x,Mε(∇u))− χεi∇uε
∣∣pi → 0, as ε→ 0. (7)

for i = 1, 2.

5. Fluctuations Result

For all Caratheodory functions ψ ≥ 0 and measurable sets D ⊂ Ω we
have

∫
D

∫
Y ψ (y, χi(y)p (y,∇u(x))) dydx ≤ lim infε→0

∫
D ψ

(
x, χεi(x)∇uε(x)

)
dx.

If the sequence
{
ψ
(
x, χεi(x)∇uε(x)

)}
is weakly convergent in L1(Ω),

then the inequality becomes an equality.

In particular,

∫
D

∫
Y χi(y) |p (y,∇u(x))|r dydx ≤ lim infε→0

∫
D χ

ε
i(x) |∇uε(x)|r dx,

for r > 1.
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