1. Suppose the motion of a particle is given by

$$
x=4 \cos t, \quad y=\sin t
$$

(a) Describe the motion of the particle, and sketch the curve along which the particle travels.
(b) Find the velocity and acceleration vectors of the particle.
(c) Find the times t and the points on the curve where the speed of the particle is greatest.
(d) Find the times t and the points on the curve where the magnitude of the acceleration is greatest.
2. Find the coordinates of the points where the line

$$
x=t, \quad y=1+t, \quad z=5 t
$$

intersects the surface

$$
z=x^{2}+y^{2}
$$

3. Let

$$
g(x, y, z)=e^{-(x+y)^{2}}+z^{2}(x+y)
$$

Suppose that a piece of fruit is sitting on a table in a room, and at each point (x, y, z) in the space within the room, $g(x, y, z)$ gives the strength of the odor of the fruit. Furthermore, suppose that a certain bug always flies in the direction in which the fruit odor increases fastest. Suppose also that the bug always flies with a speed of 2 feet/second.
What is the velocity vector of the bug when it is at the position $(2,-2,1)$?
4. The path of a particle in space is given by the functions $x(t)=2 t, y(t)=\cos (t)$, and $z(t)=\sin (t)$. Suppose the temperature in this space is given by a function $H(x, y, z)$. Find $\frac{d H}{d t}$, the rate of change of the temperature at the particle's position. (Since the actual function $H(x, y, z)$ is not given, your answer will be in terms of derivatives of H.)
5. Let

$$
f(x, y)=x^{3}-x y+\cos (\pi(x+y))
$$

(a) Find a vector normal to the level curve $f(x, y)=1$ at the point where $x=1$, $y=1$.
(b) Find the equation of the line tangent to the level curve $f(x, y)=1$ at the point where $x=1, y=1$.
(c) Find a vector normal to the graph $z=f(x, y)$ at the point $x=1, y=1$.
(d) Find the equation of the plane tangent to the graph $z=f(x, y)$ at the point $x=1, y=1$.
6. Suppose f is a differentiable function such that

$$
\begin{gathered}
f(1,3)=1, \quad f_{x}(1,3)=2, \quad f_{y}(1,3)=4, \\
f_{x x}(1,3)=2, \quad f_{x y}(1,3)=-1, \quad \text { and } \quad f_{y y}(1,3)=4 .
\end{gathered}
$$

(a) Find $\operatorname{grad} f(1,3)$.
(b) Find a vector in the plane that is perpendicular to the contour line $f(x, y)=1$ at the point $(1,3)$.
(c) Find a vector that is perpendicular to the surface $z=f(x, y)$ (i.e. the graph of $f)$ at the point $(1,3,1)$.
(d) At the point $(1,3)$, what is the rate of change of f in the direction $\vec{i}+\vec{j}$?
(e) Use a quadratic approximation to estimate $f(1.2,3.3)$.
7. We say that a line in 3 -space is normal to a surface at a point of intersection if the line is normal to (i.e. perpendicular to) the tangent plane of the surface at that point.
Let S be the surface defined by

$$
x^{2}+y^{2}+2 z^{2}=4
$$

(a) Find the parametric equations of the line that is normal to the surface S at the point $(1,1,1)$.
(b) The line found in (a) will intersect the surface S at two points. One of them is ($1,1,1$), by construction. Find the other point of intersection.
8. Let

$$
f(x, y)=(x-y)^{3}+2 x y+x^{2}-y .
$$

(a) Find the function $L(x, y)$ that gives the linear approximation of f near the point $(1,2)$.
(b) Find the function $Q(x, y)$ that gives the quadratic approximation of f near the point $(1,2)$
9. For each of the following functions, determine the set of points where the function is not differentiable. Briefly explain how you know it is not differentiable; use a picture if it helps.
(You do not have to prove that it is not differentiable; just identify the set of points based on your understanding of what differentiable means.)
(a) $f(x, y)=\left|x^{2}+y^{2}-1\right|$
(b) $f(x, y)=\left(x^{2}+y^{2}\right)^{1 / 4}$
(c) $f(x, y)=e^{-x^{2}+y}$
(d) $f(x, y)=\frac{x^{3}-x y+1}{x^{2}-y^{2}}$
10. Suppose $w=Q(x, y, z)$, where Q is a differentiable function. Next suppose that $x=f(t), y=g(t)$ and $z=h(t)$.
(a) Use the chain rule to find an expression for $\frac{d w}{d t}$ in terms of Q, f, g, h and their derivatives (e.g. Q_{x}, f^{\prime}, etc.).
(b) Show that the expression in (a) may be written as

$$
\frac{d w}{d t}=\left(\operatorname{grad} Q(\vec{r}(t)) \cdot \frac{d \vec{r}}{d t},\right.
$$

where \cdot is the dot product, $\vec{r}(t)=f(t) \vec{i}+g(t) \vec{j}+h(t) \vec{k}$ is the vector form of the parameterized curve $x=f(t), y=g(t)$, and $z=h(t)$, and, if $\vec{r}=a \vec{i}+b \vec{j}+c \vec{k}$, $Q(\vec{r})$ means $Q(a, b, c)$.

SOLUTIONS

1. (a) Note that $(x / 4)^{2}+y^{2}=\cos ^{2} t+\sin ^{2} t=1$, so the path of the particle is the ellipse $(x / 4)^{2}+y^{2}=1$. The motion is counter-clockwise around the ellipse.

(b) The path is $\vec{r}(t)=(4 \cos t) \vec{i}+(\sin t) \vec{j}$, so the velocity is

$$
\vec{v}(t)=\vec{r}^{\prime}(t)=(-4 \sin t) \vec{i}+(\cos t) \vec{j}
$$

and the acceleration is

$$
\vec{a}(t)=\vec{r}^{\prime \prime}(t)=(-4 \cos t) \vec{i}+(-\sin t) \vec{j} .
$$

(c) The speed is

$$
v=\|\vec{v}(t)\|=\sqrt{(-4 \sin t)^{2}+(\cos t)^{2}}=\sqrt{16 \sin ^{2} t+\cos ^{2} t}
$$

This has a maximum or minimum when $d v / d t=0$. Now

$$
\frac{d v}{d t}=\frac{15 \sin t \cos t}{\sqrt{16 \sin ^{2} t+\cos ^{2} t}}
$$

so $d v / d t=0$ when $\sin t=0$ or $\cos t=0$. This means $t=n \pi$ or $t=\pi / 2+n \pi$, where n is any integer. When $t=n \pi, v=1$, and when $t=\pi / 2+n \pi, v=4$. Thus the maximum speed is $v=4$. It occurs when $t=\pi / 2+n \pi$. When n is even, the point in the plane where this occurs is $(0,1)$, and when n is odd, the point is $(0,-1)$.
(d) The magnitude of the acceleration is

$$
a=\|\vec{a}(t)\|=\sqrt{(-4 \cos t)^{2}+(-\sin t)^{2}}=\sqrt{16 \cos ^{2} t+\sin ^{2} t}
$$

This has a maximum or minimum when $d a / d t=0$. Now

$$
\frac{d a}{d t}=\frac{-15 \sin t \cos t}{\sqrt{16 \cos ^{2} t+\sin ^{2} t}}
$$

so $d a / d t=0$ when $\sin t=0$ or $\cos t=0$. This means $t=n \pi$ or $t=\pi / 2+n \pi$, where n is any integer. When $t=n \pi, a=4$, and when $t=\pi / 2+n \pi, a=1$. Thus the maximum magnitude of the acceleration is $a=4$. It occurs when $t=n \pi$. When n is even, the point in the plane where this occurs is (0,4), and when n is odd, the point is $(0,-4)$.
2. We have $x=t, y=1+t$ and $z=5 t$, and we want $z=x^{2}+y^{2}$, so we must solve

$$
5 t=t^{2}+(1+t)^{2} \Longrightarrow 2 t^{2}-3 t+1=0 \Longrightarrow t=\frac{3 \pm \sqrt{9-8}}{4}=\frac{3 \pm 1}{4}
$$

So the line intersects the surface when $t=1 / 2$ and when $t=1$. When $t=1 / 2$, the point of intersection is $(1 / 2,3 / 2,5 / 2)$, and when $t=1$, the point of intersection is $(1,2,5)$.
3. Since the bug flies in the direction in which the fruit odor increases fastest, it flies in the direction of $\operatorname{grad} g$. The gradient of g is

$$
\begin{gathered}
\operatorname{grad} g(x, y, z)=\left(-2(x+y) e^{-(x+y)^{2}}+z^{2}\right) \vec{i}+\left(-2(x+y) e^{-(x+y)^{2}}+z^{2}\right) \vec{j} \\
+(2 z(x+y)) \vec{k}
\end{gathered}
$$

and

$$
\operatorname{grad} g(2,-2,1)=\vec{i}+\vec{j}
$$

The bug always has a speed of 2 , so the velocity vector must have a magnitude of 2 . A vector with magnitude 2 and in the same direction as the gradient is

$$
2 \frac{\operatorname{grad} g(2,-2,1)}{\|\operatorname{grad} g(2,-2,1)\|}=\frac{2}{\sqrt{2}}(\vec{i}+\vec{j})
$$

4. By the chain rule,

$$
\frac{d H}{d t}=\frac{\partial H}{\partial x} \frac{d x}{d t}+\frac{\partial H}{\partial y} \frac{d y}{d t}+\frac{\partial H}{\partial z} \frac{d z}{d t}=2 \frac{\partial H}{\partial x}-\sin t \frac{\partial H}{\partial y}+\cos t \frac{\partial H}{\partial z}
$$

5. (a) The gradient of f is normal to the level curve at each point. We find

$$
\operatorname{grad} f(x, y)=\left(3 x^{2}-y-\pi \sin (\pi(x+y))\right) \vec{i}+(-x-\pi \sin (\pi(x+y))) \vec{j}
$$

and

$$
\operatorname{grad} f(1,1)=2 \vec{i}-\vec{j}
$$

so one possible answer is $2 \vec{i}-\vec{j}$.
(b) The line is

$$
2(x-1)-(y-1)=0, \quad \text { or } \quad 2 x-y=1
$$

(c) The graph is the level surface $g(x, y, z)=0$ of the function $g(x, y, z)=f(x, y)-$ z. The gradient of g is normal to the level surface at each point. We have $\operatorname{grad} g(x, y, z)=\operatorname{grad} f(x, y)-\vec{k}$. The point on the surface where $(x, y)=(1,1)$ is $(1,1, f(1,1))=(1,1,1)$. A vector normal to the graph at $(1,1,1)$ is

$$
\operatorname{grad} g(1,1,1)=\operatorname{grad} f(1,1)-\vec{k}=2 \vec{i}-\vec{j}-\vec{k}
$$

(d) The plane is $2(x-1)-(y-1)-(z-1)=0, \quad$ or $\quad 2 x-y-z=0$.
6. (a) $\operatorname{grad} f(1,3)=f_{x}(1,3) \vec{i}+f_{y}(1,3) \vec{j}=2 \vec{i}+4 \vec{j}$
(b) $2 \vec{i}+4 \vec{i}$ (from (a); the gradient vector at a point is perpendicular to the contour line through that point)
(c) The graph is the level surface $g(x, y, z)=0$ of the function $g(x, y, z)=f(x, y)-$ z. The gradient of g is normal to the level surface at each point. We have $\operatorname{grad} g(x, y, z)=\operatorname{grad} f(x, y)-\vec{k}$. The point on the surface where $(x, y)=(1,3)$ is $(1,3, f(1,3))=(1,3,1)$. A vector normal to the graph at $(1,3,1)$ is

$$
\operatorname{grad} g(1,3,1)=\operatorname{grad} f(1,3)-\vec{k}=2 \vec{i}+4 \vec{j}-\vec{k}
$$

(d) $\vec{u}=(\vec{i}+\vec{j}) / \sqrt{2}$ is a unit vector in the direction of $\vec{i}+\vec{j}$. The rate of change of f in this direction is $f_{\vec{u}}(1,3)=\operatorname{grad} f(1,3) \cdot \vec{u}=(2 \vec{i}+4 \vec{j}) \cdot(\vec{i}+\vec{j}) / \sqrt{2}=6 / \sqrt{2}=3 \sqrt{2}$.
(e) Near $(1,3)$, we have

$$
\begin{aligned}
f(x, y) \approx f(1,3)+ & f_{x}(1,3)(x-1)+f_{y}(1,3)(y-3)+ \\
& \frac{f_{x x}(1,3)}{2}(x-1)^{2}+f_{x y}(1,3)(x-1)(y-3)+\frac{f_{y y}(1,3)}{2}(y-3)^{2} .
\end{aligned}
$$

So

$$
\begin{aligned}
f(1.2,3.3) \approx 1 & +(2)(0.2)+(4)(0.3)+(2 / 2)(0.2)^{2}+(-1)(0.2)(0.3)+(4 / 2)(0.3)^{2} \\
& =2.76 .
\end{aligned}
$$

7. (a) In vector form, the equation of a line is $\vec{r}=\vec{r}_{0}+t \vec{v}$, where \vec{r}_{0} is the position vector of a point in the line, and \vec{v} is a vector in the direction of the line. We already have $\vec{r}_{0}=\vec{i}+\vec{j}+\vec{k}$. Let $f(x, y, z)=x^{2}+y^{2}+2 z^{2}$. Since the gradient vector of f is perpendicular to the level surface, we can use it for \vec{v}. That is, $\vec{v}=\operatorname{grad} f(1,1,1)=2 \vec{i}+2 \vec{j}+4 \vec{k}$. Thus the equation of the line is

$$
\vec{r}=\vec{i}+\vec{j}+\vec{k}+t(2 \vec{i}+2 \vec{j}+4 \vec{k})
$$

or

$$
x=1+2 t, \quad y=1+2 t, \quad z=1+4 t
$$

(b) We can find the points by first finding the values of t at which the line intersects the surface $x^{2}+y^{2}+2 z^{2}=4$. Plugging the parametric equations into the equation of the surface, we have

$$
\begin{aligned}
(1+2 t)^{2}+(1+2 t)^{2}+2(1+4 t)^{2} & =4 \\
40 t^{2}+24 t+4 & =4 \\
t(5 t+3) & =0
\end{aligned}
$$

so $t=0$ or $t=-3 / 5$. At $t=0$, the parametric equations of the line give the point $(1,1,1)$, which is the point we already knew. At $t=-3 / 5$, the parametric equations of the line give $(-1 / 5,-1 / 5,-7 / 5)$. This is the other point that we want.
8. (a) First get the numbers:
$f(1,2)=-1+4+1-2=2$,
$f_{x}(x, y)=3(x-y)^{2}+2 y+2 x, \quad f_{x}(1,2)=3+4+2=9$,
$f_{y}(x, y)=-3(x-y)^{2}+2 x-1, \quad f_{y}(1,2)=-3+2-1=-2$.
Then

$$
\begin{aligned}
L(x, y) & =f(1,2)+f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2) \\
& =2+9(x-1)-2(y-2)
\end{aligned}
$$

(b) We need some more numbers:
$f_{x x}(x, y)=6(x-y)+2, \quad f_{x x}(1,2)=-6+2=-4$,
$f_{x y}(x, y)=-6(x-y)+2, \quad f_{x y}(1,2)=6+2=8$,
$f_{y y}(x, y)=6(x-y), \quad f_{y y}(1,2)=-6$.
Then

$$
\begin{aligned}
Q(x, y) & =L(x, y)+\frac{f_{x x}(1,2)}{2}(x-1)^{2}+f_{x y}(1,2)(x-1)(y-2)+\frac{f_{y y}(1,2)}{2}(y-2)^{2} \\
& =2+9(x-1)-2(y-2)-2(x-1)^{2}+8(x-1)(y-2)-3(y-2)^{2}
\end{aligned}
$$

9. (a) This function is not differentiable on the circle $x^{2}+y^{2}=1$. The graph has a "corner" at these points.
(b) This function is not differentiable at the origin. Consider the cross section $y=0$: $f(x, 0)=\left(x^{2}\right)^{1 / 4}=\sqrt{|x|}$. The graph has a cusp (i.e. a point) at $x=0$.
(c) This function is the composition of polynomials and the exponential function, so it is differentiable everywhere.
(d) This function is not differentiable at points where the denominator is zero; that is, where $x^{2}=y^{2}$. This gives the lines $y=x$ and $y=-x$.
10. (a)

$$
\begin{aligned}
\frac{d w}{d t} & =Q_{x}(x, y, z) \frac{d x}{d t}+Q_{y}(x, y, z) \frac{d y}{d t}+Q_{z}(x, y, z) \frac{d z}{d t} \\
& =Q_{x}(f(t), g(t), h(t)) f^{\prime}(t)+Q_{y}(f(t), g(t), h(t)) g^{\prime}(t)+Q_{z}(f(t), g(t), h(t)) h^{\prime}(t) \\
& =Q_{x}(\vec{r}(t)) f^{\prime}(t)+Q_{y}(\vec{r}(t)) g^{\prime}(t)+Q_{z}(\vec{r}(t)) h^{\prime}(t)
\end{aligned}
$$

(b) Since

$$
\operatorname{grad} Q(x, y, z)=Q_{x}(x, y, z) \vec{i}+Q_{y}(x, y, z) \vec{j}+Q_{z}(x, y, z) \vec{k}
$$

we have

$$
\operatorname{grad} Q(\vec{r}(t))=Q_{x}(\vec{r}(t)) \vec{i}+Q_{y}(\vec{r}(t)) \vec{j}+Q_{z}(\vec{r}(t)) \vec{k},
$$

Also,

$$
\frac{d \vec{r}}{d t}=f^{\prime}(t) \vec{i}+g^{\prime}(t) \vec{j}+h^{\prime}(t) \vec{k}
$$

so we have

$$
\begin{aligned}
\frac{d w}{d t} & =Q_{x}(\vec{r}(t)) f^{\prime}(t)+Q_{y}(\vec{r}(t)) g^{\prime}(t)+Q_{z}(\vec{r}(t)) h^{\prime}(t) \\
& =\left(\operatorname{grad} Q(\vec{r}(t)) \cdot \frac{d \vec{r}}{d t}\right.
\end{aligned}
$$

