Test 3 Math 112 April 12, 2005 Answers

1) lim_{x→0⁻} cos(x)/x = lim_{x→0⁺} 1/x = -∞
2) lim_{x→0⁺} x^{arctan(x)} = lim_{x→0⁺} e^{ln(x^{arctan(x)})} = ... = 1 (Several applications of L'Hospitals rule.)
3) lim_{x→2⁺} 1n(x-1)/x² + 4x - 12 = L'Hospitals rule= 1/8
4) ∫_{-∞}⁰ e^{-2x} dx [Diverges].
5) ∫₀² x³/x² - 1 dx [Diverges].
6) Part one: Short answer. For what values of p does the integral ∫₁[∞] 1/x^p dx diverge? For p ≤ 1 Part two: Use the comparison theorem to determine whether the following integral converges. ∫₃[∞] cos² x/x³ dx [Converges].
7) Your company is trying to predict its total revenue for part two. [The number of the part two is trying to predict its total revenue for part two. [The number of the part two is trying to predict its total revenue for part two. [The number of the part two is trying to predict its total revenue for part two. [The number of the part two is trying to predict its total revenue for part two.]

7) Your company is trying to predict its total revenue for next year. The total revenue is equal to $\int_0^{66} f(t) dt$. The values in the table below give f(t) for various values of t. Approximate the true value of $\int_0^{66} f(t) dt$ using first the Trapazoidal Rule and then Simpson's Rule.

$$\Delta x = 11, \text{ so } T_6 = 11 (2.1/2 + 4.2 + 3.6 + 8.2 + 6.1 + 0.2 + 1.2/2).$$

$$S_6 = \frac{11}{3} (2.1 + 4(4.2) + 2(3.6) + 4(8.2) + 2(6.1) + 4(0.2) + 1.2).$$

8) Estimate the integral $\int_0^1 -\ln(1+t)dt$ using the trapezoidal rule to within 0.001.

- a) Find a value of K that works in this problem. Explain with equations and/or words. K=1
- b) Suppose after doing the calculations, we obtain the inequality: $|E_T| \leq \frac{0.1}{n^2}$. Using this inequality, how many intervals do you need to ensure the desired accuracy. $\boxed{n=10}$.

9) Find the equations for both of the tangent lines at the crossing (x, y) = (1, 2) of the curve $x = t^3 - t + 1, y = 3 - t^2, -\infty \le t \le \infty$. The t values are $t = \pm 1$ for (x, y) = (1, 2). $\frac{dy}{dx} = \frac{-2t}{3t^2 - 1}$. The equations are: $y - 2 = \pm (x - 1)$. 10) Find the area under the curve for $0 \le x \le \ln(3)$ where the curve is given by $x(t) = \ln(t + 2)$, and y(t) = (t + 1)/(3 - t). $A = \int_0^{\ln 3} y \, dx = \int_{-1}^1 \frac{t + 1}{(3 - t)(t + 2)} dt = -\frac{4}{5} (\ln 2 - \ln 4) - \frac{1}{5} (\ln 3 - \ln 1) = \frac{4}{5} \ln 2 - \frac{1}{5} \ln 3$. 11) Find the area inside the cardioid $r = 1 + \cos(\theta) = \frac{3\pi}{2}$.

12) Set up an integral for the length of the polar curve $r = \sin^3(\frac{\theta}{3})$ for $0 \le \theta \le \frac{\pi}{2}$.

$$\int_0^{\pi/2} \sqrt{\sin^4\left(\theta/3\right) \cos^2\left(\theta/3\right) + \sin^6\left(\theta/3\right)} d\theta$$